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Abstract: Catastrophes, like earthquakes, bring sudden and severe damage, causing fatalities, 

injuries, and property loss. This often triggers a rapid increase in insurance claims. These 

claims can encompass various types, such as life insurance claims for deaths, health insurance 

claims for injuries, and general insurance claims for property damage. For insurers offering 

multiple types of coverage, this surge in claims can pose a risk of financial losses or bankruptcy. 

One option for insurers is to transfer some of these risks to reinsurance companies. Reinsurance 

companies will assess the potential losses due to a catastrophe event, then issue catastrophe 

reinsurance contracts to insurance companies. This study aims to construct a valuation model 

for catastrophe reinsurance contracts that can cover claim losses arising from two types of 

insurance products. Valuation in this study is done using the Fundamental Theorem of Asset 

Pricing, which is the expected present value of the number of claims that occur during the 

reinsurance coverage period. The number of catastrophe events during the reinsurance 

coverage period is assumed to follow a Poisson process. Each impact of a catastrophe event, 

such as the number of fatalities and injuries that cause claims, is represented as random 

variables, and modeled using Peaks Over Threshold (POT). This study uses Clayton, Gumbel, 

and Frank copulas to describe various dependence characteristics between random variables. 

The parameters of the POT model and copula are estimated using In ference Functions for 

Margins method. After estimating the model parameters, Monte Carlo simulations are 

performed to obtain numerical solutions for the expected value of catastrophe reinsurance 

based on the Fundamental Theorem of Asset Pricing. The expected reinsurance value based on 

Monte Carlo simulations using Indonesian earthquake data from 1979 –2021 is Rp 

10,296,819,838. 

Keywords: fundamental theorem of asset pricing; inference functions for margins; maximum 

likelihood; Monte Carlo; Poisson process 

1. Introduction 

Indonesia is an archipelagic country located at the convergence of tectonic plates, 

namely the Asian Continental Plate, the Australian Continental Plate, the Indian Ocean 

Plate, and the Pacific Ocean Plate. This condition makes Indonesia highly susceptible 

to catastrophic events, especially those caused by natural disasters. A catastrophe’s 

occurrence is an abrupt and seriously detrimental calamity. For instance, a devastating 

earthquake may result in fatalities, injuries, and property destruction. This illness can 

quickly generate a huge influx of insurance claims (Rejda and McNamara, 2014). Life 

insurance claims for the insured’s demise, health insurance claims for injuries 

sustained by the injured party, and general insurance claims for property damage are 

a few instances of claims that might occur. For insurance companies that offer a variety 
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of insurance products, this circumstance could result in losses or bankruptcy. 

Transferring some of that risk to a reinsurance business is one option available to 

insurance companies. Because some of the loss risk is shared by the reinsurance 

business, the presence of a reinsurance firm enables insurance companies to issue 

contracts with significant coverage amounts. The reinsurance company must assess 

prospective losses in the event of a catastrophic incident before issuing a reinsurance 

contract. This valuation aims to determine a net premium that actuarially compensates 

for the assumed loss risk. 

The first to design the catastrophe reinsurance value model was developed by 

Strickler (1960). The model, however, had limits because the rate of catastrophic 

events was believed to be constant, and there was no way to update the model 

(Ekheden and Hössjer, 2014). The Peaks Over Threshold (POT) model created by 

Ekheden and Hössjer (2014) was used to address these limitations. Leppisaari (2014), 

Liu and Han (2012), and Nowak and Romaniuk (2013) extended the prior POT model 

by valuing catastrophic reinsurance contracts using the microsimulation method. The 

previously researched models have a restriction in that they only value one sort of 

claim coming from a disaster event. A disaster incident frequently leads to multiple 

types of claims (Chan et al., 2003). As a result, a new approach to valuing catastrophic 

reinsurance contracts is required to meet the needs of organizations that want to 

transfer risks from two types of products at the same time. To avoid bankruptcy, 

reinsurance companies must calculate the extreme values of the impact of catastrophe 

events while performing appraisals. This is because such large losses have the 

potential to bankrupt a company. Peaks Over Threshold is a good model for modelling 

extreme values (Chao, 2021). As a result, each impact of the disaste r event is 

represented in this study using POT model. Inter-impact dependence must be 

expressed in the computation when valuing two catastrophe event impacts. One 

method is to use copulas to construct a joint distribution function of the random 

variables of the catastrophe event impacts. This joint distribution function is utilized 

in obtaining the numerical solution of the catastrophic reinsurance expectation value 

using Monte Carlo simulations. In this research, we focused on developing a Peaks-

Over-Threshold (POT) model and copula for valuing two-risk catastrophic reinsurance. 

The main objective was to create and apply these models specifically for calculating 

and implementing two-risk catastrophic reinsurance using data from Indonesian 

earthquakes. This approach has never been applied in this way in Indonesia before. 

2. Materials and methods 

Reinsurance businesses must appropriately forecast extreme loss scenarios when 

valuing catastrophe reinsurance contracts. Extreme Value Theory (EVT) is a strategy 

for analyzing numerous extreme events because it may create a model that accurately 

describes extreme events (Gilli and Këllezi, 2006; Paldynski, 2015). There are two 

methods for recognizing extreme values in EVT: Block Maxima (BM) and Peaks Over 

Threshold (POT). The BM method divides the data sample into blocks and then 

chooses the maximum value of each block as the extreme value. Unlike the BM 

approach, the POT approach will establish a value known as a threshold and then 

choose values greater than the threshold as extreme values. The BM strategy has a 
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disadvantage when compared to the POT approach because it is seen to waste available 

observations. Even if the total value is rather large, the BM method will not accept a 

value as an extreme value if it is not the greatest value in the observed block. As a 

result, the POT technique is used in this work since it allows for more observations to 

be used in inference. POT is an EVT technique for identifying extreme values. POT 

establishes a threshold value 𝑚  as a guideline for determining extreme values. 

Extreme values are those that are greater than the threshold value 𝑚. According to 

Balkema and De Haan’s theorem (1974), the distribution function of the extreme 

values can be approximated using the Generalized Pareto Distribution (GPD) for 

sufficiently large threshold values. The cumulative distribution function for GPD is as 

follows: 

𝐹(𝑥) =

{
 

 1− (1+ 𝜉
𝑥

𝜎
)
−
1
𝜉
, if𝜉 ≠ 0

1− 𝑒𝑥𝑝 (−
𝑥

𝜎
), if𝜉 = 0

 

The probability density function for the GPD can be calculated from the 

cumulative distribution function, which is defined as follows: 

𝑓(𝑥) =

{
 
 

 
 1

𝜎
(1+

𝜉𝑥

𝜎
)
−
1
𝜉
−1

, if𝜉 ≠ 0

1

𝜎
𝑒𝑥𝑝 (

−𝑥

𝜎
) , if𝜉 = 0

 

with 0 ≤ 𝑥 < ∞ if 𝜉 ≥ 0 and 0 ≤ 𝑥 ≤ −
𝛿

𝜉
 if 𝜉 < 0 (Gilli and Këllezi, 2006). 

For observations that are below the threshold value 𝑚, it could be modeled with 

an empirical distribution which has the following cumulative distribution function: 

�̂�(𝑥) =
number of observations ≤ 𝑥

𝑛
 

where 𝑛 is the total number of observations. 

The percentage approach is one approach for figuring out the threshold. 

According to Chaves-Dermoulin and Embrechts (2002), 10% of the data is considered 

severe. The percentage technique sets the threshold so that 10% of the data are 

considered extreme values. The processes for determining the threshold using the 

percentage technique are as follows: 

1) Sort the data from the largest to the smallest. 

2) Determine the number of data that is considered as extreme values, which is 0.1𝑛 

observations. 

The value at the (0.1𝑛 + 1)-th position from the largest value will be considered 

as the threshold value. This study examines the impact of losses on reinsurance 

contract valuation using two random variables. As a result, the calculation must 

account for the dependence between the random variables. One method is to use 

copulas to construct a joint distribution function of the random variables’ catastrophic 

event impact. Copula is a way of modelling the dependency between random variables 

by generating a combined distribution of numerous marginal distributions (Czado et 

al., 2011; Wu et al., 2007). Copulas have the advantage of not requiring identical and 

normally distributed marginal distributions. Assume 𝑋  and 𝑌 are random variables 

with cumulative distribution functions 𝐹𝑋(𝑥)  and 𝐹𝑌(𝑦) . According to Sklar’s 
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theorem, ∀𝑥, 𝑦 ∈ 𝑅 there exists a copula 𝐶 such that the joint cumulative distribution 

function of 𝑋 and 𝑌 can be written as: 

𝐻(𝑥,𝑦) = 𝐶[𝐹(𝑥), 𝐺(𝑦)] = 𝐶(𝑢,𝑣) 

where 𝑢 = 𝐹𝑋(𝑥) and 𝑣 = 𝐹𝑌(𝑌) are marginal cumulative distribution functions for 

each variable 𝑋 and 𝑌 respectively. As in (Nelsen, 2005), suppose that 𝐶 is a copula 

for 2 random variables 𝑋 and 𝑌, then 𝐶 maps 𝐼2 → 𝐼 whereas 𝐼 = [0,1]. 𝐶 has these 

characteristics: 

1) 𝐶(𝑢, 0) = 𝐶(0,𝑣) = 0 

2) 𝐶(𝑢, 1) = 𝑢 and 𝐶(1,𝑣) = 𝑣 

3) ∀𝑢1, 𝑣1, 𝑢2, 𝑣2 ∈ 𝐼,  with 𝑢1 ≤ 𝑣1  and 𝑢2 ≤ 𝑣2,  then 𝐶(𝑣1, 𝑣2) − 𝐶(𝑣1 , 𝑢2) −

𝐶(𝑢1, 𝑣2) + 𝐶(𝑢1, 𝑢2) ≥ 0 

If 𝑋 and 𝑌 each have probability density functions 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦) respectively, 

then the joint probability density function for 𝑋 and 𝑌 can be represented as follows: 

𝑓(𝑥, 𝑦) = 𝑓𝑋(𝑥) ⋅ 𝑓𝑌(𝑦) ⋅ 𝑐(𝐹𝑋(𝑥),𝐹𝑌(𝑦)) 

whereas 

𝑐(𝑢,𝑣) =
𝜕2𝐶(𝑢,𝑣)

𝜕𝑢𝜕𝑣
 

would be called a copula density function. The copula density function is used in 

estimating the copula’s parameter (Tse, 2009). The conditional distribution function 

from a copula can be represented as follows: 

𝐶(𝑣|𝑢) = 𝑃𝑟(𝑉 ≤ 𝑣|𝑈 = 𝑢) 

whereas 

𝐶(𝑣|𝑢) = lim
𝛥𝑢→0+

𝐶(𝑢 +𝛥𝑢,𝑣) − 𝐶(𝑢,𝑣)

𝛥𝑢
=
𝜕𝐶(𝑢,𝑣)

𝜕𝑢
 

The conditional distribution function from a copula is used in generating data for 

a copula (McNeil et al., 2005). To discover the best acceptable dependence structure 

for the data, each copula utilized must reflect a different dependency structure. To 

account for this, the copulas employed in this work are Clayton copulas, Gumbel 

copulas, and Frank copulas, which represent lower tail, upper tail, and symmetrical 

dependence structures, respectively (Yu et al., 2020). One of the best copulas from 

these three categories will be chosen to compute the expected value of disaster 

reinsurance. Clayton Copulas are the copulate that illustrates the existence of lower 

tail dependence, which is a stronger dependency on smaller values.  

As in McNeil et al. (2005), the cumulative distribution function for Clayton 

copulas for two random variables are listed below: 

𝐶𝐶𝑙(𝑢,𝑣) = (𝑢−𝜃+𝑣−𝜃 −1)
−
1
𝜃 , 0 < 𝜃 < ∞ 

The probability density function for Clayton copulas with two random variables 

is listed below (Shiau, 2006): 

𝑐𝐶𝑙(𝑢,𝑣) = (𝜃 + 1)(𝑢−𝜃 +𝑣−𝜃−1)
−
1
𝜃
−2
(𝑢𝑣)−𝜃−1 

As in Reddy & Ganguli (2012), conditional copula for Clayton copulas with two 

random variables are listed below: 

𝐶𝐶𝑙(𝑣|𝑢) = [1+ 𝑢𝜃(𝑣−𝜃−1)]
−1−(1/𝜃)

 

and the inverse: 
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𝐶𝐶𝑙
[−1]

(𝑣|𝑢) = [(𝑣
−
𝜃
1+𝜃−1) 𝑢−𝜃+ 1]

−
1
𝜃
 

Gumbel copulas is a copula that illustrates the existence of upper tail dependence, 

which is a strong dependency on larger values. 

The cumulative distribution function for Gumbel copulas with two random 

variables is listed below: 

𝐶𝐺𝑢(𝑢,𝑣) = exp {−((−ln 𝑢)𝜃+ (−ln 𝑣)𝜃)
1
𝜃},1 ≤ 𝜃 < ∞ 

probability density function for Gumbel copulas with two random variables as 

follows: 

𝑐𝐺𝑢(𝑢,𝑣) = 𝐶𝐺𝑢(𝑢,𝑣)
[(−ln 𝑢)(−ln 𝑣)]𝜃−1

𝑢𝑣
[(−ln 𝑢)𝜃+ (− ln𝑣)𝜃]

2
𝜃
−2

 

{(𝜃− 1)[(− ln𝑢)𝜃+ (− 𝑙𝑛𝑣)𝜃]
−
1
𝜃+1} 

Conditional copula for Gumbel copulas with two random variables is listed below: 

𝐶𝐺𝑢(𝑣|𝑢) =
1

𝑢
exp{−((−ln𝑢)𝜃+ (− ln𝑣)𝜃)

1
𝜃}[1+ (

ln 𝑢

ln 𝑣
)
𝜃

]

−1+
1
𝜃

 

Note that Gumbel copulas have no closed-form inverse for the conditional copula. 

Frank copula is a copula that illustrates symmetrical dependence on the lower tail and 

higher tail which shows that there is weak dependency on both tails but stronger 

dependency on the middle of the distribution. 

The cumulative distribution function for Frank copulas with two random 

variables is listed below: 

𝐶𝐹𝑟(𝑢,𝑣) = −
1

𝜃
𝑙𝑛(1+

(𝑒−𝜃𝑢−1)(𝑒−𝜃𝑣− 1)

(𝑒−𝜃 −1)
), 𝜃 ≠ 0 

The probability density function for Frank copula with two random variables is 

as follows: 

𝑐𝐹𝑟(𝑢,𝑣) = −
𝜃𝑒−𝜃(𝑢+𝑣)(𝑒−𝜃−1)

[𝑒−𝜃(𝑢+𝑣) − 𝑒−𝜃𝑢 − 𝑒−𝜃𝑣 + 𝑒−𝜃]2
 

Conditional copula for Frank copulas with two random variables is listed below: 

𝐶𝐹𝑟(𝑣|𝑢) = 𝑒−𝜃𝑢1 [(1− 𝑒−𝜃)(1− 𝑒−𝜃𝑣)
−1
− (1− 𝑒−𝜃𝑢)]

−1

 

with the inverse function: 

𝐶𝐹𝑟
[−1]

(𝑣|𝑢) = −
1

𝜃
ln (1−

(1− 𝑒−𝜃)

[(𝑢2
−1 −1)𝑒−𝜃𝑢1 +1]

) 

The Basic Theorem of Asset Pricing is used to do valuation in this study. The 

following formula can be used to calculate the expected value of catastrophe 

reinsurance, 𝑃, based on the Basic Theorem of Asset Pricing: 

𝑃 = 𝐸 [∑𝑓(𝑋𝑖 , 𝑌𝑖)exp (−∫ 𝑟(𝑠)𝑑𝑠
𝑡𝑖

0

)

𝑁

𝑖=1

] 

with 

𝑓(𝑋𝑖 , 𝑌𝑖) = max{𝑐2𝑋𝑖+ 𝑐2𝑌𝑖−𝐷,0} 

whereas 𝑟(𝑠)  is the single factor spot rate, 𝐷  is retention, and 𝑐1, 𝑐2  is claim 

coefficient. 
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Based on the assumption that interest rate, 𝑖, is a constant, then 𝑃 reformulated 

as: 

𝑃 = 𝐸 [∑𝑓(𝑋𝑖 ,𝑌𝑖) ⋅ (1 + 𝑖)
−𝑡𝑖

𝑁

𝑖=1

] 

3. Results and discussion 

The catastrophic event in this study is an earthquake in Indonesia. The 

information was collected from the National Centers for Environmental Information 

(NCEI, 2022), and it includes the year of the earthquake from 1979 until 2021, the 

number of fatalities, and the number of injuries. The summary statistics for Indonesian 

earthquake data are in Table 1 as follows: 

Table 1. Descriptive statistics for Indonesian earthquakes dataset. 

Statistics Fatalities Injured 

Maximum 5749 38,568 

Minimum 3 3 

Mean 267.1406 1336.047 

Standard Deviation 915.6324 5063.52 

Median 17 191 

25th Quantile 6 80.75 

75th Quantile 70.5 405.75 

Skewness 4.995407 6.656709 

Kurtosis 26.17931 48.15695 

The data is utilized to estimate the rate parameter, 𝜆 > 0, for the Poisson random 

variable, 𝑁, that represents the number of catastrophe events that occurred during the 

coverage period. In practice, the duration of catastrophe reinsurance coverage is one 

year, hence the coverage period in this study is one year. The estimator of Maximum 

Likelihood for 𝜆 is �̂� = 1.488372. This means that the average number of catastrophe 

events per year is 1.488372. 

Let 𝑋 denote the number of fatalities and 𝑌 the number of injuries. Let 𝑚𝑋 and 

𝑚𝑌  denote the 𝑋  and 𝑌  thresholds, respectively. Table 2 displays the results of 

threshold determination and POT parameter estimate. 

Table 2. Threshold determination and estimation of POT model parameters. 

Parameters Estimate of Parameters 

𝑚𝑋 �̂�𝑥 = 560 

𝜉𝑋 �̂�𝑋 = 0.1259463 

𝛿𝑋 𝛿𝑋 = 1625.965 

𝑚𝑌 �̂�𝑌 = 2000 

𝜉𝑌 �̂�𝑌 = 0.1283386 

𝛿𝑌 𝛿𝑌 = 10,690.31 
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Based on Table 2 and empirical cumulative distribution function, �̂�(⋅) , we 

derived cumulative distribution function for fatalities, 𝐹𝑋(𝑥), and injured, 𝐹𝑌(𝑦), as 

follows: 

𝐹𝑋(𝑥) = {
(1− �̂�𝑋(560)) 𝐺�̂�𝑋,�̂�𝑋(𝑥 − 560) + �̂�𝑋(560), 𝑥 > 560

�̂�(𝑥),𝑥 ≤ 560
 

where 

𝐺�̂�𝑋,�̂�𝑋(𝑥 − 560) = 1 − (1 + 0.1259463
𝑥 − 560

1625.965
)
−

1
0.1259463

 

and 

𝐹𝑌(𝑦) = {
(1 − �̂�𝑌(2000))𝐺�̂�𝑌,�̂�𝑌(𝑦− 2000) + �̂�𝑌(2000),𝑦 > 2000

�̂�(𝑦),𝑦 ≤ 2000
 

where 

𝐺�̂�𝑌,�̂�𝑌(𝑦 − 2000) = 1− (1 + 0.1283386
𝑦 − 2000

10690.31
)
−

1
0.1283386

 

The parameter estimation for Clayton copulas, Gumbel copulas, and Frank 

copulas are in Table 3. 

Table 3. Copulas parameter estimation. 

Copula �̂� 

Clayton 1.664978 

Gumbel 1.985682 

Frank 5.721489 

By substituting the estimation result for each copula, the cumulative distribution 

function for the copulas can be derived as follows: 

𝐶𝐶𝑙(𝑢,𝑣) = (𝑢−1.664978 +𝑣−1.664978 −1)−
1

1.664978 

𝐶𝐺𝑢(𝑢,𝑣) = 𝑒𝑥𝑝 {−((−ln𝑢)1.985682 + (−ln𝑣)1.985682)
1

1.985682} 

𝐶𝐹𝑟(𝑢,𝑣) = −
1

5.721489
ln (1+

(𝑒−5.721489𝑢 −1)(𝑒−5.721489𝑣 −1)

(𝑒−5.721489 −1)
) 

Based on all three copulas, the best copula in evaluating catastrophic reinsurance 

contracts would be the one with the lowest Akaike Information Criterion (AIC) value 

and it is presented in Table 4 as follows: 

Table 4. Copulas AIC score. 

AIC Copula 

−42.15 Clayton 

−42.95 Gumbel 

−37.76 Frank 

Gumbel copulas have the lowest AIC score compared to others. Hence, Gumbel 

copulas would be used in evaluating catastrophic reinsurance contracts. The joint 

cumulative distribution function for 𝑋 and 𝑌 will be constructed by these copulas as 
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follows: 

𝐶𝐺𝑢(𝑢,𝑣) = exp {−((−ln 𝑢)1.985682 + (− ln𝑣)1.985682)
1

1.985682} 

Then, the expected value for the catastrophic reinsurance would be presented by 

an illustration below. Let insurance company A offer two types of products: life 

insurance and health insurance. To minimize losses from claims on both products in 

the event of a catastrophe, insurance company A has purchased a reinsurance contract 

for the next year. Insurance company A and reinsurer B have agreed to set a retention 

limit of Rp1,000,000,000 for the excess of loss reinsurance scheme. This means that 

insurance company A will only cover losses up to Rp1,000,000,000 for each 

catastrophic event occurring within one year, with the remainder being covered by the 

reinsurer. According to company A’s data, 5% of the Indonesian population holds life 

insurance policies, and 10% hold health insurance policies with insurance company A. 

Additionally, based on company A’s historical experience, the average claim per 

person is Rp500,000,000 for life insurance and Rp5,000,000 for health insurance.  

The actuary at reinsurance company B will simulate the value of the catastrophe 

reinsurance contract to determine the premium. Based on the information previously 

provided by insurance company A, it is known that 𝐷 = 1,000,000,000 , 𝑐1 =

5%× 500,000,000 = 25,000,000 , and 𝑐2 = 10% × 5,000,000 = 500,000 . 

Additionally, the interest rate is assumed to be constant at 𝑖 =  6%. By substituting 

the values of 𝐷,𝑐1, 𝑐2, and 𝑖  into equation (3.20), the formula to be used in the 

simulation is: 

𝜋 =∑𝑓(𝑋𝑖 , 𝑌𝑖) ⋅ (1 + 6%)
−𝑡𝑖

𝑁

𝑖=1

 

where 

𝑓(𝑋𝑖 , 𝑌𝑖) = max{0, (25× 10
6 𝑋𝑖 +5× 10

5 𝑌𝑖−10
9)} 

Based on the information obtained, the actuary at reinsurance company B will 

simulate the value of insurance company A’s catastrophe reinsurance contract. The 

steps required to perform the simulation are as follows: 

1) The first step is to simulate the number of catastrophic events during the one-year 

coverage period, denoted by 𝑁, and the set of times when these events occur, 

denoted by 𝑇 = {𝑡𝑖 ,𝑖 = 1,2, … , 𝑁}. Based on estimated Poisson parameter �̂� =

1.488372, we generated number of catastrophe event from Poisson distribution 

( �̂� = 1.488372 ) and time between catastrophe events from Exponential 

distribution with mean 
1

�̂�
. The simulation will be performed 10,000 times, 

resulting in 𝑁1,𝑁2,… ,𝑁10,000 and 𝑇1 , 𝑇2, … ,𝑇10 ,000. 

2) Simulate the number of fatalities and the number of injuries, denoted by 𝑋 and 𝑌 

respectively. The data will be generated using the copula. This simulation will 

produce {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2, … , 𝑁1}, {(𝑥𝑖 ,𝑦𝑖), 𝑖 = 1,2,… ,𝑁2},… , {(𝑥𝑖 ,𝑦𝑖), 𝑖 =

1,2, … , 𝑁10,000}. 

3) Substitute the data generated in steps 1 and 2 into 𝜋 , resulting in 

𝜋1, 𝜋2,… ,𝜋10,000 and we would get �̂� =
∑ 𝜋𝑖
10,000
𝑖=1

10,000
= 10,296,819,838. 

The kurtosis of the data on the number of fatalities and injuries is more than three, 
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according to Table 2. This suggests that the number of fatalities and injuries each has 

long tails. As a result, the POT model is appropriate for simulating the impact of 

catastrophic events. According to Table 4, the Gumbel copula is appropriate for 

building the joint distribution function of the number of fatalities and injuries. Upper-

tail dependence is the dependency character described by the Gumbel copula. This 

suggests that there is a substantial dependence on large numbers of fatalities and 

injuries, as opposed to small numbers. 

4. Conclusion 

The Peaks Over Threshold and Copula models can be used to calculate the 

estimated value of catastrophic reinsurance for two risks. We use a Poisson process to 

calculate the number of disaster occurrences over the coverage period. We modelled 

the impact of the disaster occurrences, the number of fatalities and injuries, as two 

random variables, each using Peaks Over the Threshold, and calculated the expected 

value of catastrophic reinsurance based on the Basic Theorem of Asset Pricing. In this 

analysis, the expected value of disaster reinsurance is Rp10,296,819,838. Other 

insurance firms’ values for catastrophe reinsurance may fluctuate based on the 

agreement on the desired reinsurance contract. An empirical distribution function is 

used in this work to model the values of the impact of catastrophic occurrences that 

are less than the threshold value. It is proposed that further study be conducted to 

examine many additional heavy-tailed distributions to discover which distribution is 

best suited for simulating these values. This study’s copula is from the Archimedean 

family of copulas. Additional studies can be conducted to investigate several different 

families of copulas to identify the copula that is best suited for modelling catastrophic 

event data. 
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