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Abstract: This study thoroughly examined the use of different machine learning models to 

predict financial distress in Indonesian companies by utilizing the Financial Ratio dataset 

collected from the Indonesia Stock Exchange (IDX), which includes financial indicators from 

various companies across multiple industries spanning a decade. By partitioning the data into 

training and test sets and utilizing SMOTE and RUS approaches, the issue of class imbalances 

was effectively managed, guaranteeing the dependability and impartiality of the model’s 

training and assessment. Creating first models was crucial in establishing a benchmark for 

performance measurements. Various models, including Decision Trees, XGBoost, Random 

Forest, LSTM, and Support Vector Machine (SVM) were assessed. The ensemble models, 

including XGBoost and Random Forest, showed better performance when combined with 

SMOTE. The findings of this research validate the efficacy of ensemble methods in forecasting 

financial distress. Specifically, the XGBClassifier and Random Forest Classifier demonstrate 

dependable and resilient performance. The feature importance analysis revealed the 

significance of financial indicators. Interest_coverage and operating_margin, for instance, were 

crucial for the predictive capabilities of the models. Both companies and regulators can utilize 

the findings of this investigation. To forecast financial distress, the XGB classifier and the 

Random Forest classifier could be employed. In addition, it is important for them to take into 

account the interest coverage ratio and operating margin ratio, as these finansial ratios play a 

critical role in assessing their performance. The findings of this research confirm the 

effectiveness of ensemble methods in financial distress prediction. The XGBClassifier and 

RandomForestClassifier demonstrate reliable and robust performance. Feature importance 

analysis highlights the significance of financial indicators, such as interest coverage ratio and 

operating margin ratio, which are crucial to the predictive ability of the models. These findings 

can be utilized by companies and regulators to predict financial distress. 
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1. Introduction 

The pursuit of financial sustainability is a fundamental objective for several 

companies, as it serves as a crucial safeguard against the perils of bankruptcy, which 

can have far-reaching ramifications on both the economic and social fronts. Hence, the 

timely identification of challenges assumes paramount significance, as it enables the 

implementation of proactive interventions. According to Sharma and Mahajan (1980), 

the identification of problems enables the implementation of regular activities aimed 

at mitigating the costs associated with failure. 
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In the early stages of bankruptcy prediction research, Fitzpatrick (1932) 

employed financial ratios and rates as predictive indicators, without resorting to the 

utilization of statistical models. The statistical model introduced by Altman (1968) 

employing multiple discriminant analysis continues to be widely employed by 

practitioners for the purpose of forecasting corporate health issues. The logit model 

was initially formulated by Ohlson (1980), explained that in predicting there are 3 

things that must be considered, firstly paying attention to all the information in the 

company’s financial reports, secondly using large or large amounts of data to predict 

and also paying attention to stronger factors. To strengthen it in further research, it is 

necessary to add variables. The basic variables used include Size, TLTA, WCTA, 

CLCA, OENEG, NITA, FUTL, INTWO, CHIN. Selecting a large sample that is close 

to the population will result in bias, so the appropriate method for predicting this 

problem can be using the Probit model (Zmijewski 1984). Shumway (2001) proposed 

a hazard model that incorporates time factors for the purpose of predicting business 

financial hardship and consider basic variables such as Size, past returns. In Bonello 

et al.’s (2018) research on US state companies using 3–5 years of back data to be 

trained in predicting the level of corporate bankruptcy. the methods used include 

Decision Tree, the Naïve Bayes classifier and the Artificial Neural. The methods 

mentioned are part of the Machine Learning method that can predict the level of 

bankruptcy of companies, Machine Learning is highly dependent on the variables used 

to strengthen prediction models such as company profitability, liquidity, management 

efficiency, leverage, company size, and industry type. 

Noviantoro and Huang (2021) Testing to predict the level of visitor behavior at 

e-commerce companies in Turkey by comparing a number of models such as Machine 

Learning Algorithms, Decision Tree, Random Forest, Neural Net, Deep Learning, 

Naïve Bayes, K-NN Classifier, Logistics Regression, and the results show that 

Random Forest get more precise results in predicting the level of behavior of 

ecommerce visitors in Turkey. So that machine learning methods can be used in the 

current era of digitalization to predict all problems, not only company finances, 

consumer behavior and others. Precise results depend on the variables used, and the 

length of time the data is used to train the model that has been created.  

During the early 1990s, several researchers, including Altman et al. (1994), the 

ANN model is better than traditional models such as linear discriminant (LDA) or 

logit analysis in Italian companies, the model used was tested separately between retail 

and manufacturing companies. Kristanti et al. (2023) machine learning research has 

also been developed on the type of construction companies in Indonesia with the best 

ANN model of 25 inputs, 20 hidden layer neurons, and 1 best output model whose 

results predict that of the 17 research samples tested there are 6 companies 

experiencing distress and the rest are not distress. Added by Kristanti and Dhaniswara 

(2023), on companies in Indonesia who found a prediction model of the level of 

distressed by including several variables such as current ratio (CR), return on assets 

(ROA), debt to asset ratio (DAR), total asset turnover (TATO), and cash flow to debt 

ratio was tested with the larning machine method and logistic regression. The results 

obtained that the machine learning model is better than the model designed by logistic 

regression to predict the level of bankruptcy in Indonesia. Prediction of company 

distress levels was carried out in Slovakia using the CART algorithm which produces 
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a binomial decision tree where the results obtained by the model have a high level of 

accuracy with simpler tests, the sample used is also relatively short from 2016–2018 

(Durica et al., 2021). The Random Forest model has been marketed by Zhong and 

Wang (2022) to manufacturing companies in China in 2016–2021. It is necessary to 

be aware that the Profitability variable has a very large contribution to predicting the 

level of company distress which is reflected in the increase in return on equity (Zhong 

and Wang, 2022). In research in China in 2007–2017 the Random Forest (RF) model 

was better than the Support Vector Machine (SVM), Decision Tree (DT), baggingDT, 

oblique random forest (obRF), Kernel ridge regression (KRR) and Bayes models. in 

DFDF data classification (Shen, Liu, et al., 2020). There are differences in results from 

previous research which prove that the machine learning method is better than 

traditional regression models, so this research aims to create and prove that the 

variables used in the research are able to produce more precise results for companies 

in Indonesia. 

Prior studies employed statistical methodologies and machine learning 

techniques. The study employs machine learning techniques and utilizes a diverse 

range of ways to get optimal outcomes. The objective of this study is to employ 

machine learning techniques, specifically Decision Tree (DT), Random Forest (RF), 

Long Short-Term Memory (LSTM), and Vector Machine (VM), to forecast financial 

distress in companies that are publicly traded on the Indonesian Stock Exchange. The 

utilization of financial ratios facilitates the formulation of prognostications. 

Furthermore, this study will also evaluate the performance and conduct feature 

selection analysis for each model. The findings of this study are anticipated to enhance 

understanding, specifically in the realm of financial management, particularly in the 

domain of predicting financial instability through the utilization of diverse machine 

learning techniques. The study findings are anticipated to offer further insights for 

enterprises and authorities, particularly in Indonesia, on the optimal machine learning 

model and the key ratio that significantly impacts their performance.  

The structure of this paper’s subsequent sections is as follows: First, the authors 

identify the research background by using the examination of the theoretical 

framework employed in this investigation in Section 2. In Section 3, the approach is 

discussed, while Part 4 is dedicated to presenting the outcome and facilitating 

subsequent discussion. This paper will conduct a comprehensive analysis, formulate a 

conclusion, and then present recommendations. 

2. Literature review 

Financial distress prediction is a critical domain in finance, and machine learning 

algorithms have increasingly become pivotal tools for enhancing prediction accuracy. 

This literature review explores the effectiveness of various machine learning 

algorithms, such as Decision Trees (DT), Random Forest (RF), Long Short-Term 

Memory (LSTM), and Support Vector Machine (SVM), in forecasting financial 

distress (Ling and Cai, 2022; Liu, Li, et al., 2022). These studies reveal that both 

traditional and novel machine learning techniques are effective at predicting when a 

company will encounter financial difficulties, with methodologies such as the 

advanced AWOA-DL method achieving remarkable accuracies in distress prediction 
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(Elhoseny et al., 2022). 

Recent research highlights the superiority of machine learning models over 

traditional models like the Z-Score, particularly in predicting financial distress among 

Chinese A-listed construction firms (Rahman and Zhu, 2024). This suggests a broader 

applicability of these machine learning models across different markets and industries. 

Furthermore, innovative machine learning approaches, such as wolf pack-optimized 

long-term and short-term memory neural networks, have proven effective in crisis 

prediction, adding a new dimension to predictive analytics (Ling and Cai, 2022). 

Notably, discussions encompass the trade-off between interpretability and 

performance in machine learning algorithms, underscoring the importance of 

balancing model complexity with explanatory power. Moreover, the application of 

tree-based gradient boosting models exemplifies efforts to enhance both modeling and 

explanation in distress prediction (Liu, Li, et al., 2022). 

Expanding further into the fintech sector, Halteh et al. (2024) employ Artificial 

Neural Networks (ANNs) to forecast financial distress among FinTech unicorns. Their 

findings, which highlight the importance of financial ratios like return on capital, 

current ratio, quick ratio, and debt-to-equity ratio as significant predictors of financial 

distress within FinTech unicorns. 

Moreover, studies continue to uncover specific financial ratios that serve as 

significant predictors of distress, such as return on capital employed, cash flows to 

total liability, and debt to equity ratio (Sehgal et al., 2021). Additionally, investigations 

into diverse factors influencing financial distress, such as corporate social 

responsibility, indicate a growing complexity in the factors that predictive models 

must consider (Song, 2023). This comprehensive analysis underscores the 

multifaceted nature of financial distress prediction and the crucial role played by 

advanced machine learning techniques in navigating this complex field. 

Despite the advancements in financial distress prediction methodologies and their 

expanding applicability across various sectors, there remains a significant gap in 

targeted research within specific emerging markets, notably Indonesia. The unique 

economic dynamics and regulatory environments in Indonesia necessitate tailored 

analytical models that can accurately predict financial distress in this context. This 

study aims to fill this critical gap by integrating sophisticated machine learning 

algorithms such as XGBoost, LSTM, and Random Forest to develop a robust 

predictive framework suited to the Indonesian market. The need for this research is 

underscored by the increasing complexity of financial markets and the crucial role that 

precise, reliable financial distress predictions play in ensuring the stability and health 

of companies within these markets. By focusing on Indonesia, this research not only 

contributes to the broader field of financial analytics but also provides actionable 

insights that can significantly benefit Indonesian regulators and companies in 

mitigating financial risks. 

2.1. Decision trees 

Financial distress prediction within companies constitutes a pivotal area of 

research, with a notable shift towards the adoption of machine learning techniques, 

particularly Decision Trees (DT). Numerous studies have underscored the 
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effectiveness of machine learning models in this regard. Sehgal et al. (2021) 

specifically highlighted the superiority of machine learning-based distress prediction 

models over traditional time series models, focusing on developing tailored models 

within the Indian corporate landscape. Elhoseny et al. (2022) further emphasized the 

significance of machine learning models, particularly deep learning-based approaches, 

in predicting financial distress, marking a notable shift in the financial risk assessment 

paradigm. 

Moreover, the literature elucidates the diverse applications and methodologies 

within the field, including feature selection, dataset considerations, and algorithm 

performance evaluation (Long et al., 2022). Notably, Song (2023) addressed the 

challenges of class-imbalanced datasets and introduced techniques like SMOTE to 

enhance prediction accuracy. Additionally, Ryll and Seidens (2019) explored non-

linearities in time series data for financial market prediction, indicating the continuous 

evolution and integration of advanced methodologies in financial distress prediction. 

The collective body of research underscores a growing trend towards leveraging 

advanced computational methods to enhance predictive accuracy and efficiency in 

financial risk assessment, exemplifying the evolving landscape of financial distress 

prediction (Ryll and Seidens, 2019). This integration of advanced methodologies and 

exploration of diverse factors not only enriches the predictive capabilities but also 

contributes significantly to proactive risk management and strategic decision-making 

within companies. 

2.2. Random forest 

Financial distress prediction within corporate entities has emerged as a critical 

focus in financial research, particularly accentuated by the adoption of machine 

learning techniques, notably Random Forest (RF). This interest is underscored by a 

wealth of studies dedicated to developing and deploying statistical and machine 

learning models for this purpose, aiming to enhance predictive accuracy amidst the 

complexities of financial landscapes (Gregová et al., 2020; Tron et al., 2022). Notably, 

these models have demonstrated superiority over traditional time series methods, 

especially in contexts marked by heightened corporate financial distress (Sehgal et al., 

2021). Central to these endeavors is the identification of multifaceted factors—

financial, managerial, and textual—that collectively contribute to the manifestation of 

financial distress characteristics within companies. 

The exploration of various machine learning algorithms, such as support vector 

machines and sparse algorithms, has been instrumental in crafting robust financial 

distress prediction models, with hybrid approaches showcasing notable efficacy (Shen 

and Chen, 2022). Moreover, advancements in feature selection methodologies, 

facilitated by genetic algorithms, have significantly augmented the predictive 

capabilities of these models, particularly evident in the Chinese listed company 

context (Song, 2023). 

In tandem, recent research has emphasized the pivotal role of machine learning 

in enhancing financial forecasting endeavors, transcending the realm of distress 

prediction to encompass broader financial decision-making processes (Hota et al., 

2020). Such endeavors have not only outstripped conventional linear techniques in 
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forecasting accuracy but have also showcased promising applications in predicting 

stock market indices, volatility, and optimizing inventory management 

(Karathanasopoulos and Osman, 2019; Nasution et al., 2022; Ramos-Pérez et al., 

2019). Amidst this backdrop, the comparative analyses delineated in recent literature 

underscore the significance of selecting appropriate models and discerning specific 

financial indicators to refine the accuracy of distress predictions, thus elucidating the 

invaluable role of machine learning in fortifying financial decision-making processes 

and risk management endeavors (Gregová et al., 2020; Tron et al., 2022). 

2.3. XGBoost 

Financial distress prediction, a pivotal domain within finance, is integral for 

anticipating and navigating potential economic challenges encountered by companies. 

This area has witnessed a surge in interest, notably with the ascension of machine 

learning techniques, particularly XGBoost, renowned for its predictive prowess 

(Tissaoui et al., 2022). Demonstrating superior accuracy over traditional methods, 

these machine learning models, including SVM, deep learning, and ensemble methods, 

have emerged as formidable tools in forecasting financial distress (Ayuni et al., 2022; 

El-Bannany et al., 2020). 

Critical to enhancing predictive performance is meticulous feature selection, 

facilitated by methodologies like genetic algorithms, and the integration of diverse 

data sources spanning financial, textual, and social responsibility domains (Song, 

2023). Comparative analyses underscore the efficacy of XGBoost in corporate 

financial distress prediction, notably outperforming traditional techniques like linear 

regression and ensemble methods (Tissaoui et al., 2022). Further accentuating the 

significance of model selection and evaluation, researchers have scrutinized the 

performance of XGBoost against alternatives like random forest and support vector 

machines, illuminating the nuanced strengths and limitations of each approach (Lai et 

al., 2023). 

Complementary research delves into the application of diverse methodologies, 

including SVM, ANN, Cox Proportional Hazard model, and Altman Z-Score method, 

in predicting financial distress across various sectors (Kristanti et al., 2023). 

Integrating these methodologies underscores the importance of amalgamating 

different paradigms to fortify the accuracy and reliability of financial distress forecasts, 

ultimately empowering proactive risk management and strategic decision-making 

within companies. These endeavors collectively underscore the evolving landscape of 

financial distress prediction, driven by the integration of advanced computational 

techniques and traditional financial models. 

2.4. Long short-term memory 

Financial distress prediction within companies has emerged as a pivotal area of 

research, attracting substantial attention in recent years. A notable facet of this research 

involves the utilization of machine learning techniques, with particular emphasis on 

Long Short-Term Memory (LSTM) models, renowned for their adeptness in 

forecasting financial distress. This trend is underscored by studies exploring LSTM’s 

applicability across various financial forecasting tasks, spanning stock market 
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prediction, forex forecasting, and energy consumption prediction (Sheng and Ma, 

2022). 

In parallel, a surge in interest has been observed regarding the application of 

machine learning algorithms, including LSTM, for predicting financial distress within 

corporate entities (Yousaf et al., 2021). While the specific contexts may vary, these 

studies collectively underscore the growing trend of leveraging advanced 

computational techniques to enhance distress prediction accuracy. Highlighted the 

significance of financial ratios in distress prediction, while Elhoseny et al. (2022) 

demonstrated the effectiveness of the AWOA-DL method. Moreover, the research by 

Yousaf et al. (2021) extends this exploration to evaluate the impact of board diversity 

on predicting financial distress, thereby enriching the discourse surrounding machine 

learning’s effectiveness in this domain. 

The integration of LSTM models within financial distress prediction frameworks 

offers a promising avenue for enhancing decision-making processes in the financial 

domain. LSTM’s capability to capture long-term dependencies and nonlinear patterns 

in time series data renders it a valuable tool for forecasting financial indicators. As 

evidenced by the studies reviewed, LSTM demonstrates effectiveness across diverse 

financial forecasting tasks, thus emphasizing its potential for improving decision-

making processes in the financial realm (Hájek and Munk, 2023; Sirisha et al., 2022). 

Collectively, these studies underscore the burgeoning interest in leveraging advanced 

computational techniques, particularly LSTM, to enhance the accuracy of financial 

distress prediction within companies. 

2.5. Support vector machine 

Financial distress prediction, a cornerstone of corporate finance research, has 

witnessed burgeoning interest, particularly with the advent of machine learning 

methodologies. Studies abound in leveraging Support Vector Machine (SVM), 

showcasing its versatility across various sectors such as manufacturing, real estate, 

infrastructure, transportation, and banking (Ayuni et al., 2022). This methodological 

diversity underscores SVM’s robustness in analyzing financial data, providing 

invaluable insights into the likelihood of companies encountering financial adversities. 

Expanding the repertoire, Artificial Neural Networks (ANN) have emerged as 

potent alternatives for financial distress prediction, offering nuanced approaches to 

pattern recognition and analysis (Kristanti et al., 2023). Noteworthy efforts have been 

directed towards refining predictive models through feature selection methods and 

sampling techniques, aiming to bolster their performance and reliability (Vu et al., 

2019). 

Crucially, financial distress prediction models encompass a gamut of financial 

ratios and indicators, encompassing liquidity, profitability, leverage, and company size, 

as pivotal factors (Kholisoh and Dwiarti, 2020). The comprehensive evaluation further 

extends to encompassing both internal and external factors, emphasizing their 

profound impact on a company’s financial stability (Ye et al., 2020). 

Parallelly, a rich tapestry of statistical models, including the Altman Z-score 

model and logistic regression, has been instrumental in prognosticating financial 

distress, leveraging historical financial data and key performance indicators 
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(Khamisah et al., 2021). Complementary efforts have delved into integrating disparate 

models and techniques to furnish a holistic assessment of financial risk (Dai et al., 

2022). 

Simultaneously, recent research underscores the pivotal role of machine learning 

algorithms, particularly SVM, in fortifying financial distress prediction endeavors 

(Abdullah et al., 2023). These investigations reveal SVM’s prowess in navigating 

various sectors and its comparative advantage over traditional linear techniques, 

aligning with the overarching endeavor of facilitating proactive risk management and 

informed decision-making processes. Through a harmonized synthesis of machine 

learning innovations and traditional financial frameworks, researchers strive to forge 

predictive models that not only elucidate the dynamics of financial distress but also 

empower stakeholders with actionable insights across diverse industries. 

3. Methodology 

The present study aims to perform a comparative analysis of four distinct 

machine learning algorithms to predict financial distress. The algorithms under 

consideration include Random Forest and XGBoost, which are both ensemble tree-

based methods renowned for their accuracy and robustness in handling various types 

of data. The Long Short-Term Memory (LSTM) network, a specialized form of 

recurrent neural network, is chosen for its proficiency in managing time-series data, 

an attribute particularly pertinent to the financial domain. Support Vector Machine 

(SVM) is also included in this study due to its capability as a boundary-based classifier, 

which is adept at finding the optimal separation between different classes. 

Variable Y is a binary value of 1 or 0 which is the value of each company’s 

Earnings Before Interest and Taxes (EBIT) in years 1 and −1. EBIT values in years −1 

and 1 indicate that the company fails to earn a profit for the company which will impact 

the company’s ability to pay interest, debt, and taxes in the current year. These 

conditions will make the company continue to be in a distress position, if these 

conditions are experienced continuously by the company, it will be difficult for the 

company to rise and will fall into a position of bankruptcy. Therefore, companies with 

this model can find the right strategy to improve their financial distress. 

Given the propensity for class imbalance within financial datasets, where 

instances of distress may be significantly outnumbered by normal cases, two sampling 

techniques are employed to ensure a balanced representation of classes. Random 

Under-Sampling (RUS) is utilized to mitigate class imbalance by randomly discarding 

instances from the majority class, thus aligning the class distribution more closely with 

that of the minority class. Conversely, the Synthetic Minority Over-sampling 

Technique (SMOTE) is deployed to augment the minority class through the generation 

of synthetic samples, thereby enriching the dataset without the loss of information. 

The efficacy of the selected algorithms, when applied in conjunction with the 

RUS and SMOTE sampling techniques, is evaluated across a suite of metrics. 

Accuracy serves as the primary indicator of overall performance, reflecting the 

proportion of true results among the total number of cases examined. The Area Under 

the Receiver Operating Characteristic curve (AUC ROC), for both training and testing 

datasets, provides insight into the true positive rate relative to the false positive rate, 
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offering a measure of the model’s ability to distinguish between the classes. The AUC 

for ROC probabilities further elucidates the model’s discriminative capacity. 

Additionally, the AUC Precision-Recall metric is scrutinized, particularly for its 

relevance in imbalanced datasets, as it reflects the model’s aptitude in identifying the 

minority class.  

 

Figure 1. Process illustration of the study. 
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Precision, the F1 Score, and Recall are also calculated, with the F1 Score 

providing a harmonic mean of Precision and Recall, thereby presenting a balanced 

view of the model’s precision in class prediction and its sensitivity in identifying all 

relevant instances. Through this comprehensive evaluation, the study aspires to 

delineate the strengths and limitations of each algorithm in the context of financial 

distress prediction, contributing valuable insights to the field of financial risk 

management. Figure 1 depicts the assessment procedure for the machine learning 

model. 

3.1. Data collection and preparation 

For this study, a comprehensive dataset spanning ten years from 2013 to 2022 

was utilized, comprising data from 437 companies across multiple industries in 

Indonesia. The dataset utilized for this research comprises data sourced from the 

Indonesia Stock Exchange (IDX), which serves as the primary repository of company 

information and financial data pertinent to securities trading within the Indonesian 

market (Febrianta, 2024). The dataset encompasses various financial indicators from 

companies, focusing on the classification of financial distress—a crucial element 

reflecting a company’s financial health. The dataset is a comprehensive version where 

all variables of the ratio of financial reports are utilized in Table 1.  

Table 1. Ratio variables. 

No Ratio Variables No Ratio Variables 

X1 ROA(C) Before tax, interest, and depreciation X36 Quick asset/current liabilities 

X2 ROA(A)% after tax X37 cash / current liability 

X3 ROA(B) after tax, before interest & depreciation X38 current liability to assets 

X4 Operating margin X39 operating funds to liability 

X5 Realized gross profit margin X40 Inventory/working capital 

X6 Operating profit ratio X41 Inventory/current liability 

X7 Net interest rate before tax X42 current liability / sales 

X8 Net interest rate after tax X43 working capital/equity 

X9 Operating expense ratio X44 current liability/equity 

X10 Cash flow ratio X45 long-term liability to current assets 

X11 Interest rate X46 Total income/total expense 

X12 Tax rate (A) X47 Total expense/assets 

X13 Net value per share (A) X48 Liquid assets turnover rate 

X14 Cash flow per share X49 Quick asset turnover rate 

X15 Operating profit per share X50 working capital turnover rate 

X16 Net profit per share before tax X51 Cash turnover 

X17 Operating profit growth rate X52 Cash flow to sales 

X18 After-tax net profit growth rate X53 Fixed assets to assets 

X19 Growth rate of total assets X54 Current liability to liability 

X20 Net worth growth rate X55 Current liability to equity 

X21 Total return on assets growth rate X56 Equity to long-term liability 

X22 Current ratio X57 Cash flow to total assets 
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Table 1. (Continued). 

No Ratio Variables No Ratio Variables 

X23 Quick ratio X58 Cash flow to liability 

X24 Total debt/total net worth X59 CFO to assets 

X25 Debt ratio % X60 Cash flow to equity 

X26 Net worth/assets X61 current liabilities to current assets 

X27 Total asset turnover X62 Liability-assets  

X28 Turnover of accounts receivable X63 Net Income to total assets 

X29 Inventory turnover rate (times) X64 Gross profit to sales 

X30 Fixed asset turnover X65 Net Income to stockholder’s Equity 

X31 Net worth turnover rate (times) X66 Liability to equity 

X32 working capital to total assets X67 Interest coverage ratio (Interest expense to EBIT) 

X33 Quick asset/total asset X68 Net income  

X34 current assets/total assets X69 Equity to liability 

X35 cash/total assets   

The dataset utilized in this study encompasses a comprehensive array of financial 

indicators, offering a thorough insight into the financial position of companies. It 

comprises a total of 72 features, each representing a distinct financial metric or 

identifier. Among the key features included in the dataset are: the “class” variable, 

serving as the target variable indicating the financial distress status of companies, with 

values of 0 representing “No” and 1 representing “Yes”; “sektor,” which specifies the 

sector classification of the company; “company_code,” denoting the unique stock code 

assigned to each company; and “year,” indicating the reporting year of the financial 

data. These features collectively provide a multifaceted perspective for analyzing the 

financial health and distress status of companies within the dataset. 

Financial metrics like roa_after_tax, operating_margin, cash_flow_ratio, 

growthrate_of_total_assets, net_worth_growth_rate, current_ratio, 

total_debt_total_net_worth, debt_ratio, and several others. 

Data preprocessing was a critical step to ensure data quality and readiness for 

analysis. The dataset was meticulously cleaned to address inconsistencies, replacing 

problematic values with NaN to standardize missing data representation. A selective 

type conversion process was applied, converting relevant columns to a floating-point 

format to facilitate numerical computations, while preserving the original formats of 

categorical and identifying columns such as “class”, “sector”, “company_code”, and 

“year”. This preserved the integrity and usability of the dataset for machine learning 

purposes. 

Data Cleaning: 

In the data cleaning process, we identify and handle various forms of “noise” in 

our data, which can interfere with the analysis. We replace these inconsistencies, 

specifically values such as “#DIV/0!”, “#Value!”, “#VALUE!”, “#REF!”, and “-”, 

with NaN (Not a Number) to standardize the representation of missing or undefined 

data. 

Type Conversion: 

During type conversion, we meticulously examine all columns that require a data 
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type adjustment. We convert their data types to float, facilitating numerical operations 

and computations on these columns. However, we intentionally exclude specific 

columns like “class”, “sector”, “company_code”, and “year” from this conversion 

process because they serve different purposes, such as categorization or identification, 

and are more suitable in their original format. This careful modification ensures that 

the dataset is primed for more complex procedures like analysis and machine learning 

model training, with data types being consistent and appropriate for such operations. 

3.2. Synthesis and reporting 

The findings from the study were systematically documented, highlighting the 

effectiveness of the models and the criticality of feature selection. The performance of 

various models, especially in precision-recall aspects, was discussed, emphasizing the 

need for models to maintain precision at high recall levels. The results were uploaded 

to the Neptune platform for tracking and future reference, ensuring a comprehensive 

and accessible record of the research outcomes. 

In conclusion, the methodology chapter provides a detailed account of the 

systematic approach taken in this study to predict financial distress using machine 

learning models. From initial data preparation to complex model evaluation, the 

research methodology was designed to ensure the development of reliable and 

interpretable predictive models, with a keen focus on the practical application and 

generalizability of the results. 

An extensive exploratory data analysis (EDA) phase followed, where the dataset 

was prepared for machine learning. Feature reduction and encoding were conducted, 

with non-essential features removed and categorical data transformed via one-hot 

encoding. The data was then restructured to improve readability and to ensure order, 

particularly placing the ‘class’ column prominently for easy reference. The dataset was 

divided into training and testing sets in an 80/20 split, employing stratified sampling 

to ensure representative class distribution, given the imbalanced nature of the data. 

3.2.1. Feature reduction and encoding 

We streamline our dataset by removing less critical features like 

‘kode_perusahaan’, considering potential data discrepancies with new companies. We 

apply one-hot encoding to the ‘year’ and ‘sektor’ columns to convert categorical data 

into a format suitable for machine learning models. 

3.2.2. Data reorganization and duplication removal 

We restructure our DataFrame to position the ‘class’ column first, followed by 

the newly encoded ‘year’ and ‘sektor’ columns, and finally, the original features. This 

step enhances readability and order. We also ensure the removal of any duplicate 

columns inadvertently created during the encoding process. 

3.2.3. Dataset splitting 

We proceed to divide the dataset into two subsets: a training set and a test set. 

The training set is used to train our model, while the test set is reserved and used to 

evaluate the model’s performance on unseen data. This is a critical step in machine 

learning practice to assess the model’s ability to generalize and not just memorize the 

training data. 
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We utilize a stratified sampling technique during this splitting to ensure that the 

training and test subsets have similar proportions of class labels as the original dataset. 

This is particularly important in cases of an imbalanced dataset where one class 

significantly outnumbers the other(s). Stratification aims to preserve the original class 

distribution in both training and test sets, thereby providing a more representative and 

fair ground for training and subsequently evaluating the model. 

In our case, we allocate 80% of the data to the training set and the remaining 20% 

to the test set, a typical ratio that offers a balanced compromise between having enough 

data to learn from and enough to evaluate and test the robustness of the model. The 

use of a random state seed (e.g., 42) ensures reproducibility; the same data points will 

be allocated to the training and test sets each time the code is executed, which is 

essential for consistent results across multiple runs or users. 

3.2.4. Data exploration 

A crucial aspect of this exploration is understanding the distribution of our 

numerical data, specifically through the calculation of skewness values. Skewness 

provides us with insight into the symmetry, or lack thereof, in the distribution of our 

data points. Identifying high skewness values helps in pinpointing features that may 

require transformation to approximate normal distributions, potentially improving the 

performance of subsequent modeling. 

To better interpret the skewness metrics, we adopt a visual approach. By dividing 

our data features into manageable chunks, we create horizontal bar plots displaying 

the skewness value for each variable. This visual representation is effective for quickly 

identifying variables with extreme skewness values, either positive or negative, that 

might warrant further investigation or transformation. The graphical approach 

complements the quantitative analysis, offering an intuitive understanding of data 

distribution characteristics. 

3.2.5. Handling missing values 

To address these missing values, we utilize an imputer in our preprocessing stage 

that substitutes these absent values with a minor constant of 0.0001. We opt for this 

small constant, as a zero value could convey significant information in our dataset, 

such as the nonexistence of a certain feature. This method is applied across both our 

training and testing datasets, confirming the absence of any missing values post-

implementation. 

3.2.6. Handling class imbalance with RUS and SMOTE 

Recognizing the potential imbalance in our dataset, we implement Random 

Under Sampling (RUS) and Synthetic Minority Over-sampling Technique (SMOTE) 

to rectify it. Both methods aim to equalize the number of instances for each class, but 

while RUS does this by reducing the majority class, SMOTE generates synthetic data 

for the minority. We visualize the class distribution before and after the application of 

RUS and SMOTE using count plots, which are saved as images for reference. This 

exhaustive exploration and preprocessing regimen set the stage for accurate, bias-free 

machine learning models downstream. 
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3.3. Model development 

The study established a set of baseline models to serve as a reference for the 

performance of more complex models developed later in the research. These models 

included Decision Trees, Random Forests, Long Short-Term Memory (LSTM) 

networks and Support Vector Machines. Each model was trained on both SMOTE and 

RUS processed datasets, with performance meticulously logged for comparison on 

metrics such as the F1 score and training time. 

When we conduct a machine learning experiment, it’s vital to establish a starting 

point or a reference to measure the impact of changes we make. This starting point is 

called a “baseline model”. The primary purpose of using a baseline model is to have 

an initial measure of performance, which allows us to understand how subsequent 

changes, such as hyperparameter tuning, improve or deteriorate the model’s 

performance. 

In our approach, we commence by establishing various machine learning 

“baseline” models. These models are foundational and serve as our starting point for 

further experimentation. Specifically, the models that we choose for this baseline 

phase include Decision Trees, Support Vector Machines, Random Forests, and Long 

Short-Term Memory (LSTM) networks, among others. We then train these baseline 

models on two distinct datasets: one that has undergone the SMOTE and another that 

has been subjected to RUS. For each dataset type—SMOTE and RUS—we perform a 

series of operations. Firstly, we train the models and subsequently evaluate them. By 

doing so, we can monitor the performance of these models in real-time. Post training, 

we organize and update a log that meticulously captures the outcomes of our training 

sessions. This log, a structured data format, is instrumental in tracking the models’ 

performance, especially metrics such as the F1 score, and the time taken for training. 

The next phase involves delving deeper, as we embark on a rigorous process of 

hyperparameter tuning to unearth the optimal configuration that can further enhance 

our model’s performance. By combining various hyperparameters, we will navigate 

through the vast search space, trying to find that perfect blend that offers us superior 

results. 

3.4. Model evaluation and validation 

Model evaluation was not confined to basic accuracy but also encompassed ROC-

AUC, precision, recall, and the F1 score, among other metrics. Evaluations were 

conducted on both the training and testing datasets to verify the models’ capacity to 

generalize. ROC curves and Precision-Recall curves were generated, alongside 

confusion matrices, to provide deeper insight into model accuracy and error trade-offs. 

The study further investigated feature importance across models to interpret predictive 

behaviors.  

The results from hyperparameter tuning and feature importance measurement 

were synthesized to understand the strengths and limitations of each model. 

4. Result and discussion 

The dataset that we use encompasses various financial indicators from companies, 

focusing on the classification of financial distress—a crucial element reflecting a 
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company’s financial health. To improve the accuracy of the financial distress 

prediction model, the study collected 10 years of data from 2013 to 2022, including 

financial indicators such as liquidity ratios, profitability ratios, and solvency ratios for 

each company. In the realm of machine learning, establishing a “baseline model” is a 

critical initial step for any experimental approach. This model serves as a reference 

point, providing an initial performance metric against which the impact of subsequent 

modifications, such as hyperparameter adjustments, can be measured as in Table 2. 

Table 2. Descriptive analysis of variable. 

Variable Description Mean Median Maximum Minimum Std.Dev. Observations 

AFTER_TAX_NET_PROFIT_GROW

TH_RATE 
−1.401.201 −0.007336 2.380.367 −51290.79 7.875.562 4.370 

CASH___CURRENT_LIABILITY 2.073.225 0.210331 1.808.950 0.000001 3.060.749 4.370 

CASH___TOTAL_ASSETS 0.586662 0.066096 8.796.298 0.000001 1.739.055 4.370 

CASH_FLOW_PER_SHARE 9.325.604 1.179.676 60968.85 −5.465.633 1.070.687 4.370 

CASH_FLOW_RATIO 1.57 × 1010 0.076155 4.74 ×1012 −1.545.481 1.80 × 1011 4.370 

CASH_FLOW_TO_EQUITY 0.248911 0.126029 2.045.130 0.000001 0.653364 4.370 

CASH_FLOW_TO_LIABILITY 0.174819 0.076015 1.545.481 −1.103.141 3.571.399 4.370 

CASH_FLOW_TO_SALES 0.553243 0.127619 3.513.412 0.000001 6.645.606 4.370 

CASH_FLOW_TO_TOTAL_ASSETS 0.110887 0.055285 1.138.276 0.000001 1.732.003 4.370 

CASH_TURNOVER −2.441.078 0.201571 6.377.365 −3.856.912 1.294.311 4.370 

CFO_TO_ASSETS 0.088048 0.043392 1.138.276 −1.965.502 1.735.353 4.370 

CURRENT_ASSETS_TOTAL_ASSE

TS 
0.467460 0.432888 1.000.000 0.000001 0.285333 4.370 

CURRENT_LIABILITIES_TO_CUR

RENT_ASSETS 
4.208.026 0.694406 41964.05 0.000001 1.122.982 4.370 

CURRENT_LIABILITY___SALES 3.488.946 0.477163 1.184.197 −1.889.230 3.497.179 4.370 

CURRENT_LIABILITY_EQUITY 1.244.592 0.471364 3.672.056 −1.860.558 7.881.438 4.370 

CURRENT_LIABILITY_TO_ASSET

S 
1.374.667 0.272107 3.183.894 0.000001 4.870.098 4.370 

CURRENT_LIABILITY_TO_EQUIT

Y 
2.593.348 0.520400 1.988.911 −1.860.558 3.526.683 4.370 

CURRENT_LIABILITY_TO_LIABIL

ITY 
0.668331 0.666154 3.689.123 −2.525.453 0.931818 4.370 

CURRENT_RATIO 9.049.922 1.382.343 4.562.098 0.000001 9.473.631 4.370 

DEBT_RATIO__ 3.109.284 0.516846 3.461.972 0.000001 8.858.385 4.370 

EQUITY_TO_LIABILITY 1.175.850 0.934036 9.782.454 −0.999717 2.302.825 4.370 

EQUITY_TO_LONG_TERM_LIABIL

ITY 
2.586.568 3.462.907 905496.3 −1.650.641 13731.64 4.370 

FIXED_ASSET_TURNOVER 4.184.365 1.173.536 4.694.564 −2.361.911 7.173.037 4.370 

FIXED_ASSETS_TO_ASSETS 0.515089 0.551715 1.000.000 0.000001 0.277983 4.370 

GROSS_PROFIT_TO_SALES 0.158153 0.110056 3.931.334 −1.712.579 9.086.417 4.370 

GROWTH_RATE_OF_TOTAL_ASS

ETS 
1.213.237 0.057403 3.981.966 −1.000.000 6.066.726 4.370 

INTEREST_COVERAGE_RATIO__I

NTEREST_EXPENSE_TO_EBIT_ 
6.906.733 0.043007 27406.29 −1.615.582 4.151.445 4.370 
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Table 2. (Continued). 

Variable Description Mean Median Maximum Minimum Std.Dev. Observations 

INTEREST_RATE 2.53 × 1011 2.47 × 1010 6.85 × 1013 −7.36 × 1010 1.40 × 1012 4.370 

INVENTORY_CURRENT_LIABILIT

Y 
0.720310 0.242931 1.664.576 −9.212.581 3.890.647 4.370 

INVENTORY_TURNOVER_RATE__

TIMES_ 
5.300.869 3.423.849 90603.18 0.000001 1.452.914 4.369 

INVENTORY_WORKING_CAPITAL 1.874.709 0.127797 2.138.035 −1.664.474 3.614.352 4.370 

LIABILITY_ASSETS__FLAG 7.39 × 1012 1.51 × 1012 4.48 × 1014 0.000001 2.30 × 1013 4.370 

LIABILITY_TO_EQUITY 1.758.278 0.950433 3.705.741 −2.708.534 9.934.413 4.370 

LIQUID_ASSETS_TURNOVER_RA

TE 
4.032.774 1.387.595 40844.91 −4.759.532 1.064.399 4.370 

LONG_TERM_LIABILITY_TO_CUR

RENT_ASSETS 
2.372.600 0.290651 28734.35 −7.414.321 6.928.108 4.370 

NET_INCOME__FLAG 6.84 × 1011 5.22 × 1010 5.88 × 1013 −5.93 × 1013 3.45 × 1012 4.370 

NET_INCOME_TO_STOCKHOLDE

R_S_EQUITY 
1.043.465 1.539.014 23678.07 −2.292.681 5.938.467 4.370 

NET_INCOME_TO_TOTAL_ASSET

S 
0.503996 0.020270 3.612.443 −1.396.863 5.859.892 4.370 

NET_INTEREST_RATE_AFTER_TA

X 
6.84 × 1011 5.22 × 1010 5.88 × 1013 −5.93 × 1013 3.45 × 1012 4.370 

NET_INTEREST_RATE_BEFORE_T

AX 
1.00 × 1012 7.58 × 1010 7.04 × 1013 −6.47 × 1013 4.67 × 1012 4.370 

NET_PROFIT_PER_SHARE_BEFOR

E_TAX 
1.434.129 1.759.467 33921.11 −2.025.719 9.271.322 4.370 

NET_VALUE_PER_SHARE__A_ 7.349.136 2.406.975 296312.2 −27899.55 5.105.552 4.370 

NET_WORTH_ASSETS −2.109.519 0.483004 0.999898 −3.460.972 8.858.384 4.370 

NET_WORTH_GROWTH_RATE 0.735231 0.063306 1.822.220 −2.930.838 2.923.707 4.370 

NET_WORTH_TURNOVER_RATE_

_TIMES_ 
1.188.869 0.899266 24135.42 −12298.22 5.348.876 4.370 

OPERATING_EXPENSE_RATIO 1.465.316 0.623091 5.883.192 −3.831.337 1.639.116 4.370 

OPERATING_FUNDS_TO_LIABILI

TY 
1.301.007 0.286272 4.560.157 −5.848.174 1.124.885 4.370 

OPERATING_MARGIN 0.095220 0.083510 3.931.334 −1.712.579 9.121.754 4.370 

OPERATING_PROFIT_GROWTH_R

ATE 
5.267.447 −0.061657 21023.07 −6.269.538 3.197.557 4.370 

OPERATING_PROFIT_PER_SHARE 1.901.653 3.146.730 36390.11 −1.995.829 1.025.852 4.370 

OPERATING_PROFIT_RATIO 0.183225 0.097490 3.931.334 −1.712.579 9.103.815 4.370 

QUICK_ASSET_CURRENT_LIABIL

ITIES 
5.840.507 0.811269 4.562.098 −0.658876 8.333.158 4.370 

QUICK_ASSET_TOTAL_ASSET 0.287858 0.239216 0.998125 −0.260805 0.211717 4.370 

QUICK_ASSET_TURNOVER_RATE 3.911.958 1.039.825 4.694.564 −2.361.911 7.169.879 4.370 

QUICK_RATIO −5.843.372 0.862515 4.562.098 −54173.14 8.246.093 4.370 

REALIZED_GROSS_PROFIT_MAR

GIN 
0.288054 0.277068 6.699.502 −5.700.093 1.397.105 4.370 

ROA_A___AFTER_TAX 0.504864 0.021050 3.612.443 −1.396.863 5.859.891 4.370 
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Table 2. (Continued). 

Variable Description Mean Median Maximum Minimum Std.Dev. Observations 

ROA_B__AFTER_TAX__BEFORE_I

NTEREST__BEFORE_DEPRECIATI

ON 

0.554148 0.039896 3.612.443 −1.391.164 5.856.417 4.370 

ROA_C__BEFORE_TAX__BEFORE

_INTEREST__BEFORE_DEPRECIA

TION 

0.628795 0.017586 3.657.774 −9.336.895 5.711.430 4.370 

TAX_RATE__A_ 3.08 × 1011 2.56 × 1010 3.12 × 1013 0.000001 1.23 × 1012 4.370 

TOTAL_ASSET_TURNOVER 0.931011 0.509011 3.651.683 −1.657.770 1.451.701 4.370 

TOTAL_DEBT_TOTAL_NET_WOR

TH 
1.719.871 0.949081 3.705.741 −2.708.534 9.914.485 4.370 

TOTAL_EXPENSE_ASSETS 0.836095 0.423860 4.004.248 −0.004573 6.180.066 4.370 

TOTAL_INCOME_TOTAL_EXPENS

E 
1.446.112 1.083.125 9.754.333 −4.464.932 1.505.343 4.370 

TOTAL_RETURN_ON_ASSETS_GR

OWTH_RATE 
−1.672.307 −0.098730 3.032.513 −5.462.346 1.379.827 4.370 

TURNOVER_OF_ACCOUNTS_REC

EIVABLE 
8.970.593 6.344.989 3468875. −1.688.682 52567.19 4.370 

WORKING_CAPITAL_EQUITY 0.293659 0.337934 8.613.119 −3.095.847 5.902.774 4.370 

WORKING_CAPITAL_TO_TOTAL_

ASSETS 
−0.818243 0.136359 0.997619 −3.183.253 4.863.255 4.370 

WORKING_CAPITAL_TURNOVER

_RATE 
0.493384 0.049079 9.289.595 −1.431.938 1.618.066 4.370 

Y(Dependent) 0.148970 0 1 0 0.356100 4.370 

Note: Data Processed, Variable Dependent 69 Ratio and 1 Variable Independent biner 1and 0. 

Our visual analysis of skewness metrics reveals valuable insights. We have 

organized our dataset features into distinct groups and generated horizontal bar plots 

to illustrate the skewness values associated with each variable. This graphical 

representation serves as a practical tool for promptly identifying variables exhibiting 

significant positive or negative skewness, which may necessitate additional scrutiny 

or transformation. The integration of graphical visualization complements our 

quantitative analysis, facilitating a more intuitive comprehension of the distribution 

characteristics inherent in the data. 
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Figure 2. Data distribution characteristics. 

In the dataset, most variables exhibit significant skewness, except for two: 

‘current_assets_to_total_assets’ and ‘fixed_assets_to_assets,’ with skewness values of 

0.252856 and −0.243993, respectively. These values are within the accepted range of 

normal skewness (−0.5 to 0.5), indicating a more symmetrical distribution around the 

mean showed on Figure 2. 

1) ‘current_assets_to_total_assets’: A skewness of 0.252856 suggests that this 

feature is slightly right-skewed, but not significantly. This feature likely follows 

a distribution that is relatively symmetrical, meaning most companies in the 

dataset have a balance between current assets and total assets. This balance might 

be indicative of healthy financial practices, where companies maintain sufficient 

liquid assets relative to their size. 

2) ‘fixed_assets_to_assets’: This feature, with a skewness of −0.243993, is slightly 

left-skewed. However, since the skewness is relatively low, the distribution of 

companies’ fixed assets relative to total assets is fairly symmetrical. The slight 

left skew might indicate that there are a few companies with exceptionally high 

fixed assets compared to total assets. 

The essence of a baseline model lies in its role as a benchmark, enabling 

researchers to discern whether further tweaks lead to improvements or degradations in 

performance. Our methodology begins with the creation of various machine learning 

baseline models. These foundational models act as the bedrock from which our 

experimentation expands. Our selection of baseline models encompasses a range of 

algorithms, including Decision Trees, Support Vector Machines, Random Forests, and 

Long Short-Term Memory (LSTM) networks, among others.  

We adopt a dual dataset training approach, applying these models to datasets 

processed with Synthetic Minority Over-sampling Technique (SMOTE) and Random 

Under Sampling (RUS), respectively. Each baseline model undergoes a 

comprehensive evaluation process on both the SMOTE and RUS datasets. This 

involves not only training the models but also a real-time assessment of their 

performance. Post-training, we diligently record the results in a structured log, which 

is pivotal for monitoring and comparing the performance metrics of each model, with 

a keen focus on critical measures such as the F1 score and training duration. 

Following the baseline assessments, we delve into the intricate phase of 

hyperparameter tuning. This process is exhaustive and aimed at discovering the 

optimal configurations to elevate the model’s efficacy. Through a systematic 

exploration of the hyperparameter space, we seek that elusive combination that 

promises to yield superior performance, thereby fine-tuning our models to approach 
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their theoretical best. In order to maximize the performance of our models, we engage 

in a thorough process of hyperparameter tuning. The refinement of machine learning 

models through hyperparameter tuning is a nuanced process that significantly 

enhances model performance.  

Our research delves into this domain by initializing an LSTM model, a variant of 

Recurrent Neural Networks renowned for their proficiency with sequential data. The 

model architecture includes an LSTM layer with 50 units and ‘relu’ activation, along 

with a Dense output layer with a ‘sigmoid’ activation function, aligning with the needs 

of binary classification. Model evaluation extends beyond basic accuracy, 

incorporating metrics like ROC-AUC, precision, recall, and the F1 score. Evaluations 

are executed on both training and test sets to ensure model robustness and 

generalizability. ROC curves, Precision-Recall curves, and confusion matrices offer 

deeper insight into model accuracy and the balance between different error types. 

The classification reports generated post-evaluation detail precision, recall, and 

F1-scores for each class, saved in HTML format and uploaded to the Neptune platform 

for enhanced accessibility and longitudinal tracking. The results of hyperparameter 

experimentation are meticulously recorded, converting complex data into an 

interpretable format, highlighting the most effective hyperparameters identified. We 

unify these results in a comprehensive report via Neptune, ensuring that the latest 

metrics from retuned models are accurately reflected, replacing outdated data. 

Our investigation also encompasses the measurement of feature importance 

across various models. Inherent attributes in models like Random Forest and XGBoost 

provide immediate insights, while for others, such as linear-kernel SVCs, we derive 

importance through alternative methods. Visual representations like bar plots are 

utilized for clearer communication of these importances. For an in-depth 

understanding of predictions, particularly in complex models like LSTM, we utilize 

SHapley Additive exPlanations (SHAP) values. These offer a transparent explanation 

of each feature’s influence on the predictions. In addition, permutation importance is 

applied to determine the significance of features within LSTM networks, overcoming 

the challenge posed by their unique input shape requirements. 

In models like Logistic Regression and Decision Trees, feature importance is 

assessed through the absolute values of coefficients and intrinsic metrics, respectively, 

with visualizations aiding in the comprehensive interpretation of these importances. 

This multifaceted approach to hyperparameter tuning and feature importance 

evaluation ensures the development of highly tuned and interpretable machine 

learning models. In the rigorous analysis of hyperparameter tuning across various 

machine learning models, the XGBClassifier demonstrates notable efficacy when 

integrated with Synthetic Minority Over-sampling Technique (SMOTE), achieving an 

approximate accuracy of 91.88% and an AUC-ROC score of around 87.61%. This 

level of performance, characterized by a harmonious balance between precision and 

recall, indicates its strong capacity for effectively classifying both classes within the 

dataset. 

The RandomForest Classifier, applied in conjunction with both SMOTE and 

Random Under Sampling (RUS), also exhibits competitive performance. It maintains 

high accuracy and AUC-ROC scores, with a notable distinction: while the accuracy of 

RandomForest with RUS is marginally lower than its SMOTE counterpart, its AUC-
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ROC is marginally higher. This suggests that the RandomForest with RUS may excel 

in the ranking of predictions, a crucial factor in certain decision-making contexts. 

Sequential models and Support Vector Classifier (SVC), consistent with earlier 

performance on the dataset, present lower metrics in accuracy, AUC-ROC, and other 

critical measures in comparison to ensemble models such as XGBoost and 

RandomForest. The protracted training times of these models further diminish their 

efficiency, indicating potential constraints in their application where time is a 

significant factor. 

Feature importance measurement 

The elucidation of feature importance within machine learning models is a pivotal 

component for the interpretation of model predictions, particularly after rigorous 

hyperparameter tuning. This is exemplified in our analysis of the dataset, where 

XGBClassifier and RandomForestClassifier have demonstrated noteworthy 

performance, especially when paired with Synthetic Minority Over-sampling 

Technique (SMOTE) in Table 3. The ascendancy of these models is largely 

attributable to a comprehensive set of features that enable precise predictions 

regarding financial distress. 

Table 3. Feature selection (RUS). 

No. Decision Tree XGBoost Random Forest LSTM SVM 

1 NA Operating Profit per Share Operating Margin Fixed Assets to Assets NA 

2 NA Operating Margin Operating Profit per Share Current Assets/Total Assets NA 

3 NA Income to Total Expenses Income to Total Expenses Income to Total Expenses NA 

4 NA Operating Profit Ratio Net Income Flag Operating Margin NA 

5 NA Operating Profit Growth Rate Operating Profit Ratio Gross Profit to Sales NA 

An in-depth examination of feature importance within the XGBoost model 

reveals ‘operating_profit_per_share’ as the most significant feature, with a preeminent 

importance value. This prominence signifies the variable’s critical role in shaping the 

predictive model’s decisions, thereby suggesting that operating profit per share is a 

central determinant in assessing financial health. In a similar vein, other features such 

as ‘operating_margin’ and ‘interest_coverage’ also emerge as key influencers within 

the XGBoost model, as evidenced by their notable importance values. These variables’ 

substantial impact on the model’s decision-making process underlines their relevance 

in predicting financial distress. Conversely, specific sectors like ‘Consumer_Cyclical’ 

and ‘Technology’ are positioned lower on the importance chart, indicating their 

relatively marginal contribution to the model’s predictions. This disparity in feature 

importance highlights the varying degrees of influence that different variables possess 

in the assessment of financial distress in Table 4. 
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Table 4. Feature selection (SMOTE). 

No. Decision Tree XGBoost Random Forest LSTM SVM 

1 NA Operating Profit per Share Operating Margin Fixed Assets to Assets NA 

2 NA Operating Margin Operating Profit per Share Income to Total Expenses NA 

3 NA Interest Coverage Ratio Income to Total Expense Current Assets/Total Assets NA 

4 NA Income to Total Expenses Tax Interest Depreciation Operating Profit per Share NA 

5 NA Operating Profit Ratio Net Income Flag Realized gross profit margin NA 

Turning our attention to the RandomForest model, ‘operating_margin’ stands out 

as the paramount feature, suggesting that this metric is of utmost significance in the 

model’s predictive accuracy. Furthermore, variables such as 

‘income_to_total_expense’ and ‘interest_coverage’ carry considerable weight in the 

model’s determinations, asserting themselves as critical components for prediction. 

However, akin to the observations in the XGBoost model, the RandomForest model 

also assigns lower importance to certain features, including specific year labels and 

sector indicators. This indicates a consensus between the two models regarding the 

lesser predictive power of these variables. 

In summation, the analysis of feature importance within XGBClassifier and 

RandomForestClassifier models provides invaluable insights into the variables that are 

most indicative of financial distress. By recognizing the features with the most 

significant impact on predictions, we can not only improve our understanding of the 

models’ internal mechanisms but also refine the selection of variables for future model 

training, ensuring that the predictive models we develop are both interpretable and 

reliable in Table 5. 

Table 5. Model comparison. 

Parameter 
Random Forest XGBoost LSTM SVM 

RUS SMOTE RUS SMOTE RUS SMOTE RUS SMOTE 

Accuracy 0.957 0.974 0.966 0.989 0.851 0.923 0.87 0.903 

AUC ROC Train 0.997 0.995 0.989 0.999 0.977 0.999 0.953 0.976 

AUC ROC Test 0.968 0.981 0.977 0.981 0.859 0.85 0.866 0.835 

AUC ROC Prob Train 1 1 1 1 0.996 1 0.981 0.989 

AUC ROC Prob Test 0.994 0.997 0.997 0.999 0.899 0.915 0.927 0.92 

AUC Precision Recall 0.962 0.978 0.982 0.994 0.619 0.751 0.656 0.68 

Precision 0.889 0.926 0.908 0.975 0.737 0.848 0.756 0.803 

F1 Score 0.922 0.951 0.938 0.978 0.771 0.849 0.791 0.818 

Recall 0.968 0.981 0.977 0.981 0.859 0.85 0.866 0.835 

Source: data processed. 

The outcomes of the comparative study reveal that the integration of XGBoost 

with the Synthetic Minority Over-sampling Technique (SMOTE) outshines other 

algorithmic combinations in predicting financial distress, as evidenced by an 

exemplary accuracy of 0.989. This finding underscores the effectiveness of XGBoost 

when coupled with an advanced sampling method that counters class imbalance, 

thereby enhancing its predictive precision. In stark contrast, the Long Short-Term 
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Memory (LSTM) network, in alliance with Random Under-Sampling (RUS), registers 

the lowest accuracy, suggesting its limited utility in this specific predictive task. 

When examining the Area Under the Receiver Operating Characteristic (AUC 

ROC) across both training and testing phases, all models display commendable scores 

on training data, with certain algorithms achieving the pinnacle of performance with 

scores of 1.0. This phenomenon highlights the models’ capabilities in differentiating 

between classes during the learning process. In the testing phase, the models—

XGBoost and Random Forest, both paired with RUS and SMOTE—showcase an 

exceptional ability to generalize, as reflected in their high AUC ROC scores exceeding 

0.980. 

All Models Hyperparameter Tuning Results XGBClassifier with SMOTE 

appears to be the most effective model, showing the highest accuracy (approx. 98.86%) 

and AUC-ROC test score (approx. 98.06%). Its precision, recall, and F1 score are also 

impressive, indicating a well-balanced model in terms of identifying both classes of 

the target variable. RandomForestClassifier with SMOTE also performs well but trails 

slightly in accuracy and AUC-ROC test score compared to XGBClassifier. However, 

it displays a slightly higher AUC for precision-recall, which might make it more 

suitable if the cost of false positives is high. 

Models trained with RUS (Random Under-Sampling) generally have lower 

accuracy than their SMOTE counterparts, which indicates that SMOTE might be more 

effective for this dataset in handling class imbalance. Sequential models (presumably 

neural networks) have significantly longer training times and lower performance 

metrics across the board, suggesting that, for this dataset, traditional machine learning 

models outperform them. SVC (Support Vector Classifier) with both SMOTE and 

RUS performs the poorest among the tried models in terms of accuracy and AUC-

ROC. The long training time with SMOTE and less satisfactory scores might make it 

less desirable for this specific problem. 

Feature Importance Measurement Following the results of hyperparameter tuning, 

we’ve discerned the significant performance of XGBClassifier and 

RandomForestClassifier models, particularly when SMOTE is utilized. These models’ 

superior efficacy on the “Ratio” dataset underscores the vitality of an extensive feature 

set for precise financial distress predictions. As we further delve into the intricacies of 

these models, understanding feature importance becomes paramount. This not only 

sheds light on the variables steering the models’ decisions but also gives a clearer 

picture of the key financial metrics influencing the probability of financial distress. 

Here’s a detailed assessment of feature importance across the two datasets: 

 

Figure 3. Feature importance XGBoost with SMOTE. 
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Figure 4. Feature importance Random Forest with SMOTE. 

XGBoost: 

1) The most significant feature in the XGBoost model in Figures 3 and 4 seems to 

be ‘operating_profit_per_share’, with a dominant importance value. This 

suggests that operating profit per share is a major determinant in the prediction 

process. 

2) Following closely are features like ‘operating_margin’ and ‘interest_coverage’, 

both of which have noticeable importance values, indicating their significance in 

the model’s decision-making. 

3) Features towards the end of the chart, such as ‘Consumer_Cyclical’ and 

‘Technology’ sectors, have a lower importance value, suggesting that they have 

a minor role in the prediction process. 

Random Forest: 

1) In the Random Forest model, ‘operating_margin’ tops the chart, indicating it’s 

the most influential feature. 

2) Features like ‘income_to_total_expense’ and ‘interest_coverage’ are also of high 

importance, making them crucial predictors for the model. 

3) Much like the XGBoost model, some features towards the bottom, such as 

specific year labels and sector indicators, have reduced importance in the 

Random Forest’s prediction process. 

The AUC ROC Probability metrics, which gauge the models’ discriminative 

prowess, resonate with the aforementioned AUC ROC results, presenting XGBoost 

and Random Forest as the superior classifiers. Furthermore, within the purview of 

imbalanced datasets, the AUC Precision-Recall emerges as a pivotal metric. Herein, 

XGBoost augmented with SMOTE achieves a remarkable score of 0.994, affirming 

its efficacy in distinguishing the minority class amidst a predominant majority. 

Conversely, LSTM generally lags in this respect, suggesting a potential misalignment 

with the data’s imbalanced nature. 

A granular analysis of Precision and Recall places XGBoost with SMOTE at the 

forefront once more, with the highest precision indicating a substantial rate of true 

positive identifications. Equally impressive is its recall, on par with Random Forest 

with SMOTE, both capturing the lion’s share of actual positive cases. The F1 Score, 

which harmonizes precision and recall, further cements the standing of XGBoost with 

SMOTE as the forerunner, with a score of 0.978, symbolizing an optimal balance 

between identifying true positives and the entirety of positive instances. 

The discourse on these results illuminates the superior performance of tree-based 

methods, especially XGBoost in combination with SMOTE, across a multitude of 

evaluative metrics. The success of these methods can be ascribed to their intrinsic 
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capacity to unravel complex, non-linear relationships inherent in financial data. The 

underperformance of LSTM could potentially be attributed to its intricate structure 

and a propensity for overfitting, which may not align with non-temporal data patterns. 

The Support Vector Machine (SVM), despite its resilience to outliers and adaptability 

in high-dimensional spaces, does not exhibit competitive edge in this particular 

predictive modeling challenge. This study, therefore, posits the XGBoost algorithm, 

especially when applied with SMOTE, as a robust predictive tool in the domain of 

financial distress forecasting.  

There are several studies that try to develop prediction models to predict the level 

of company distress such as in the research of Altman et al (2022) they examined 

MSME companies in Croatia to create a prediction model for default by combining a 

number of variables such as a number of traditional financial ratios, MSME company 

payment behavior variables. The prediction model is getting better with the addition 

of several additional variables such as management changes, employee changes and 

tenure of employees. Testing with the help of Least Absolute Shrinkage and Selection 

Operator (LASSO) and then continued with the use of machine learning. Barboza et 

al. (2017) found that the Random Forest model is better for predicting distress than the 

traditional prediction model in a sample of companies in North America. There are 

several studies that use a number of variables to strengthen in modeling financial 

distress can be read in the research of Carton and Hofer (2006), Cano et al. (2015), 

Tsai (2014), Thi Vu et al. (2019). 

The use of machine learning to create models to predict the level of bankruptcy 

of companies in the digital era, researchers are competing to create models by adding 

a number of variables from various sources from previous research and adding new 

variables to strengthen research results indicated by an increase in the accuracy of 

predictions on the models created. Modeling to predict bankruptcy/distress can help 

external and internal parties. Internal parties such as company management in making 

future company strategies. Internal parties such as investors, creditors, and regulators, 

investors consider before investing in a company by calculating from existing models 

and finding results with high accuracy.  

From these results, investors determine whether the company matches the criteria 

of investors. Furthermore, the creditor where this party is a company or bank that will 

channel loan funds to the company, it is very necessary to have very accurate 

prediction results to ensure that the company that will be channeled loan funds will be 

able to pay its debt in the future, this aims to minimize the level of risk of default. The 

last is the regulator where this party is responsible for providing input to companies 

that are distressed or threatened with bankruptcy, if the company cannot get out of the 

bankruptcy or distress zone then the regulator can revoke the business license of the 

company. Cultrera (2020) explains that MSMEs need assistance such as fragmentation 

procedures from regulators to get out of the financial crisis so that companies can 

operate to strengthen the economy in a country. 

There is a difference in Citterio (2024) research in that banking sector institutions 

were the first targets to have an impact during the crisis in 2008-2009, so there is a 

need for early warning for banks to prevent the threat of crisis early. Therefore, it is 

necessary for banks to pay attention to non-financial variables such as ESG 

(Environmental, Social and Governance) variables to create a financial distress model 



Journal of Infrastructure, Policy and Development 2024, 8(8), 4972.  

25 

for banking institutions. The use of non-financial variables was also suggested by 

Huang et al. (2024) for input such as social responsibility reports, then to make 

predictions, researchers usually use binary codes 1 and 0 so that in the future they can 

be more detailed, such as medium, medium and high for the percentage of bankruptcy. 

5. Conclusion 

This study has thoroughly examined the use of different machine learning models 

to predict financial distress in Indonesian companies by utilizing the Financial Ratio 

dataset collected from the Indonesia Stock Exchange (IDX), which includes financial 

indicators from various companies across multiple industries spanning a decade. 

This study has rigorously investigated the application of various machine 

learning models to predict financial distress using the Financial Ratio dataset, 

encompassing a decade’s worth of financial indicators from a diversity of companies. 

The research has traversed through several phases, including preprocessing, 

exploratory analysis, baseline model establishment, hyperparameter tuning, and 

evaluation of feature importance, culminating in the nuanced understanding and 

prediction of financial distress. The study’s findings from the hyperparameter tuning 

and feature importance measurements highlighted the XGBClassifier and 

RandomForestClassifier as standout performers, particularly when integrated with 

SMOTE, which improved the models’ accuracy, AUC-ROC, precision, and recall. The 

feature importance analysis underscored the significance of certain financial indicators, 

such as interest coverage ratio and operating margin ratio, which were instrumental in 

the models’ prediction capabilities. 

ROC and Precision-Recall curves provided a deeper understanding of the models’ 

diagnostic abilities, revealing the ensemble methods’ superiority in balancing 

sensitivity and specificity. In conclusion, this study affirms the effectiveness of 

ensemble methods in financial distress prediction, with XGBClassifier and Random 

ForestClassifier offering robust and reliable performance. The comprehensive 

approach to model selection, preprocessing, and hyperparameter tuning has resulted 

in models that are not only highly accurate but also have the potential to generalize 

across different datasets. The findings of this study contribute significantly to the body 

of knowledge in financial analytics and offer a framework for developing predictive 

models that can be tailored to various financial contexts. The insights gained from 

feature importance and model evaluation serve as a guide for future research, 

emphasizing the critical role of precise feature selection and model tuning in the 

pursuit of predictive excellence.  

The limitation in this study is the incorporation of all sectors to be studied so that 

the results can be said to be biased, for further research, it is possible to use the model 

of the research variables to be tested again on a similar group of companies in order 

to get more precise results and in accordance with the criteria of each sector. 
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