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Abstract: Accurate detection of abnormal hemoglobin variations is paramount for early 

diagnosis of sickle cell disease (SCD) in newborns. Traditional methods using isoelectric 

focusing (IEF) with agarose gels are technician-dependent and face limitations like inconsistent 

image quality and interpretation challenges. This study proposes a groundbreaking solution 

using deep learning (DL) and artificial intelligence (AI) while ensuring human guidance 

throughout the process. The system analyzes IEF gel images with convolutional neural 

networks (CNNs), achieving over 98% accuracy in identifying various SCD profiles, far 

surpassing the limitations of traditional methods. Furthermore, the system addresses 

ambiguities by incorporating an “Unconfirmed” category for unclear cases and assigns 

probability values to each classification, empowering clinicians with crucial information for 

informed decisions. This AI-powered tool, named SCScreen, seamlessly integrates machine 

learning with medical expertise, offering a robust, efficient, and accurate solution for SCD 

screening. Notably, SCScreen tackles the previously challenging diagnosis of major sickle cell 

syndromes (SDM) in newborns. This research has the potential to revolutionize SCD 

management. By strengthening screening platforms and potentially reducing costs, SCScreen 

paves the way for improved healthcare outcomes for newborns with SCD, potentially saving 

lives and improving the quality of life for affected individuals. 
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1. Introduction 

SCD is a common genetic disorder affecting hemoglobin, recognized as a major 

global health issue by the WHO (World Health Organization, 2006) and the UN 

(United Nations, 2009). With over 0.3 million annual cases, SCD poses a significant 

burden, particularly in Africa, where its prevalence exceeds 10% in the general 

population, with nearly 2000 children (0.5%) born with a severe form known as 

“SDM”. Early and accurate detection of SCD is crucial for newborn care, as over half 

of affected children do not survive beyond the age of five (Gueye et al., 2020). 

However, SCD screening remains rare in low-income countries, often leading to late 

diagnosis based solely on clinical signs. 

Various screening techniques exist (Frömmel, 2018). One of the most common 

methods for neonatal SCD screening is IEF (Daniel et al., 2019; El-Haj and Hoppe, 

2018) with agarose gels, although this method faces challenges such as variability in 

image staining, interpretation errors, and certain ambiguities. To improve screening 

efficiency, we propose an AI-based solution using deep learning, which analyzes 

agarose gel images for enhanced classification. This approach automates SCD patient 
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detection and helps identify different sickle cell profiles, overcoming challenges 

associated with manual interpretation of images. Our main goal is to develop a system 

based on deep learning classifiers for early SCD detection by analyzing IEF patterns 

from neonatal agarose gel images to achieve fast and accurate results. 

By integrating new data science tools, we aim to improve productivity, 

collaboration, and the overall efficiency of data-driven research (Bäuerle et al., 2022). 

Our approach aims to provide a precise and efficient resource for SCD screening and 

follow-up, with the potential to enhance patient management and reduce the economic 

burden, especially in resource-limited settings and countries with limited neonatal 

screening capacity. By integrating biological expertise into our tool, we aim to provide 

a robust solution for image interpretation and SCD profile detection, including SDM, 

for which diagnosis represents a major challenge in neonatal laboratories. Our key 

contributions are: 

⚫ Development of an SCD detection system in newborns through the analysis of 

neonatal agarose gel images, identifying the specific type of SCD in case of 

abnormal hemoglobin detection. 

⚫ Integration of the NC (Unconfirmed) category to address image clarity issues, 

with a predictive model guiding biologists decisions on the profile type. 

Reevaluation of these images with the assignment of a profile and associated 

probability using our second-intention model. 

⚫ Experimental demonstration of strong predictive accuracy for complex IEF 

patterns using our tool, surpassing the baseline condition of 67% set by biologists. 

The subsequent sections are structured as follows: Section 2 situates our work in 

the field of SCD and image classification. Section 3 introduces essential definitions 

for the problem. Section 4 delves into our main contributions. Section 5 presents 

experimental results. Finally, Section 6 offers a discussion and conclusion of the 

document. 

2. Related works 

This section presents neonatal screening techniques for SCD, along with related 

works on CNN-based image classification and data augmentation techniques for 

medical images. 

2.1. Neonatal screening techniques for SCD 

SCD, also known as sickle cell anemia, is a genetic disorder characterized by an 

anomaly of hemoglobin linked to a genetic mutation causing hemolysis of red blood 

cells, resulting in anemia and other symptoms. This disease is caused by a genetic 

mutation involving the substitution of glutamic acid with valine at position 6 of the 

beta (β) globin chain (Elendu et al., 2023). While present from birth, the manifestation 

of the disease is less obvious in infants due to the predominance of fetal hemoglobin 

in their red blood cells, providing protection, especially before the age of three months. 

This period is crucial for early screening (Adekile, 2021). Hemoglobin electrophoresis 

at acidic or alkaline pH is a technique that allows for the separation of different 

hemoglobin fractions based on their electrical charge and molecular weight, 

facilitating diagnosis by highlighting the presence of hemoglobin S, associated with 
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other normal or abnormal hemoglobin. The principle of Rapid Diagnostic Tests (RDTs) 

using the Sickle SCAN™ device is a technique for detecting AS, AC, SS/Sβ0thal, SC, 

CC/Cβ0 that phenotypes (Nguyen-Khoa et al., 2018). It is fairly effective in adults but 

is currently under evaluation for neonatal screening. Capillary electrophoresis is a 

rapid electrokinetic separation technique with good resolution. High Performance 

Liquid Chromatography (HPLC) provides precise measurement of different 

hemoglobin fractions simultaneously and is used as a first-line screening method in 

certain specialized laboratories. Polymerase Chain Reaction (PCR) allows for the 

identification of haplotypes and is used for prenatal diagnosis (Arishi et al., 2021). 

Mass spectrometry MALDI-TOF is a method used to identify proteins such as 

hemoglobin in biological samples (Li et al., 2022). This method involves sample 

preparation and the use of a matrix to facilitate ionization. A laser ionizes the sample, 

producing ions that are then accelerated in a flight tube. By measuring their flight times, 

their mass can be determined and a mass spectrum generated. This spectrum is 

compared to a database to identify hemoglobin. However, mass spectrometry 

equipment, including MALDI-TOF instruments, can be expensive to purchase and 

maintain. In addition, issues such as sample degradation or contamination can affect 

the accuracy of the analysis, potentially leading to false-positive or false-negative 

results. 

These different techniques either have technical limitations or result in very 

expensive costs for neonatal screening of SCD in developing countries. IEF appears 

as a method of choice for neonatal screening (Frömmel, 2018). The storage and 

transportation conditions and the significant number of samples per manipulation 

series in IEF are particularly important in high-prevalence contexts. Moreover, this 

technique provides good resolution of hemoglobin fractions (Arishi et al., 2021). 

However, challenges persist in making IEF more comprehensive. IEF images present 

reading challenges, with multiple images on a gel representing different situations. 

Identification and interpretation errors lead to repeated analyses, requiring more time 

and resources. 

Our main goal is to enhance the manual approach currently utilized for SCD 

screening in some African countries by leveraging automation and advanced 

technologies. We aim to streamline and optimize the screening process, ensuring 

timely and accurate detection of SCD in neonates. By integrating cutting-edge AI 

technologies, we seek to enhance SCD screening, making it more efficient, accessible, 

and cost-effective. Through this initiative, we aspire to improve healthcare outcomes 

for newborns affected by SCD, ultimately contributing to better overall health and 

well-being in communities. 

2.2. Image classification based on deep learning 

Machine learning, particularly deep learning with CNNs, has shown significant 

effectiveness in disease detection using medical images (Adeniyi et al., 2024). This 

section reviews current research on image classification for blood diseases, focusing 

on SCD, and explores the potential of combining image analysis of agarose gel images 

with IEF using CNNs. In the context of blood diseases, a study by Loey et al. (2020), 

compared traditional methods with deep learning, highlighting the efficiency of CNNs 
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in feature extraction and leukemia classification. However, this study mainly focuses 

on leukemia classification, and its results may not be directly applicable to SCD 

diagnosis. Another approach that combines the InceptionV3 model with a wrapper-

based feature selection and SVM classification is developed for sickle cell detection. 

Chen et al. (2023) and Alagu et al. (2022) propose a method based on holographic 

cytometry and deep learning for accurate biophysical profiling of sickle cell disease. 

Although promising, this study is based on the analysis of single red blood cell images 

and does not include the sickle cell trait. Jennifer et al. (2023) compares six deep 

learning models, including ResNet-50, MobileNet, and VGG-16, using the 

Erythrocytes IDB dataset for SCD classification. These aforementioned previous 

studies do not provide any information on patient age, and broader validation on more 

diverse populations is required. Several studies have been conducted using artificial 

intelligence for sickle cell disease and IEF. For example, Aliyu et al. (2019) proposed 

a two-phase method to detect red blood cell abnormalities in sickle cell anemia from 

blood smear images. Xu et al. (2017) proposed an automated framework using deep 

learning to classify red blood cell shapes in sickle cell patients, potentially aiding in 

disease prognosis. However, this study focused on sickle cell shapes and included only 

8 patients, limiting the model generalizability. Das et al. (2020) reviewed existing 

automated methods for sickle cell detection, focusing on segmentation, classification, 

and challenges related to blood cell image analysis. They emphasized the importance 

of precise segmentation for reliable detection but did not present original research or 

propose new sickle cell detection methods. De Haan et al. (2020) proposed a deep 

learning framework using a smartphone microscope to automatically analyze blood 

smears and classify sickle cell disease, potentially providing a cost-effective screening 

tool for resource-limited settings. However, this study focused on blood smears and 

classified patients as sick or non-sick. Alzubaidi et al. (2020) used deep learning to 

classify red blood cells into three categories: circular (normal), elongated (sickle cell), 

and other blood constituents, achieving high performance. However, this study 

focused on blood smear images, which may not provide the same level of detail as IEF 

or agarose gel images for sickle cell diagnosis. Salman Khan et al. (2022) presented a 

method to automate the analysis of hemoglobin electrophoresis images to detect 

thalassemia, using a convolutional neural network named U-NetComet for automatic 

comet segmentation. While this study is closely related to SCD, it focuses on the 

presence or absence of thalassemia and does not reference subtype classification, 

which is important for patient management. Additionally, Tian et al. (2023) introduced 

an unsupervised marker less IEF method based on a CNN for effectively identifying 

meat species and meat cuts from 105 IEF patterns. This approach opens up 

possibilities for large-scale IEF analyses of complex protein samples for various 

applications. These advancements underscore the significance of AI in disease 

detection and classification. However, few studies have specifically addressed sickle 

cell profiles, agarose gels, and their combination with IEF. 

Our goal is to introduce a method for classifying IEF using CNN models with 

agarose gel images, aiming to identify normal and abnormal profiles essential for 

accurate patient monitoring. 
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2.3. Image data augmentation 

Data augmentation in machine learning is a crucial technique for expanding and 

diversifying datasets by generating new data from existing samples. It involves 

applying various transformations to create new, yet similar, versions of the original 

images. We explore current approaches and will use the one that is most suitable for 

our use case. Shorten and Khoshgoftaar (2019) present some commonly used 

transformations. This survey explores data augmentation techniques, a strategy aimed 

at artificially increasing the size and diversity of datasets to combat overfitting in deep 

learning models, especially for tasks with limited data availability. It should be noted 

that augmented data may not always reflect real-world scenarios, which can introduce 

artifacts that may mislead the model. Careful design and evaluation of augmentation 

strategies are crucial. Kandel et al. (2022) examine the effectiveness of brightness 

adjustments as a data augmentation technique for image classification using CNN and 

reveal limited benefits, with geometric augmentations proving more effective. The 

study demonstrates that brightness adjustments can, in some cases, degrade model 

performance compared to no augmentation or geometric augmentations. However, this 

study focuses on histopathological datasets and may not be generalizable to other types 

of images where brightness variations play a more significant role. Khachnaoui et al. 

(2022) propose a method for diagnosing pulmonary embolism (PE). The authors 

applied operations such as rotation, resizing, cropping, and zooming to the images to 

augment the dataset for improved performance. Geng et al. (2023) propose a study 

highlighting the innovative use of contrast to effectively augment synthetic radar 

imagery in the SAMPLE dataset, thereby improving the quality of training data. 

Contrast-based data augmentation methods contribute to improving the accuracy of 

target classification and OOD detection performance in SAR-ATR systems based on 

deep learning. In comparing different data augmentation approaches, Nanni et al. 

(2021) demonstrate the effectiveness of Gaussian blur and other approaches. This 

study uses pre-trained ResNet50 networks. Reza et al. (2019) propose a deep learning 

approach using transfer learning and data augmentation to classify crop pests from 

images. However, the specific data augmentation techniques used are not explicitly 

mentioned, limiting the reproducibility of the results. The study does not address 

potential variations in image quality or lighting conditions that could affect actual 

performance. Goceri (2023) proposes a study on data augmentation of medical images, 

comparing different techniques. The author examines data augmentation methods to 

improve the performance of medical diagnostics based on CNNs. He emphasizes the 

importance of carefully choosing augmentation techniques based on image types to 

achieve effective results. Gaussian blur is often used to reduce noise and details in an 

image, while brightness adjustment can simulate changes in lighting conditions. Min-

max scaling helps normalize pixel values, and contrast adjustment modifies the 

contrast in the image. By combining these techniques, researchers can create diverse 

sets of images that simulate various conditions, such as low-light environments or 

enhanced contrast while maintaining normalized pixel values. 

Our choice of augmentation techniques involves a combination of these 

transformations to enhance the quality and quantity of images for our machine learning 

tasks. Machine learning approaches, including CNN models and data augmentation, 
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help overcome the challenges associated with reading patient results in medicine (Yan 

et al., 2019). 

3. Preliminaries and problem statements 

In this section, we establish the foundational concepts and notations necessary 

for formulating our problem on IEF pattern classification for SCD profile detection. 

This includes defining IEF and the associated pattern language. 

3.1. Basic definitions 

Definition 1. (IEF). Isoelectric Focusing is a molecular dissociation technique based 

on differences in isoelectric point (pI) (Righetti, 1983). The IEF pattern is analyzed to 

identify the types and quantities of hemoglobin in the sample, typically HbS (sickle 

hemoglobin, indicating the disease) for SCD and HbA (normal hemoglobin). Various 

types of SCD, such as SS/Sβ0, SC, ... can be distinguished based on the specific IEF 

pattern. To obtain IEF data, a blood sample from the patient is subjected to IEF using 

specialized equipment. This results in a set of patient and control outcomes in each 

column (see Figure 1). In a given column, we have results of patient and control 

images. The controls allow identifying, on a given gel, the positions of the various 

fractions of hemoglobin and technically validating the gel results. The resulting IEF 

is then analyzed by a healthcare professional to diagnose and classify the specific type 

of SCD. The following definition describes the type of IEF-based data obtained in a 

biology laboratory for neonatal screening using the “RESOLVE™ Hemoglobin kit 

FR-9436.” 

 

Figure 1. IEF Gel data. 

Definition 2. (Gel IEF data and Gel IEF pattern). An IEF gel data, denoted by I, is an 

agarose gel containing 2 × (α + β) images grouped in two columns of results patients 
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and controls images in each column, with α and β respectively the number of patient 

results and the number of controls. A gel IEF pattern, denoted by φ, is one of the 2 × 

(α + β) images of an IEF gel data I, φ ∈ I. The set of IEF gel data forms an IEF 

database denoted by G = {I1, ..., In}, and the set of all gel IEF patterns is the pattern 

language denoted by L(G) = {φ ∈ I: I ∈ G}. 

In our case, the biologists use gels with maximum 34 patients per column (α ∈ 

[1, ..., 34]) and β = 2. 

Example 1. Figure 1 presents an example of an IEF gel data with α = 34. The β 

reference images (control image) that we call reference IEF patterns encircled in red 

characterize the absence or presence of SCD and its type, if any. 

Definition 3. (Reference IEF pattern). A reference IEF pattern, denoted as φr, consists 

of k distinct features that characterize the presence or absence of SCD and, if 

applicable, its type. The letters in this pattern have the following meanings: 

1) A: normal hemoglobin 

2) F: fetal hemoglobin 

3) S: hemoglobin S (sickle cell) 

4) C: hemoglobin C. 

Example 2. In our case, the biologists use the reference IEF pattern with k = 4, φr = 

AFSC, and its features distribution is shown in Figure 2. 

 

Figure 2. Reference IEF (control image). 

For instance, a pattern φ = AFC or φ = FC means that the patient has hemoglobin 

C while φ = AF indicates a normal health status. 

It is interesting to note that each non-reference IEF pattern corresponds to one 

patient. In addition, our approach is general in the sense that α, β, and k can take larger 

numbers. But for simplicity and specific use cases with the Senegalese biologists, we 

take α = 34, β = 2 and k = 4 in the rest of this paper. Figure 3 shows the different 

profiles sought in this study. 

 

Figure 3. Various profiles. 

This figure also presents the normal form, hemoglobinopathies, and our reference 
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image. Among hemoglobinopathies, there are heterozygous forms (composed of two 

different hemoglobin fractions in addition to F) and homozygous forms (composed of 

a single hemoglobin fraction in addition to F). However, in this study, our categories 

correspond to the most common hemoglobin profiles. The AF class corresponds to the 

AA profile. The AFS class is, therefore, associated with the AS profile. Similarly, AFC 

corresponds to AC, FS to SS, FC to CC, FSC to SC. These profiles can also be 

associated with thalassemia, which is not identified by isoelectric focusing (e.g., SB+ 

and SB° will be in the AFS and FS classes, respectively). 

3.2. Problem formulation 

Deploying AI models successfully in this context presents challenges. The 

accuracy of AI-based classification relies on data quality. Theoretically, it is possible 

to generate 2k − 1 different IEF patterns from our reference pattern. However, our 

biologists focus only on specific patterns. This set would be Cb = {AF, AFC, FC, AFS, 

FS, FSC} where FS and FSC represent SDM (severe forms) which is a crucial element 

in this study. These patterns constitute the distinct labels or classes for prediction in 

our classification framework. 

Yet, factors like inconsistent staining, image sharpness, diverse feature 

arrangements within the same class, and interpretation variations in agarose gel images 

introduce inaccuracies, leading to incorrect results. To illustrate these ambiguities, a 

few images are shown in Figure 4 and explained below. 

 

Figure 4. Examples of ambiguous IEF pattern images. 

Here are some definitions and explanations of the images classified as ambiguous. 

1) For the first image, we suspect the presence of hemoglobin C, but we cannot 

confirm whether hemoglobin A is also present. This result could correspond to 

AF, AFC, or FC. 

2) In the second image, we can verify the presence of hemoglobin A, but 

hemoglobin S cannot be confirmed. If hemoglobin S is present, it is relatively 

close to hemoglobin F. This result could be AF, AFS, or AFD 

3) Images 3 to 5 show definite presence of hemoglobins F and S, but uncertainties 

about hemoglobin A lead to their classification as ambiguous images. This result 

could correspond to FS or AFS. 

4) For the sixth image, hemoglobins F and C are clearly identified, but the presence 

of hemoglobin A is uncertain. This result should have been classified as either 

FC or AFC based on the available information. 

5) In the last image, hemoglobin A and F are evident. However, uncertainty arises 

about the spot on the right. Is it another hemoglobin or a staining/fixing issue? 

This phenomenon typically occurs near the position of hemoglobin C or S, 

located towards the front of the migration. This result could correspond to AF, 

AFC or AFS. 
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To tackle this problem, our approach introduces a novel class: the “Unconfirmed” 

(NC) class for images not verified by biologists. This class addresses the complexity 

of ambiguous patterns, acknowledging classification uncertainty. Images labeled as 

“NC” serve as early alerts, indicating potential ambiguity. Such images undergo a 

retesting process facilitated by a well-designed second-intention model. Thus, we 

added an additional class called NC. We consider that if a pattern is classified as NC, 

then we retest it with a second-intention model. Therefore, the set of target classes C 

of our method that we seek to predict consists of the base classes Cb, the reference IEF 

pattern φr = AFSC, and the φ0 = NC class for recommending new experiments to 

biologists. Figure 3 presents the different labels of Cb and φr that we need to predict. 

The problem that we want to solve can be finally reformulated as follows. Given 

an IEF database G, we aim to build a system trained on G such that: 

1) detect or predict the label (or class) of any IEF pattern in a new IEF data gel, 

where the image belongs to Cb, including SDMs, whose diagnosis at the neonatal 

age poses a real challenge for the laboratory; 

2) calculate the validity of the gel data; 

3) recommend new biological experiments for patients whose IEF patterns pose 

diagnostic challenges (those belonging to NC whose probability threshold may 

not be suitable for biologists); 

4) develop an application capable of detecting SCD in newborns by analyzing 

neonatal agarose gel images using pre-registered analysis models. 

In the remainder of this paper, we will provide a detailed presentation of our 

proposed solution to address this issue. We will outline our problem modeling, offer 

theoretical background, and present extensive experimental results that substantiate 

our theoretical approach. 

4. IEF pattern classification 

This section explores the creation of IEF pattern classifiers using IEF data, then 

demonstrates the use of their classifiers to assess the accuracy of the data and 

recommend potential additional biological experiments, where appropriate. 

4.1. Classifier building 

The approach to building the classifier for the IEF database involves two main 

steps: (a) creating a training database by segmenting the IEF data and assigning labels 

to each IEF pattern, and (b) training the model using a CNN with the training database 

as input. 

Segmentation and labeling: The individual IEF data is divided into images of size 

130 × 46, resulting in a total of 2 × (α + β) images. Each image corresponds to an IEF 

pattern and is annotated with its class and patient identifier. The labeling process for 

each IEF pattern is labor-intensive but has been eased through the utilization of Excel 

files generated by users over time and a collaborative contribution using a WebApp 

(depicted in Figure 5) will be described in the experimental phase. These Excel files 

contain details like labels, patient identifiers, and the associated IEF patterns. 
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Figure 5. Structure of agarose gel image pre-processing. 

Model training: After the preprocessing phase, different image classification 

methods could be applied to the labeled data. In this study, we chose to use CNNs, 

which have already proven to be efficient in image classification. The proposed model 

takes as input the pattern language obtained from preprocessing and learns to predict 

its label as output. The CNN output provides the different classes that we aim to predict, 

including AF, AFC, FC, AFS, FS, FSC, and AFSC. 

4.1.1. Naive approach 

We provide an overview of the naive approach that we first propose in this work 

in Figure 6. 

 

Figure 6. Naive approach. 

Feedback about the naive approach: The naive approach presented in this 

workflow follows a typical pattern of deep learning, with input data directly feeding 

into the predictive model. However, this approach carries significant risks as it does 

not take into account human intervention, particularly from the technician, in the 

decision-making process, even in the presence of unconfirmed results (NC). 

Indeed, not all images are of optimal or perfect quality. Some images raise doubts 

about their classification, making it difficult to place them in a specific class. These 

images are often set aside for training, limiting the effectiveness of the naive approach. 

Furthermore, this approach does not offer any solution for handling imperfect images. 

These limits underscore the need to adopt a more robust approach, such as a two-

stage model. This model could involve a first stage where a threshold is set by a human 

before the prediction is confirmed. Additionally, the non-optimal images will be 
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redirected to a class for special processing in the second stage. Human intervention 

will be crucial in the decision-making process for uncertain images. This process 

aligns more with the approach of screening laboratories, which generally have a 

method of first and second intentions. 

4.1.2. Our proposed solution: SCScreen 

Figure 7 serves as an illustrative guide to the workflow (SCScreen) embedded 

within our proposed solution, encompassing both the first and second intention models 

elucidated in section 4.2. Our approach stands out for its commitment to addressing 

the concerns of technicians, offering a tailored solution for handling imperfect images 

while maintaining the involvement of specialists in the decision-making process. 

Through the CNN output (First-intention), a range of classes are predicted, including 

AF, AFC, FC, AFS, FS, FSC, AFSC, and the newly introduced NC class. The 

incorporation of this NC class is a pivotal step, providing a mechanism to categorize 

IEF patterns that fall below a user-defined acceptance probability threshold for truth 

or are otherwise unclear. This integration ensures a holistic evaluation, preventing the 

oversight of ambiguous patterns during analysis. By integrating the user into the 

decision process, our approach fosters collaboration between technicians and 

specialists, facilitating a comprehensive assessment of the data. This collaborative 

framework empowers users to contribute their expertise, enhancing the accuracy and 

relevance of the decision-making process. Additionally, our approach promotes 

transparency and accountability by allowing users to actively participate in the 

interpretation and validation of results. Through this user-centric approach, we aim to 

bridge the gap between automated analysis and human expertise, ultimately fostering 

more informed and effective decision-making in clinical settings. 

 

Figure 7. SCScreen workflow. 

4.2. Theoretical analysis of our models 

First-intention model: In this context of interpretability, we perform a 

discriminant analysis on the Cb classes, the reference IEF pattern φr and the 
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unconfirmed class φ0 = NC. We recall that Cb is the set of classes that characterize the 

state of health of the patients, so it is used to compute the prediction rate, while φr and 

φ0 are used to judge the validity of the biological tests. 

First, it is important to note that IEF data is not always valid, hence the use of 

reference IEF patterns like positive controls (samples that are known to produce 

specific bands on the gel based on their pI). These are important aspects of agarose gel 

IEF experiments, as they serve as a reference or standard for interpreting the results. 

Controls can help to ensure that the IEF gel has been properly prepared, the protein 

sample is suitable for separation, and the staining and detection methods are 

functioning correctly. By including appropriate controls, we can ensure that the 

experimental conditions are consistent and that any detected bands are not due to 

artifacts or other factors. 

Thus, for the IEF data to be valid, we need β reference IEF patterns in each 

column of the IEF data. In other words, we need all 2 × β reference IEF patterns to be 

classified in the class if the gel is perfect. Otherwise, we relax these constraints as 

technicians do. For biologists, the gel is probably correct if there is at least one clear 

reference in each column. Therefore, the number of IEF checks that our AI model must 

perform to ensure the correctness of a given gel data must be greater than or equal to 

β + 1. We therefore state the following property for a theoretical guarantee: 

Property 1. (Validity of an IEF data). An IEF data I is valid if the number of IEF 

patterns φ of I classified in φr is greater or equal than to (β + 1). 

Proof of Property 1. This property is somewhat trivial. Let β be the number of IEF 

references set by the technician in each column. Suppose the number of IEF references 

found by the AI model, denoted |AFSC|, is less than β + 1: |AFSC| ≤ β. In this case, 

our AI model cannot immediately determine if there is at least one IEF reference per 

column. In other words, the IEF references could all be from a single column. However, 

if |AFSC| ≥ β + 1, then at least each column provides one IEF reference since at most 

a column can contain β IEF references based on the technician settings. Hence the 

result. □ 

Then, some IEF patterns are not necessarily clear due to biological effects or 

technical problems. In both cases, we expect these IEF patterns to be classified in the 

class φ0. As a result, recommendations for the re-examination of the involved patients 

are made to the biologists. Therefore, they can resubmit new tests for these patients. 

How to build the second-intention model? In the context of sickle cell disease 

classification, our second-intention model is trained using a dataset of IEF patterns 

from patients without the NC class. Then, the model uses this information to predict 

the SCD status of new patients whose IEF patterns are unclear or ambiguous 

(classified to φ0 = NC). Furthermore, we have included the AFS and AFC profiles to 

reduce false negatives based on feedback from biologists and technicians. Indeed, 

specialists prefer to include a person suspected of being ill in the management process, 

awaiting confirmation of their Hb profile at a slightly older age, rather than risk 

excluding a person with an SDM-type illness. To evaluate the performance of this 

model, a validation dataset is used. The model predictions for these patients are 

compared to their known SCD status to determine the accuracy of the model. 

Additionally, different types of machine learning models are compared to 

determine which one performs best in this classification task. 
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We retain the following formalism. Let I be the IEF database containing IEF 

patterns, and let C be the set of IEF pattern classes. We can define Cb as the base set 

of patient health classes, including SDM, and φr as the reference IEF pattern. 

The prediction or detection of the label y for a given IEF pattern x in a new IEF 

data gel can be formulated as a function f: X → C, where X is the space of IEF patterns. 

This can be represented as:  

y = f(x, I, Cb, φr) (1) 

where y is the predicted label, x is the given IEF pattern. 

In our context with CNNs, the function f can be modeled by the convolutional 

neural network, and the specific prediction of SDMs can be incorporated into the 

function. For example, if y is the class prediction, we can define an auxiliary function 

g: C → {0,1} such that g(y) = 1 if y corresponds to an SDM class and g(y) = 0 otherwise. 

Thus, the complete formalization can be given by: 

y = f(x; I, Cb, φr) × g(y) (2) 

Thus, our classification approach can both validate the input agarose gel. 

Moreover, it can identify the type of hemoglobinopathy, specifically if the patient has 

the severe form of SCD, thereby requiring follow-up. Based on a defined probability 

threshold, it suggests a redo of biological tests if needed. 

Evaluation based on recommended activation function: Various activation 

functions are available for neural networks, such as sigmoid, ReLU (Rectified Linear 

Unit), and softmax. The choice of activation function significantly affects the model 

performance. In the case of the second-intention model (as well as the first-intention 

model) for SCD classification based on IEF patterns, the suitable activation function 

is softmax. This function is commonly used for multiclass classification tasks and 

generates a probability distribution across output classes. This makes it ideal for 

predicting the probability of a patient belonging to different SCD classes. The softmax 

function formula is: 

softmax(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 (3) 

where, z represents the input to the activation function, i is the index of the output 

neuron (or φi), and K is the total number of output neurons. The softmax function 

exponentiates the input and normalizes it by the sum of exponentials across all output 

neurons. 

This function ensures a probability distribution since softmax(z)i ∈ [0, 1] and 

∑ softmax(𝑧)𝑖 = 1𝑖 . Consequently, we recommend the class φi with the highest 

probability P(φi = argmax(softmax(z)i) = softmax(z)i. 

5. Experiments 

This section describes the experimental protocol, the analysis of the results 

obtained, and the interpretation of the conclusions drawn from our experiments. 

5.1. Experimental protocol for classifier building 

Data collection and processing: Figure 5 illustrates the framework used to 

process the agarose gel images received from the laboratory. Each agarose gel image 

contains seventy-two (72) images, grouped into two (2) columns, with thirty-four (34) 
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patient results and two (2) control results (used to validate the gel). The WebApp 

component of the framework was created using the algorithms showcased in Figures 

8 and 9, which will be detailed in the following sections. Our goal was to obtain a 

dataset of individual patient images to solve an initial identification problem. 

Additionally, this segmentation allowed us to set up our learning database. Cutting 

multiple layers of agarose gel produced a dataset containing approximately 17,269 

images, including 14,295 images of healthy patients and 1873 images of patients with 

hemoglobinopathies. The set also includes 920 reference images and 181 NC images. 

Among patients with hemoglobinopathies, we obtained 1430 SCD images and 347 

hemoglobin C images, including 330 AFC patient images and 17 FC images. 

Furthermore, there were 96 images of major forms of SCD, including 78 FS images 

and 18 FSC images. Consequently, our dataset is imbalanced, which is common but 

unsuitable for medical imaging studies. To enhance medical image data for training 

machine learning models, we used data augmentation techniques such as Gaussian 

blur, brightness adjustment, min-max scaling, and contrast adjustment. These methods 

aimed to address the issue of imbalanced data and resulted in a diverse collection of 

augmented images. By combining these techniques, we were able to simulate various 

lighting and contrast conditions. After data augmentation, we retained 500 images per 

class for training. Therefore, this study used 4000 images, including 500 unaffected 

patient images (AF) and 2500 diseased patient images, as well as 1000 images of 

controls (AFSC) and unconfirmed cases (NC). For diseased patients, images of healthy 

carriers (AFS), images of hemoglobins C (AFC and FC), and images of SDM patients 

(FS and FSC) were used. 

 
Figure 8. Segmentation of the agarose gel layer into individual images. 
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Figure 9. Distribution of individual images into different classes. 

WebApp explanation: This phase aims to prepare data for training machine 

learning models from images to ensure accurate classification. The first algorithm 

(Figure 8) segments the image. The initial algorithm divides the image layer into two 

separate data lists based on the image left, top, right, bottom and the number of 

subdivisions, producing individual patient images. Additionally, it is the same used 

for deployment in the real-world testing phase of implementing our tool (Appendix, 

Figure A1). Next, a second algorithm (Figure 9) organizes these images into different 

directories based on the labels (confirmed), after verifying the orientation of each 

image. These two steps result in a dataset ready for learning. To facilitate the task for 

future users with upcoming gels, this process has been integrated into a framework 

shown in (Appendix, Figure A1) with screenshots of the web application provided in 

(Appendix Figures A2 and A3). 

Presentation of the selected models: VGG (Visual Geometry Group) and ResNet 

(Residual Neural Network) are two widely used pre-trained models in computer vision 

and image processing due to their performance and unique characteristics. VGG is 

known for its simple and uniform architecture, mainly composed of small-sized 

convolutional layers (3 × 3), followed by pooling layers and a few fully connected 

layers. This modular structure makes it easy to understand and manipulate the model, 

while being effective at learning complex visual representations. 
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On the other hand, ResNet introduced the concept of residual connections, 

allowing information to skip layers, thereby facilitating the learning of very deep 

networks (over 100 layers) while avoiding gradient vanishing problems such as the 

gradient disappearance problem. This architecture has led to superior performance 

over previous models on many computer vision tasks. 

Compared to other existing models, VGG and ResNet offer several advantages: 

1) Performance: They have demonstrated superior performance on standard 

computer vision datasets. 

2) Ease of use: Their modular architecture and implementation available in popular 

frameworks like TensorFlow and PyTorch make them easy to use and adapt to 

different problems. 

3) Transfer learning: is particularly relevant to our use case, as these models have 

been trained on extensive datasets like ImageNet. This allows them to serve as 

foundational models for transfer learning, a technique where pre-trained models 

are adapted and fine-tuned for specific tasks using smaller datasets. 

In summary, VGG and ResNet are popular choices for computer vision tasks due 

to their proven performance, modular architecture, and ability to learn complex visual 

representations. 

For this study, we will be using the ResNet50 version, which is a 50-layer deep 

model from the ResNet family. Additionally, implementations of the VGG19 and 

VGG16 models will also be employed to compare their performance in the specific 

classification task at hand. 

Model performance indicators: Several evaluation measures are considered to 

show the effectiveness of a CNN model. Indicators are used to measure performance. 

Here, TP, TN, FP, and FN are, respectively, the number of true positives, true 

negatives, false positives, and false negatives of classified images. We use the loss 

which represents the sum of false predictions divided by the sum of total observations. 

We also use the well known following metrics to evaluate the selected models with 

our approach: 

Accuracy =
TP + TN

TN + FP + TP + FN
 (4) 

Precision =
TP

FP + TP
 (5) 

Recall =
TP

FN + TP
 (6) 

F1 − score =
2 × Precision × Recall

Precision + Recall
 (7) 

MCCmulticlass =
1

𝐶(𝐶−1)
∑ ∑ MCC𝑖𝑗

𝐶
𝑗=𝑖+1

𝐶
𝑖=1   (8) 

AUCmulticlass =
1

𝐶
∑ AUC𝑖𝑗

𝐶
𝑖=1  

  (9) 

MCC𝑖𝑗 =
(𝐴 × 𝐵) − (𝐶 × 𝐷)

√(𝐴 + 𝐶)(𝐴 + 𝐷)(𝐵 + 𝐶)(𝐵 + 𝐷)
 (10) 

AUC𝑖𝑗 = ∫ TPR(FPR𝑖
−1(𝑡))d𝑡

1

0
  (11) 

where C, MCCij, AUCi are respectively the number of classes, the Matthews 

correlation coefficient for each pair of classes i and j (with i ≠ j) and the formula AUC 

for each class i. Also, TPR(FPRi
−1(t)) is the true positive rate (sensitivity) for the class 
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i for a specific threshold value t, and FPRi
−1(t) is the inverse function of the false 

positive rate (1 − specificity) for class i for a specific threshold value t. 

Finally, A is the number of true positives for classes i and j (observations of 

classes i and j correctly classified as i and j). B is the number of true negatives for the 

class i and class j (observations from classes other than i and j correctly classified as 

no-i and no-j). C is the number of false positives for the class i and class j (observations 

from classes other than i and j incorrectly classified as i and j). D is the number of false 

negatives for class i and class j (observations from classes i and j incorrectly classified 

as respectively the true negatives for class i and the true negatives for class j). 

5.2. Empirical study 

In this section, we present the parameters used for the training and evaluation of 

these different models. 

5.2.1. Model parameters 

This section presents the outcomes of the diverse models employed within our 

framework for predicting sickle cell profiles. To train and assess each model, the 

image dataset was divided into two portions: 80% for the training dataset and 20% for 

the testing dataset. For the required computing power during the training of our models, 

we opted for a professional Colab environment, equipped with an NVIDIA A100 GPU 

with 40 GB of RAM, 500 units (which we can supplement as needed by renewing 

payment), RAM up to 83 GB, and a 166 GB disk. We started with a grid search and 

then continued with manual research to determine our hyperparameters. The grid 

search proved challenging due to the large number of combinations for our machine. 

We conducted several tests to obtain the optimal values selected. After several 

experiments, we observed that 12 epochs were adequate to train the models to achieve 

good accuracies, while ResNet required 15 epochs. Among the models, ResNet had 

the highest number of parameters at 26,813,319 (with 53,120 non-trainable 

parameters), followed by VGG19 with 20,827,208 parameters and VGG16 with 

15,517,512 parameters. Table 1 provides detailed training parameter information used 

for classification. 

Table 1. Details of training parameters used for classification. 

Training Parameters 

Batch size 32 

Epochs 12 

Optimizer SGD 

Learning rate 0.0001 

Momentum 0.9 

5.2.2. Model evaluation 

This section presents the results of our experiments and the different evaluations 

of our models. 

First-intention model: In the first-intention model analysis, our focus is on 

newborn sickle cell profile prediction. The results presented in Table 2 and Figure 10 

provide detailed information on the performance of the predictive models for sickle 
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cell profile prediction. They highlight the following findings: 

● VGG19 model excels with 0.02% training and 0.99% testing loss, achieving 99% 

accuracy for both. Precision, recall, and F1-score also reach 99%. AUC and MCC 

exceed 99%. 

● VGG16 model performs well, with 0.08% training and 0.15% testing loss. It 

achieves 97% accuracy in both phases, with 98% precision, recall, and F1-score. 

MCC and AUC values are 97% and 99%. 

● ResNet50 model (15 epochs) yields 0.20% training loss, 97% accuracy in training 

and testing. Precision, recall, and F1-score are 97%, while MCC and AUC values 

are 96% and 99%. 

Table 2. Performance measures with NC training with 12 epochs. 

Model Accuracy Loss Precision Recall F1-score MCC AUC 

VGG19 0.9925 0.0263 0.99 0.99 0.99 0.9914 0.9999 

VGG16 0.9787 0.0878 0.98 0.98 0.98 0.9758 0.9990 

ResNet50 (15ep) 0.9725 0.2093 0.97 0.97 0.97 0.9685 0.9988 

 

Figure 10. Shows the confusion matrices for each case of the tests of the different models. 

It also shows the learning and loss evolution curves. We can say that from the 

beginning, we observe for the models with VGG19 and VGG16, a good evolution of 

the learning, which is not the case for ResNet50. In other words, we see models that 

stabilize rather quickly compared to ResNet50. In general, the results of the first-

intention models for sickle cell profile prediction are highly promising. The VGG19 

model outperforms the other models, achieving an accuracy score of 99%. This 

indicates its superior ability to accurately predict sickle cell profiles. Additionally, the 

VGG19 model demonstrates balanced performance, with high precision, recall, and 

F1-score values of 99%. These results suggest that the VGG19 model is a reliable and 

effective tool for sickle cell profile prediction. 

Second-intention model: In the second-intention phase, we suggest sickle cell 

profiles for challenging images (NC class images) from the previous experiment. The 

model not only proposes profiles but also assigns a probability value, aiding clinicians 

in validation. As seen in Table 3, the second-intention model excels in suggesting 

profiles for these images, affirming its effectiveness. 
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● VGG19 model excels with 0.01% training and 0.03% testing loss. Its 99% 

accuracy, precision, recall, and F1-score highlight consistent and balanced 

performance. AUC and MCC values are over 99%, providing clinicians with 

reliable probability values for informed decisions. 

● VGG16 model achieves 97% accuracy in both training and testing. Its precision, 

recall, and F1-score remain at 97%, demonstrating its effectiveness in suggesting 

sickle cell profiles for challenging images. 

● ResNet50 model (15 epochs) exhibits impressive results, with an almost 

negligible 0.16% training loss. Its 98% precision, recall, and F1-score, along with 

AUC and MCC measures exceeding 99%, enhance its credibility in providing 

valuable recommendations. 

Table 3. Performance measures with NC training without 12 epochs. 

Model Accuracy Loss Precision Recall F1-score MCC AUC 

VGG19 0.9928 0.0335 0.99 0.99 0.99 0.9917 0.9998 

VGG16 0.9714 0.0890 0.97 0.97 0.97 0.9666 0.9985 

ResNet50 (15ep) 0.9785 0.1645 0.98 0.98 0.98 0.9750 0.9992 

 

Figure 11. Shows the confusion matrices for each case of the tests of the different models. 

Overall, the second-intention model, as reflected in Table 3 and Figure 11, 

proves to be a robust and effective tool in suggesting sickle cell profiles for the hard-

to-classify images. Our second-intention tool was developed based on the results 

obtained with the VGG19 model because of its superior performance and its ability to 

provide highly accurate predictions. The integration of probability values enhances the 

second-intention tool by offering a quantitative measure of certainty. Biologists can 

leverage these probabilities to validate their choices or determine if further 

experimentation or analysis is necessary. This feature significantly aids in reducing 

repetitive analyses caused by reading and profile identification challenges, allowing 

for a more efficient workflow in sickle cell profile assessment. The VGG19 model, 

with its accurate predictions and probability-based recommendations, provides 

biologists with a valuable resource to support their decision-making process. It helps 

them navigate the complexities of sickle cell profile identification and ultimately 
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contributes to more effective and informed healthcare practices. 

5.2.3. Interpretation and discussion of the results 

Our models were trained over 12 and 15 epochs using a dataset of 4000 and 3500 

images, respectively, with or without NC. It is observed that the losses on the VGG19 

and VGG16 models decrease steadily from the initial epochs, while the loss on the 

ResNet50 model exhibits a different pattern, initially evolving before eventually 

dropping to low values similar to the other models. The accuracy of the models shows 

consistent improvement with epochs, achieving over 99% accuracy in training and 

over 98% accuracy in testing, which is a highly satisfactory rate. The minimal 

difference between the accuracies of the models in training and testing indicates good 

generalization, except for the ResNet50 model, which requires more epochs to 

converge. Both VGG19 and VGG16 models demonstrate superior performance in 

terms of training, testing, and validation results. The slight difference between the two 

models can be attributed to the number of additional layers in VGG19. The analysis 

of confusion matrices for our models reveals the overall accuracy of predictions. The 

models exhibit almost correct predictions for image classes, with only a few instances 

in the first-intention model where images are misclassified as NC. The second 

intention model further enhances the accuracy of predictions and provides valuable 

insights for specialists to consider. The integration of the second-intention model, 

particularly for the NC class, enables the provision of probability values that indicate 

the level of trust associated with the proposed classifications. Considering these 

metrics and the analysis of confusion matrices, we can conclude that our classification 

model demonstrates satisfactory performance. The VGG19 model, in particular, holds 

promise for predicting IEF gel image results and identifying different types of sickle 

cell patients. The development of the second-intention model reinforces the usefulness 

of our approach by providing an answer for NC class images. It offers valuable support 

to specialists by suggesting potential sickle cell profiles and providing probabilities 

that indicate the level of trust associated with each recommendation. This additional 

layer of information assists clinicians in making informed decisions and reduces the 

need for repetitive analyses caused by challenges in reading and identifying sickle cell 

profiles. 

5.3. Biologists and technicians feedback on SCScreen 

After the deployment, the tool has been used with new gels data. Table 4 presents 

feedback from specialists on the tool usage. The different percentages represent the 

correct predictions for each class for the three recently processed gels, totaling 216 

results including 204 patients and 12 controls. 2 × β represents the controls used for 

the gels. Our framework outperforms the naive approach with 1.85% fewer errors 

compared to over 8%. We recall that this was possible because a little over 15.27% of 

the results (33 results) went through the second-intention model with the NC class. It 

should also be noted that our framework corrected two patient results identified by the 

biologist after comparing the results. Indeed, these two patients had been declared AF 

while our system predicted them as AFS. 

Reading the table: Example of Gel 1 of our framework, the 72 IEF patterns 

including 4 references are distributed as explained below. The tool predictions are 



Journal of Infrastructure, Policy and Development 2024, 8(9), 6121.  

21 

outside parentheses. Thus, the tool predicted 3 IEF references correctly, which is 

greater than or equal to (β + 1) since β = 2, so Gel 1 remains valid. It appears that for 

the AF class, there are 55 correct predictions out of 56 and 03 correct predictions out 

of 03 for the AFC class. Respectively, 08 out of 08 and 01 out of 01 for the AFS and 

FS classes that we denote. 02 false predictions were identified, resulting in a success 

rate of 97.22%. 07 results initially predicted as NC with the first-intention model were 

eventually identified by the second-intention model. The reading of the lines is done 

similarly. For the AF line of our framework, we have 55 correct predictions out of 56 

for Gel 1, 65 correct predictions out of 66 for Gel 2, 62 out of 63 for Gel 3, and a 

success rate of 98.38% for this class. Thus, respectively, 52 out of 56, 60 out of 66, 59 

out of 63 for Gel 1, Gel 2, and Gel 3 for the naive approach. We note a success rate of 

92.43%. As for the NC class line, it only concerns our framework, which is one of the 

contributions of this paper. 

Table 4. Tool usage feedback. 

 Our framework Naïve approach 

 Gel 1 Gel 2 Gel 3 % Gel 1 Gel 2 Gel 3 % 

2 × β (technician) 2 × 2 2 × 2 

AFSC 3(4) 4(4) 4(4) 75% 4(4) 4(4) 4(4) 100% 

AF 55 (56) 65 (66) 62 (63) 98.38% 52 (56) 60 (66) 59 (63) 92.43% 

AFC 03 (03)   100% 03 (03)   100% 

AFS 08 (08) 02 (02) 05 (05) 100% 08 (08) 02 (02) 03(05) 86.66% 

FC         

FS 01 (01)    100% 01 (01)   100% 

FSC         

NC 07 13 13 15.27%     

% 97.22% 98.61% 98.61% 98.14% 94.44% 91.66% 91.66% 92.59% 

Number of false predictions 02 01 01 01.85% 04 06 06 08.33% 

6. Conclusion 

This study focuses on addressing the significant challenge of SCD in West Africa, 

particularly the lack of reliable screening platforms. It highlights the effectiveness of 

IEF and AI, especially Deep Learning, in precise disease diagnosis. Through a 

classification study using agarose gel images and three distinct CNN architectures, the 

research achieved outstanding results, surpassing a 98% accuracy rate in predicting 

the disease and identifying sickle cell profiles. The integration of a “Non-Confirmed” 

(NC) category further enhances comprehensiveness and fairness in the approach. 

Additionally, introducing probability values provides valuable insights for clinicians 

to make informed decisions. This fairness aspect ensures that the recommendation 

model (Second-intention Model) not only suggests potential sickle cell profiles but 

also conveys the level of trust associated with each prediction. The proposed approach 

has the potential to enhance screening platforms, reduce costs associated with 

repetitive analyses, and ultimately contribute to reducing newborn mortality rates. 

Despite these achievements, limitations exist, notably the reliance of the second-
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intention model solely on agarose gel image information, neglecting additional clinical 

data or patient-specific factors. Healthcare professionals should incorporate these 

factors into their decision-making process alongside the model's recommendations to 

ensure well-informed clinical decisions. Furthermore, this holistic approach can lead 

to more personalized and effective patient care. 

To conclude, we further explore the interpretability and explainability of the AI 

models used for sickle cell disease screening. It is essential to enable healthcare 

professionals to clearly understand the model predictions, which will enhance their 

trust in these results. Following the implementation of continuous learning and 

adaptation mechanisms for sickle cell disease screening models to ensure their long-

term effectiveness and relevance by integrating new data and considering disease 

developments. The integration of multimodal data into sickle cell disease screening 

models could significantly improve their accuracy and robustness by combining 

information from different sources for a more comprehensive and precise evaluation 

of the disease. 
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Appendix 

This section provides some insights into the reproducibility of the work. First, the general framework will be 

detailed. Then, some screens of the analysis will be presented to you. 

A. Reproducibility 

This section presents a tool (Figure A1) that implements two pipelines to address the stated problem. The first 

pipeline examines the implementation of IEF motif classifiers from IEF data and then demonstrates their use to evaluate 

data accuracy and recommend additional biological experiments if necessary. The second pipeline presents the approach 

to implementing the analysis tool. More precisely, this framework presents a decision support tool for neonatal sickle 

cell disease screening based on agarose gel images. Our approach can be broken down into four (04) steps by pipelines 

(Figure A1). Loading the agarose gel image and its reference sheet. This step is followed by a subdivision to obtain 

individual results for identified patients. The first two steps are almost identical. The second step of the model building 

pipeline already had the classes which helped in setting up the classes in our supervised learning. In the case of SCScreen, 

all patient images remain in a single directory which will be used for predictions. Steps 3 and 4 of the model building 

pipeline perform the learning and save our prediction and recommendation models for IEF patterns. Steps 3 and 4 of 

the SCScreen pipeline import the pre-trained models, perform predictions followed by displaying the sickle cell or non-

sickle cell result associated with its prediction probability. In these pipelines, all packages used at each stage are given. 

 

Figure A1. Approach to building the models and the analysis tool. 

B. Parameter setting and visualization screen for agarose gel electrophoresis slice 

Parameter setting: Here are some screenshots of the deployment and their descriptions. Developed with a focus on 

applicability and generalizability, our tool is called SCScreen. 

Figure A2 shows the screen for cropping agarose gel images into patient results and saving them in a directory. 
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The screen takes as input the agarose gel image and its bench sheet (sheet with sample identifiers and positions). It then 

divides the image into several equal parts according to the specified number of subdivisions and returns a list containing 

these subdivided images. This subdivision is done using the following parameters based on the left (here 180), top (here 

0), right (here 260), bottom (688) coordinates and the number of subdivisions, allowing to crop the specified column 

(here right) correctly and producing individual patient images. A visual check is available on the right to verify the 

correctness of the cropping. The resolution is also acceptable. Afterward, you need to save using the “save” button to 

keep the cropping in a directory that will be used for prediction. This implementation is based on Figure 8 and the first 

two stages of the pipelines. 

 

Figure A2. Cutting agarose gel. 

C. Visualization screen 

Figure A3 shows the screen for predicting sickle cell profiles. This part of the code takes as input the subdivided 

images and returns their predictions for the patients, followed by the probability of recommendation to the specialist. 

Among the profiles in Figure A3, the first and last images are predicted by the first-intention model characterized by 

the set of profiles. Images 3 and 4, whose final predictions were made by the second-intention model after passing 

through the NC class of the first-intention model. Indeed, the second-intention model does not have the AFSC and NC 

classes in its prediction set on the histograms. The deployment of the SCScreen tool automates sickle cell screening for 
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resource-limited environments, integrating agarose gel image analysis and CNNs. The tool reduces reliance on human 

resources and improves result reproducibility. SCScreen effectively identifies sickle cell profiles, overcomes staining 

variations, and reduces retesting costs, providing significant benefits to developing countries. It also raises awareness 

and promotes the adoption of automated technologies for neonatal sickle cell screening, improving patient care. 
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Figure A3. Prediction of profiles. 


