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Abstract: We studied the role of industry-academic collaboration (IAC) in the enhancement

of educational opportunities and outcomes under the digital driven Industry 4.0 using

research and development, the patenting of products/knowledge, curriculum development,

and artificial intelligence as proxies for IAC. Relevant conceptual, theoretical, and empirical

literature were reviewed to provide a background for this research. The investigator used

mainly principal (primary) data from a sample of 230 respondents. The primary statistics

were acquired through a questionnaire. The statistics were evaluated using the structural

equation model (SEM) and Stata version 13.0 as the statistical software. The findings indicate

that the direct total effect of Artificial intelligence (Aint) on educational opportunities

(EduOp) is substantial (Coef. 0.2519916) and statistically significant (p < 0.05), implying

that changes in Aint have a pronounced influence on EduOp. Additionally, considering the

indirect effects through intermediate variables, Research and Development (Res_dev) and

Product Patenting (Patenting) play crucial roles, exhibiting significant indirect effects on

EduOp. Res_dev exhibits a negative indirect effect (Coef = −0.009969, p = 0.000) suggesting

that increased research and development may dampen the impact of Aint on EduOp against a

priori expectation while Patenting has a positive indirect effect (Coef = 0.146621, p = 0.000),

indicating that innovation, as reflected by patenting, amplifies the effect of Aint on EduOp.

Notably, Curriculum development (Curr_dev) demonstrates a remarkable positive indirect

effect (Coef = 0.8079605, p = 0.000) underscoring the strong role of current development

activities in enhancing the influence of Aint on EduOp. The study contributes to knowledge

on the effective deployment of artificial intelligence, which has been shown to enhance

educational opportunities and outcomes under the digital driven Industry 4.0 in the study area.

Keywords: Industry 4.0; industry-academia collaboration; artificial intelligence; patent

development; curriculum; research and development; SEM

1. Introduction

Collaboration frameworks (Perkmann, Tartari et al., 2012) have been developed

in response to modifications of the working environments of different corporate

institutions (Cunningham and Link, 2014). Industries have always looked to

institutions of higher education as possible sources of new ideas and knowledge in

an effort to expand their knowledge base and to improve their ability to provide fresh

solutions to the complex problems confronting society (Perkmann, Neely et al.,

2011). According to Perkmann, Neely et al. (2011), in order to achieve their goals of

knowledge and innovation, a rising number of organizations are collaborating with
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academic institutions. Academics and policymakers are now more interested than 

ever in the effect of university study on corporate innovation. 

Universities have the potential to collaborate with businesses in a mutually 

beneficial manner, thereby enhancing educational possibilities and value. This can be 

achieved through the creation of improved resources for higher and advanced 

education, facilitating the exchange of innovative ideas and technology transfer, and 

cultivating an environment conducive to continuous learning. There exists potential 

for enhanced collaboration between higher education institutions and industries, with 

the aim of collectively attaining shared objectives and ensuring that graduates 

possess the necessary skills and knowledge to successfully integrate into the labor 

market and make meaningful contributions to global economies (Weagle et al., 

2019). This is one of the most effective strategies for technological development in 

developed or industrialized countries and is a useful instrument for the effective and 

efficient application of science and technology to solve social issues. There are 

several ways in which these collaborations can take place, including through 

cooperative research initiatives, joint curriculum creation, and joint product 

patenting (product collaborations) (Lucietto et al., 2021). Schools and businesses can 

work together to increase the eminence of education and design training programs by 

means of collaborating. In an increasingly competitive global market, success 

requires a workforce that can keep up with and learn from new markets and 

technologies. Quality educational programs are clearly essential to the sustainability 

of industrialization. Accordingly, there has been a shift in thinking regarding 

education and industry partnership,which is now gathering steam (Weagle et al., 

2019). 

Mukherji and Silberman (2021) posit that the phenomenon of industry-

academic collaboration, commonly denoted as industry-academia collaboration (IAC) 

or university-industry collaboration (UIC), entails a mutually beneficial alliance 

between academic establishments (such as universities and research institutions) and 

industrial entities (including companies, businesses, and industries). The 

establishment of partnerships between universities and industries, frequently 

facilitated by government action, is widely recognized as a crucial factor in 

enhancing regional and national innovation systems (O’Dwyer et al., 2023). The 

purpose of this partnership is to leverage the respective experience, resources, and 

capacities of the involved parties in order to promote the advancement of research, 

innovation, and societal improvement in a mutually beneficial manner. Fischer et al. 

(2019) argue that the establishment of partnerships between industry and academics 

serves as a means to foster the flow of knowledge and expertise. Academic 

institutions play a vital role in generating theoretical knowledge and conducting 

research, whereas industry offer valuable practical insights and present real-world 

issues. Collaborative endeavors encompass cooperative research initiatives aimed at 

resolving industry-specific challenges, propelling technological advancements, and 

nurturing the cultivation of innovative ideas (Alexander et al., 2020). Academic 

research frequently generates novel technologies that are subsequently 

commercialized through collaborative efforts, effectively bridging the gap between 

academia and practical market applications. The partnership aims to synchronize 

educational curriculum with the requirements of the industry, so augmenting the 
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competencies of graduates and facilitating their seamless integration into the labor 

market (O’Dwyer et al., 2023). Moreover, the institution provides opportunities for 

internships, training programs, and workshops, hereby facilitating the exposure of 

students and staff members to real-world industrial experiences. 

The percentage of industry-academia collaboration in China has been increasing 

in recent years. In 2019, the Chinese government issued a policy document that 

called for increased collaboration between industry and academia, and set a goal of 

doubling the number of industry-academia collaboration projects by 2025 (Ministry 

of Science and Technology China, 2020). According to a report by the Chinese 

Ministry of Science and Technology, the number of industry-academia collaboration 

projects in China increased from 180,000 in 2015 to 320,000 in 2020, representing a 

quantum leap. The total funding for industry-academia collaboration projects in 

China also increased from 100 billion Yuan in 2015 to 300 billion Yuan in 2020 as 

shown in Figure 1. The Chinese government is expected to continue to promote 

industry-academia collaboration in the coming years. The government has identified 

a number of key areas for industry-academia collaboration, including artificial 

intelligence, big data, and semiconductors. 

 

Figure 1. Percentage Increase in industry-academia collaboration. 

Industry-academia collaboration in China has been steadily increasing in recent 

years, fueled by government policies, initiatives, and a growing emphasis on 

innovation-driven development. China’s “Double First Class” initiative, which aims 

to cultivate world-class universities and disciplines, has encouraged closer ties 

between academia and industry. The government has encouraged research 

institutions and universities to work closely with industries to drive innovation and 

technology transfer (Ministry of Science and Technology China, 2020). Particularly, 

special economic zones and tech hubs in cities like Beijing, Shanghai, Shenzhen, and 

Hangzhou have witnessed a surge in collaboration between universities and tech 

companies. The establishment of innovation centers, research parks, and incubators 

has created conducive environments for collaboration, allowing academia to 

contribute theoretical knowledge and research expertise while industries provide 

practical application and market-driven insights. Moreover, programs like the 

“Industry-Academia Cooperation Project” by the Ministry of Education and various 

research grants have further incentivized collaboration between academia and 

industry (Ministry of Science and Technology China, 2020). 
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At the heart of this collaboration is the infusion of artificial intelligence in IAC. 

Artificial intelligence (AI) is the ability of a machine to simulate human intelligence. 

AI systems can learn from data, identify patterns, and make decisions in order to 

solve problems. AI is used in a wide range of applications. Artificial intelligence (AI) 

has emerged as a transformative force within the realm of education Murphy (2020), 

finding widespread applications primarily within educational institutions in a 

multitude of forms (L Chen et al., 2020). The inception of AI in education can be 

traced back to its initial manifestations through computer and computer-related 

technologies. Over time, its presence expanded into web-based and online intelligent 

education systems (Murphy, 2020). Subsequently, AI further evolved to encompass 

embedded computer systems, humanoid robots, and web-based chatbots, enabling 

diverse modalities for executing the responsibilities and functions of instructors. The 

integration of AI platforms has significantly streamlined administrative tasks for 

educators, leading to enhanced effectiveness and efficiency in their roles. Moreover, 

AI has proven instrumental in curriculum development and research activities 

(Estevez et al., 2019). By leveraging machine learning and adaptability, educational 

systems can tailor curriculum and content to suit the unique needs of individual 

students. A distinctive feature of AI-enabled education is its capacity for 

customization and personalization. AI algorithms analyze data and patterns, allowing 

for the creation of personalized learning paths for students. This tailored approach 

contributes to heightened engagement and retention rates among students, thereby 

enriching the overall learning experience and augmenting the quality of education 

provided (L Chen et al., 2020). In essence, AI has evolved to become a vital enabler 

within the educational landscape, profoundly impacting teaching methodologies, 

administrative processes, and student outcomes. As technology continues to advance 

and AI capabilities become increasingly sophisticated, the educational sector stands 

to benefit even more, with the potential to revolutionize the way knowledge is 

imparted, acquired, and applied in the pursuit of academic excellence Global 

Development of AI-Based Education. 

A successful university–industry collaboration is led by academic management 

(Rahm et al., 2000; Edmondson et al., 2012); an emphasis on long-term calculated 

relationships (Calder, 2007); and a mutual vision and approach to the 

accomplishment of a goal. All of these elements are crucial to the success of a 

relationship with industry. In China, science and technology (S&T) now accounts for 

56.4 percent of economic growth, up from 56.4 percent in 2016 and 59.5 percent in 

2019; this represents an increase from 39.7 percent in 2003. Theratio of enterprise 

R&D spending to national R&D spending increased from 62.37 percent to 77.46 

percent over the same time period (Zheng and Wang, 2021). In China, company 

innovation has become a driving force for national innovation. China’s global 

competitiveness may be increased (J Hong et al., 2015), and the “average-earning 

trap” can be avoided (Liu et al., 2017) by enhancing the innovative capacity of 

Chinese businesses. 

Collaboration is common in many different fields, as evidenced by several 

authors. China is a massive economic powerhouse in Asia, and its influence on 

global infrastructural development and technological innovation is immense. A 

constructive industry-academic partnership is vital for this to be achievable (Agrawal, 
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2001). Industry–university collaboration is required for research and development 

(Scandura, 2016), product patenting and licensing (Luan et al., 2010; Leydesdorff, 

2004; Rosell and Agrawal, 2009; Dill, 1995; Balconi and Laboranti, 2006), 

curriculum development, and delivery and evaluation (Guimón, 2013; Deborah, 

2011). In line with Shewakena Tessema (2017), we believe that collaboration in 

curriculum development and delivery would ensure that what is taught in universities 

is pertinent to the goals of the industry. Numerous Chinese research institutes have 

engaged in significant market-oriented operations since the late 1990s. Research 

institutes have regularly worked with businesses on a wide range of innovative 

projects due to their excellent R&D skills and increased market sensitivity (Liu et al., 

2017). In contrast, since 2005, as a result of the most recent wave of science and 

technology (S&T) reforms, in addition to teaching and research as a “third mission”, 

Chinese universities are starting to collaborate with businesses (W Hong, 2008). 

To improve educational prospects for students, there has been a tremendous 

push for collaboration between academia and industry over the past decade (Ziegler, 

1983). The importance of providing students with suitable education, particularly at 

the undergraduate level, by universities has long been recognized (Eli, 1986). The 

“industry/academic gap” has been the subject of a slew of sessions at conferences, 

frequently characterized by a lack of comprehension of the goals and approaches of 

each side (Judy, 1986). Successful relationships are driven by individuals who have a 

thorough understanding of both the academic and corporate worlds (Edmondson et 

al., 2012). When industry and academics collaborate, qualified workers who are 

prepared with the latest technologies to answer society’s concerns are offered to 

industry. One of the numerous educational benefits of industry-academia 

partnerships is the opportunity to learn about the process of innovation. It is 

challenging to establish and use sets of indicators to evaluate industry-academia 

collaborations, given the goal of these collaborations is to produce new results. 

Traditional measures cannot capture the intricacies and complexities of innovation. 

A wide range of indications must be used instead (Smith, 2006). 

Through a computational process, artificial intelligence aims to explain all 

characteristics associated with human intelligence. It is able to interact with its 

surroundings through the use of sensors and can make decisions autonomously 

(Aishath et al., 2019). Simply said, AI is a type of manufactured intelligence. 

Intelligence is a distinguishable individual attribute or quality that can be 

distinguished from all other individual properties. The behaviors of artificial 

intelligence are also observable in the performance of specific tasks. The fourth 

industrial revolution, or “Industry 4.0”, is propelled by innovative technology, 

particularly improved information and communication technologies. 

ICT stands for Information and Communication Technology. It represents a 

broad term that encompasses all technologies used to manage, process, transmit, and 

exchange information in various forms including data, text, sound, images, and video 

(UNESCO, 2019). The core objective of ICT is to enhance communication and 

facilitate efficient storage, retrieval, processing, and usage of information. Almost 

every level of industrial operation is affected by advanced ICT. ICT is a significant 

factor that enhances the responsiveness and effectiveness of production and supply 

chains (Apiyo and Kiarie, 2018). The urge to delegate human duties and tasks in 
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various settings to machines has led to the rise of smart environments as the world 

continues to enter the digital era. The educational context is one of these 

environments. We hypothesize that the adoption of artificial intelligence will be a 

prerequisite for achieving the desired level of educational opportunities. 

China is one of the world’s leading centers of artificial intelligence (AI) 

development, with its largest technology companies driving R&D. Its large populace 

and varied industrial composition can generate enormous amounts of data and create 

a vast market (Manyika et al., 2017). China’s future economic growth could be 

contingent on the extensive adoption of artificial intelligence (AI) technologies in 

R&D, product patenting, and curriculum development. The application of AI in 

industry-academia collaborations has enormous economic potential for China due to 

its rapidly evolving nature. The country will need to pay close attention to 

developing its potential for innovation. For instance, despite the fact that Chinese 

scholars have written and published more research articles on AI than American 

researchers, their works have not had the same influence as those authored by 

American or British authors. Furthermore, a comparable AI environment to that of 

the United States, which has generated a lot more AI startup businesses than China, 

is also lacking in China (Manyika et al., 2017). The American environment is vast, 

creative, and diverse (including study institutions and further education colleges as 

well as private corporations). It incorporates all of Silicon Valley’s well-known 

strengths and has numerous advantages that are uncommon elsewhere (Biba, 2016). 

In addition, current expansion of quantitative research is occurring (for example, 

Kim et al., 2019; Belitski et al., 2019). It is still necessary to do quantitative research, 

particularly in China, to determine the role of intermediaries (such as artificial 

intelligence) in the connection between academic-industrial collaboration and 

industrial innovation. 

As an outcome of the rapid transformation of the technical growth of 

industrialized nations, China, which is unquestionably the Asian superpower in every 

field, must find a more efficient and expedient means of improving educational 

prospects. To reach the current level of industry-academia collaboration in the USA, 

a more effective method of enhancing educational outcomes is required in China. 

The adoption of artificial intelligence enables the university and industry to make 

great decisions, hence improving the speed and accuracy of strategic decision-

making processes, which will improve basic business operations and enhance the 

product and services quality. 

The research problem addressed in this study revolves around investigating the 

transformative potential of industry–academia collaboration in the context of 

enhancing educational opportunities and outcomes amidst the pervasive digital 

landscape of Industry 4.0. The study recognizes the fundamental shift brought about 

by Industry 4.0, driven by advanced digital technologies and artificial intelligence 

(AI), and aims to comprehend how the synergy between academia and industry can 

be harnessed to optimize educational prospects. It seeks to elucidate the mediating 

role of AI, acting as a catalyst, in mediating the relationship between industry–

academia collaboration and educational outcomes. This research problem 

encapsulates the pressing need to explore innovative strategies that align educational 

systems with the rapidly evolving demands of the digital era, ultimately fostering a 
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symbiotic relationship between academia and industry to nurture a skilled and 

adaptable workforce for the future. The investigation is grounded in the urgency to 

bridge the existing knowledge gap and identify effective pathways to leverage this 

collaboration, shaping a dynamic educational landscape within the ambit of Industry 

4.0. The broad objective of the study is to examine the role of industry–academia 

collaboration in enhancing educational opportunities and outcomes under the 

digitally driven Industry 4.0. The study was guided by the following research 

questions: 

1) What is the effect of research and development on educational opportunities 

and outcomes under the digital driven Industry 4.0 in China. 

2) What is the effect of patenting of products/knowledge on educational 

opportunities and outcomes under the digital driven Industry 4.0 in China. 

3) What is the effect of curriculum development on educational opportunities and 

outcomes under the digital driven Industry 4.0 in China. 

4) What is the mediating role played of artificial intelligence on the relationship 

between industry–academia collaboration and educational opportunities and 

outcomes under the digital driven Industry 4.0 in China. 

2. Literature review and theory 

2.1. Industry academia collaboration (IAC) 

Many researchers have examined the role of academic–industry collaboration in 

various contexts, for example, in the United Kingdom (D’Este and Patel, 2007), the 

United States (Ponomariov, 2013), Japan (Motohashi and Muramatsu, 2012), and 

others (D’Este and Patel, 2007). IAC articles, in spite of the apparent diversity of the 

study contexts, can be divided into three groups: IAC drivers, IAC patterns, and IAC 

outputs. This study focused on the output dimension of academic–industry 

collaboration. Alliances, joint ventures, networks, and consortia are the most 

common types of industry-academia cooperation (Ankrah and Al-Tabbaa, 2015). 

There are a variety of ways in which the participating organizations are linked. 

Organizations can often jointly develop initiatives that focus on certain scientific or 

technological topics through various kinds of partnership. It is also possible that, 

under some circumstances, long-term collaborations are developed rather than being 

a requirement to solve a technical challenge or produce commercial items rapidly. 

Companies are looking for ways to increase their social capital as well as their 

capacity for the generation of new ideas through long-term collaborations. 

University-industry partnerships and collaborations may be widespread; however 

there may be variations between industries, according to Perkmann and Walsh 

(2007). Open and networked innovation activities have demonstrated that real 

partnerships and collaborations—rather than merely abstract connections—play a 

stronger role in fostering innovative activities and the potential of participating 

organizations. It has been pointed out that corporations involved in these 

relationships are looking for enhanced innovative capabilities, rather than rapid, 

commercialized, tangible results. Large corporations are no longer the only ones 

interested in collaborating with universities. Collaboration networks are being 

formed by large and small organizations in order to further their creative efforts 
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aimed at benefiting both markets and customers. The Triple Helix model is a 

common way for public institutions to support university and industry collaborations. 

It has been found to be a critical component in the development of regions and 

countries around the world (Cai and Etzkowitz, 2020; Guimón, 2013; Dooley and 

Kirk, 2007). 

2.2. Collaboration in the Chinese context 

The China growth model is based on the switch from massive industrial 

investment to development encouraged by a creative society (Naughton and Tsai, 

2015). One important strategy for generating this kind of inventive growth has been 

suggested: science and technology. The enthusiasm of prominent Chinese 

universities for university-industry collaboration (UIC) appears to be much lower 

than that of their European and American counterparts, according to a similar 

analysis conducted by Li et al. (2020). On average, each of the top US colleges 

publishes twice as many UIC publications as China’s equivalent top-ranked 

institutions. Tsinghua University, a Chinese university, produced 1581 papers 

between 2013 and 2016, which is comparable to the University of Minnesota Twin 

Cities, which was ranked 15th among 175 American universities in the 2018 Leiden 

Ranking. Tsinghua University, ranked number one in China, is about on par with 

Freie Universität Berlin, ranked 10th in the European Union. According to 

Argyropoulou et al. (2019), there is no evidence to support this conclusion. They 

claim that there a paradox of innovation is occurring in China. These authors argue 

that while China’s scientific outputs and inputs are of the highest quality, 

productivity gains are not as strong. As a result, China ranks low in terms of its 

industry–academic collaboration when compared to other countries due to the lack of 

collaboration and publication in scholarly publications. 

Collaboration between industry and academics is capital-intensive. When 

government funding is insufficient, participation in industry-academia partnerships is 

poor. For instance, the UK government’s Higher Education Innovation Fund will 

invest two hundred and thirteen million Euros to facilitate contact between 

universities and industries. It has been observed in China that collaborations with 

institutions of higher education are predominantly created with big corporations, 

notably state-owned industries, leaving SMEs, which constitute a significant share of 

the Chinese industrial base, with less assistance for their R&D operations (Liu et al., 

2017). In addition, the customary technological vision of creativity and the 

importance placed on formal collaboration channels have restricted Uniform 

Industrial Corporations (UICs) to influential colleges and the fields of science, 

technology, engineering, and mathematics (STEM). First-tier and regional 

universities are the two categories used to categorize universities in China. Regional 

institutions are less research-focused and are run by their individual provincial 

governments, but first-tier universities are generally thought to produce higher-

quality research and are directly governed by the Ministry of Education. In contrast 

to the eight programs operated by regional universities, each top-tier university 

engages in an average of 61 industry collaboration programs, according to a national 

research project conducted by the Chinese Ministry of Education in 2019 (Ministry 
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of Education, 2019). According to a survey conducted by Hughes and Kitson (2012), 

in the UK, nearly half of the 4452 collaborative projects recorded involved STEM 

fields and the health sciences, with around 30% involving the arts and humanities, 

and about 20% involving the social sciences. Although the importance of top-tier 

academic institutions and the natural sciences has been acknowledged, more research 

should be done to ascertain how regional institutions with lower rankings and the 

social sciences may aid in industrial innovation. 

2.3. The Helix models 

The framework focuses on academia, universities, and industry as innovation 

agents. In this study, academia and industry form the unit of analysis as an agent of 

the incubation of innovations (universities) and the utilization of innovation 

(industry). Their fruitful interactions and collaborative efforts promote economic 

growth and innovation in the region. The Triple Helix hypothesis suggests that the 

purpose of universities should go beyond social instruction and investigation to also 

include the contribution to provincial advancement through the creation, 

dissemination, and utilization of industry-driven knowledge. The Triple Helix model 

is an “innovation-push” approach, in which innovation is pushed from the academic 

world into industry, where it is then refined and put to use. According to this model, 

the government is able to fulfill its responsibility to the public by funding research at 

universities and outlining the path forward for regional or national innovation 

systems through public policy. The conventional concept of a “triple helix” has been 

developed further (Miller et al., 2016) in order to encourage interactions between all 

of the various social sectors to jointly produce new knowledge and innovations. 

Figure 2 is a path diagram that describes the pathways between the variables 

included in the study and the covariance between the exogenous variables together 

with the recursive nexus between the endogenous variable and the control variable 

(artificial intelligence). 

 

Figure 2. Path diagram (source: research model). 

H1: Industry-academia collaboration through joint R&D does not significantly 

enhance educational opportunities. 

Firms’ level of R&D has been noted as a key determinant (Laursen and Salter, 

2004) in industry–academia collaboration (Fernández López et al., 2014; Aiello et al., 

2019). Investment in internal R&D increases a company’s capacity for learning and 
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absorbing external knowledge, because university knowledge may be difficult to 

transfer to businesses (Cohen and Levinthal, 1989). It is via the use of artificial 

intelligence (e.g., artificial intelligence, automation technologies, and others) that 

corporations and academia are able to work together. The Chinese government has 

made a huge investment in R&D, reaching up to 301.32 billion Yuan, which 

represents a significant increase. According to Albahari (2017), academic institutions 

and private enterprises enter into R&D partnership agreements to work together on 

research projects, regardless of who is providing the funding. Such projects can 

include anything from industry-funded cooperative research programs to research 

pacts, experimentation, compliance and accreditation testing for organizations, and 

joint publications with experts from the company. It also includes co-funding for 

PhD students as well as industrial PhDs (Khachoo et al., 2018). When the worlds of 

academia and industry come together, there is an assumption that both will benefit 

(Payne, 2007; Breese, 2012). 

H2: The development and patenting of products does not improve educational 

opportunities. 

Mazzocchi (2004) measured the industry–academia partnership by submitted 

and granted patents, the patent utilization ratio, the percentage of supported ideas, 

and the revenue from external licenses. Patenting uses these metrics. These metrics 

show industry-academia collaboration. Relevant literature examined the roles of 

intermediaries in university-industry collaboration (Kim, 2019; Belitski, 2019). We 

hypothesize that using AI to patent manufactured goods will improve Chinese 

education. Research promotes industrial innovation through product creation, 

patenting, and human capital transfer (Perkmann, Tartari et al., 2012; Motohashi, 

2006). Universities produce patentable goods when they support local and regional 

economic development, commercialize research, and improve faculty contact with 

industry scientists. Increased Chinese university patenting is driven by the “Chinese 

Bayh-Dole Act” and a research assessment system that supports patenting by 

researchers. Due to flaws in the evaluation system and the sequential structure of 

university-industry ties, rapid growth in academic patents results in low patent 

quality and low university patent utilization. 

H3: Curriculum development and delivery does not significantly enhance 

educational opportunities. 

Courses, modules, programs, majors or minors, planned experiments, and 

course delivery by outside organizations may be jointly produced and supplied. This 

includes joint PhD supervision, the creation and organization of new study programs, 

guest lectures by business representatives, curriculum evaluation, and student 

business experiences. University–industry collaboration is important, especially for 

curriculum development and implementation. Few curriculum development models 

are specific enough to be used in practice or generalized outside their area of origin. 

In recent years, many examples of curriculum design collaboration have been 

published to adapt higher education to technical and social realities. Literature 

examples include design in Portugal (Motohashi, 2006), renewable energy in Latin 

America and Europe (Comodi et al., 2019), tourism (Dopson and Tas, 2004), the 

automotive industry in the USA (Mears, 2009), industrial engineering in Thailand 
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(Koomsap et al., 2019), and the development of Industry 4.0 competences in Estonia 

and Tanzania (Kusmin et al., 2018; Mgaiwa, 2021). 

H4: There is no recursive nexus between artificial intelligence and educational 

opportunities. 

The recursive nexus between artificial intelligence and educational 

opportunities that exist through artificial intelligence offers limitless opportunities to 

students in school and industry experts (Jing, 2018; S Chen, 2018; He and Bowser, 

2017). AI can assist school students in obtaining solutions to their most frequently 

asked questions within seconds. This not only saves teachers a significant amount of 

time but also reduces the time spent by students looking for answers or awaiting a 

response to their inquiries. Artificial intelligence is a flourishing field of technology 

that has the potential to change peoples’ experiences. In education, the role of AI has 

been attributed to its ability to provide answers to the problems of society. This 

development is currently being evaluated as a variety of scenarios (S Chen, 2018). 

AI requires sophisticated infrastructure and a strong community of innovators. The 

goal of the experimental artificial intelligence course conducted under the aegis of 

the industry/academic partnership was to strengthen the partnership, as there is a 

Granger causality effect of artificial intelligence on educational opportunities. We 

believe that artificial intelligence (AI) has the power to moderate, reshape, and 

transform the global technological landscape by improving educational opportunities. 

AI is being broadly used across all major fields of human endeavor as well as for 

national defense and security (Zhang et al., 2018). Consequently, its usage as a 

moderating variable to expedite educational outcomes in industry–academia 

collaboration is a positive factor in the continuing discussion over industry–academia 

collaboration. 

2.4. Gaps in literature 

Despite the work and progress in the study of university-industry collaboration, 

there are at least two knowledge gaps. First, most of the prior research on the 

outcomes of collaboration has been primarily concentrated on technological 

advancement without taking into account the opportunities that this has presented to 

the educational sector as a spillover effect. This suggests that debates on the effects 

of R&D collaboration on educational opportunities have been conspicuously absent 

from most industry–academia collaboration studies, especially in the study area. 

There is still a lack of consensus regarding the manner in which the industry-

academia collaboration enhances educational outcomes in the study area. Second, 

this research contributes to the literature as well as practices that are currently in use 

by building on past academic conversations and published works of literature. 

Specific to China, the investigation of the function that a recursive nexus in artificial 

intelligence plays in facilitating industry–academia collaboration to expand 

educational opportunities is novel. It adds to the diminutive body of research on how 

the influence of artificial intelligence is able to mediate this nexus. Even though the 

Chinese use of artificial intelligence is not new, its application in research and 

development, product patenting, and curriculum development has been low 

compared to other developed countries (He and Bowser, 2017; Ryan, 2021). The 
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study equally highlights the directions of the movement of the exogenous variables 

as they interact to affect educational opportunities. 

3. Research methodology 

3.1. Research design 

A survey research methodology was used for this study in which structured 

questionnaires were distributed to the target population by researcher assistants. The 

study protocols were approved by the Chang’an University research committee. For 

research of this nature, data can be collected from a variety of secondary databases. 

Due to a paucity of crucial information required to answer our research questions, 

secondary databases of industry–university collaboration in China do not contain 

information on specific activities associated with industry–university collaboration in 

the study area. To address study objectives 1–3, a dataset at the firm level that 

combines industry and academic collaboration data is necessary which necessitate 

the use of survey in obtaining the relevant data. 

3.2. Study area 

China has a vast geographic area with a wide range in terms of the degree of 

regional development. These seven regions were chosen because they have similar 

institutional contexts, which made it easier to control the sample selection bias. The 

National Bureau of Statistics ranks them as the top seven provinces for GDP 

(National Bureau of statistics of China, 2010). Comparatively to businesses in other 

locations, these businesses tend to be more contemporary, aggressive, and innovative. 

The general managers, CEOs, and R&D managers of these firms were targeted 

because they understand their companies’ progress. This indicates that the 

information gathered for scholarly research is accurate and trustworthy. 

3.3. Sample and sampling technique 

To gather data for the academic part of the project, seven (7) universities from 

the seven regions were sampled evenly. A total of 327 participants were included in 

the sample for this investigation. Knowledge of the topic area, experience, position, 

and specialization were used as the criteria for selecting respondents. Also, the 

proportion of samples selected by each partner was contingent on the availability of 

employee-related R&D projects in any of these businesses. A total of 223 firms and 

7 universities agreed to participate in the survey, making a total of 230 research units. 

The study sample was not large due to limits on time and availability of willing 

respondents to provide information on the research questions of the study. The 

questionnaire was divided into two sections: the first collected demographic 

information about the respondents, and the second referred to the study objectives. 

Out of the 327 respondents included in the study, only 230 completed the survey, 

leading to a response rate of 70.34%. Purposive sampling was used to identify the 

suitable respondents for the study as earlier stated. 
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3.4. Data collection techniques 

All participants were adequately informed about the purpose and procedure of 

the study and their informed consent were obtained before participation. Random 

individuals from Guangdong, Jiangsu, Zhejiang, Shandong, Henan, Beijing, and 

Shanghai received questionnaires. IT, communication, business and economics, 

electronics, construction, service firms, and manufacturing firms were the major 

respondent industries. Data were collected from 13 August to 24 October 2022. The 

study’s objectives were captured in a structured questionnaire that was developed by 

the area’s firms and universities. Two professors and 5 PhD holders trained to 

conduct online and face-to-face surveys collected the data. The questionnaire was 

designed using google forms (Esangbedo, Zhang, Esangbedo, Kone and Xu, (2023)), 

which is a popular online survey tool for gathering data from respondents, especially 

from those located far away. Top managers of the firms and the selected universities 

were contacted by the researchers and research assistants by phone and email to 

inform them about the purpose of the survey and to solicit for their participation. 

3.5. Validity and reliability of the instrument 

A pilot study was carried out with one third of the total sample to ensure 

representativeness. The pilot study was necessary as it provided the means to obtain 

a first information by the researcher. The questionnaire was validated using content 

validity which take into account the expert contributions from my supervisor and 

statistician (Hair, 2011). Since construct validity statistics require a large 

dataset(Ong, 2014), the content validity was assessed. This required the supervisors 

to validate the wording of the instrument to ensure it was consistent with the 

objectives of the study. Cronbach Alpha statistics were used to determine the 

instrument’s internal consistency. The result of the reliability test is as shown in 

Table 1: 

Table 1. Cronbach alpha reliability coefficients. 

Code Constructs Cronbach-α 

A Research and Development (R&D)  

A1 We are engaged in inventive and methodical efforts to expand the body of human knowledge. 0.9794 

A2 The results of research and development are freely transferred or traded on the market. 0.98 

B Development and patenting of products  

B1 Most patent investment strategies are contingent on the investment’s potential market returns. 0.9791 

B2 In terms of product development, there has been a rise in patenting due to increased interaction between the university and 

industry. 

0.9799 

C Curriculum development and delivery  

C1 The course description accurately describes the types of responsibilities a graduate can anticipate performing in the workplace. 0.9774 

C2 The length of the program is sufficient to provide graduates with the knowledge and/or skills required to enter the field.  0.9781 

D Educational opportunities  

D1 When industry and academia collaborate, educational opportunities are plentiful.  0.9789 

D2 Collaboration increases the industry’s access to qualified workers. 0.9776 

E Artificial intelligence utilization  

Aint There is substantial investment in artificial intelligence research. 0.9803 
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Table 1 shows the Cronbach reliability of the instrument. From Table 1, the 

statistics for the study’s individual variables show index values of 0.9794 for A1, 

0.9800 for A2, 0.9791 for B1, 0.9799 for B2, 0.9774 for C1, 0.9781 for C2, 0.9789 

for D1, and 0.9776 for D2. The Artificial Intelligence construct (Aint) index is 

0.9803. The overall index of reliability is 0.9813, as shown in Table 1. According to 

George and Mallery (2021), a Cronbach Alpha value of 0.70 is reliable for social 

science research. In early research, a reliability of 0.70 or higher was sufficient 

(Thorndike, 1995). Even with a reliability of 0.90, the standard error of measurement 

is almost one-third as large as the standard deviation of the test scores, so 0.90 is the 

minimum acceptable reliability, and 0.95 is the desired standard. Thus, this study’s 

data collection instrument is reliable. 

Table 2 shows the results of an item correlation test that was conducted to 

determine whether any test item was inconsistent with the averaged behavior of the 

others and could therefore be discarded. The 9-item study value scale reliability was 

analyzed. The questionnaire’s Cronbach’s Alpha was 0.9813, which is acceptable. 

Most items were shown to be worth keeping; deleting them would lower the alpha 

value. No item’s Cronbach value was higher than the overall Cronbach Alpha value. 

Deleted items would not improve the overall Cronbach Alpha statistics for any of the 

study’s variables. 

Table 2. Detailed cronbach alpha statistics. 

Item Obs Sign Item-test 

correlation 

Item-rest 

correlation 

Average inter-

item covariance 

alpha 

A1 230 + 0.926 0.9078 0.32478 0.9794 

A2 230 + 0.9158 0.8914 0.31477 0.98 

B1 230 + 0.9302 0.9119 0.32061 0.9791 

B2 230 + 0.9139 0.8902 0.31835 0.9799 

C1 230 + 0.9674 0.9569 0.30475 0.9774 

C2 230 + 0.9523 0.938 0.31022 0.9781 

D1 230 + 0.9373 0.922 0.32448 0.9789 

D2 230 + 0.9595 0.9483 0.31478 0.9776 

Aint 230 + 0.9038 0.8792 0.32369 0.9803 

Test scale     0.31738 0.9813 

Test scale = mean (unstandardized items). 

3.6. Variable specification 

Definition of constructs: This study used hypothetical constructs. Hypothetical 

constructs are not directly observed but are assumed to explain observable 

phenomena, according to Colman (2015). 

Research and development: Research and development is the process by 

which a company generates new knowledge to create new technologies, products, 

services, or systems to solve societal challenges. 

Product patenting and development: A patent grants investors and others 

derivation rights and the right to exclude others from manufacturing, using, or selling 
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patented products or methods or processes for a limited period of time (Vedaraman, 

1971). 

Curriculum development and delivery: Curriculum development is a planned, 

thoughtful, and deliberate process that improves student learning. It involves the 

development and organization of learning activities to meet learning outcomes using 

the best methods. 

Educational opportunities: Educational opportunity is defined as anything that 

adds value to the educational experience and better prepares you for meeting 

academic challenges and challenges posed by the larger society. 

Artificial intelligence utilization: Artificial intelligence was used as the 

control variable in this study. It was included to establish how artificial intelligence 

mediates between IAC and educational opportunities. The simulation of human 

intelligence processes by machines, primarily computer systems, is known as 

artificial intelligence. In this study, it was measured as the level of spending by firms 

on the use of artificial intelligence for business operations. 

3.7. Measurement of variables 

The measurement items were adapted from Hou, Hong, Chen et al. (2019), who 

studied whether academia-industry R&D collaboration promotes industrial 

innovation in China with a focus on technology transfer institutions. The constructs 

were modified for this study. The questionnaire was based on prior research and 

interviews. The study have three independent variables of research and development, 

patenting and curriculum development. It also has one moderating variable of 

artificial intelligence and one dependent variable of educational opportunities. The 

independent variables have six (6) measurement variables. Artificial intelligence and 

educational opportunities have two measurement variables respectively. Twelve 

error terms are associated with the structural equation model arising from all the 

variables of the study. 

3.8. Model specification 

STATA version 13.0 for windows was used to create a structural equation 

model (SEM) to determine the study’s variable relationships. 

As shown in Figure 2, there are three independent variables of research and 

development, patenting and curriculum development being moderated by artificial 

intelligence leading to their impact on the dependent variable of educational 

opportunities. The relationships and hypothesized pathways is indicated using arrows 

between latent variables and observed variable. These relationships represent the 

theoretical connections between the constructs in the model. 

Two measurement variables items are associated with each of the construct, 

leading to ten measurement items for all the variables used in the study. Twelve error 

terms are associated with each variable, accounting for unexplained variance in the 

model. Artificial intelligence mediates the relationship between the independent 

variables and the dependent variable. The model specifies a and tests the hypothesis 

that there is no recursive nexus between artificial intelligence and educational 

opportunities.  
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3.9. Method of data analysis 

Data obtained from this study was analyzed using descriptive statistics such as 

frequencies and percentages. The relationship between the variables of the study 

were modeled using structural equation model. 

Fit indices and model evaluation criteria: 

Several SEM model fit indices were used to evaluate the goodness of fit and 

appropriateness of the model in modeling the relationship between the study 

variables. These indices are: 

Comparative Fit Index (CFI): The Comparative Fit Index (CFI) is a statistical 

measure in Structural Equation Modeling (SEM) to assess the goodness of fit of a 

hypothesized model. It is a comparative index, comparing the fit of the specified 

model to a baseline or null model, often a model where the variables are assumed to 

be uncorrelated. The CFI ranges from 0 to 1, with higher values indicating a better fit 

of the specified model to the observed data. A CFI close to 1 (typically above 0.90 or 

0.95) suggests that the hypothesized model fits the observed data well, indicating a 

good fit. 

Root Mean Square Error of Approximation (RMSEA): The Root Mean 

Square Error of Approximation (RMSEA) was used in the study to assess the 

goodness of fit of a hypothesized model by evaluating the discrepancy between the 

observed data and the model's implied covariance matrix. RMSEA is important 

because it accounts for the model’s complexity by adjusting for the degrees of 

freedom. It is especially valuable for evaluating how well the model reproduces the 

observed covariance matrix, providing insights into the discrepancies between the 

model and the data. 

Tucker–Lewisindex (TLI): The Tucker-Lewis Index (TLI), also known as the 

Non-Normed Fit Index (NNFI), is a goodness-of-fit index used in Structural 

Equation Modeling (SEM) to evaluate the fit of a statistical model to the observed 

data. It is one of the several fit indices used to assess the adequacy of the model in 

explaining the relationships between observed and latent variables. 

LR test of model fitness (LR): The Likelihood Ratio (LR) test, also known as 

the chi-square difference test, is a statistical test used to assess the goodness of fit of 

a structural equation model (SEM) by comparing the fit of a specified model with a 

more restricted or nested model. It helps in evaluating whether adding or removing 

parameters significantly improves or worsens the model fit. 

4. Result and discussion 

4.1. Demographic characteristics of the respondents 

Figures 3–5 on the sectoral distribution of respondents, show that 144 (62.61%) 

of respondents were from the academic sector, while 86 (37.39%) were from 

industry, thus giving academia a greater representation in the results of the survey. 

Figure 3 shows that the majority of the sampled respondents (209; 90.87%) were 

undergraduates, while 21 (9.13%) of the respondents were postgraduate students. 

This shows a high level of participation of university students in collaborations 

between the university and industry. This proves that forging a partnership at the 
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early stages of university education provides a key advantage for enhancing the 

educational opportunities of Chinese citizens. More males participated in the survey 

than their female counterparts. Males constituted 56.52% of the sample (130 

respondents), while female respondents represented 43.48% of the sample (100 

respondents). 

 

Figure 3. Sectoral distribution. 

 

Figure 4. Educational distribution. 

 

Figure 5. Gender distribution. 

4.2. Summary statistics 

Table 3 summarizes all study variables. The study variables have a standard 

deviation of less than 1, indicating that their values are close to the population mean. 

Our study results are reliable because a high standard deviation indicates that values 

are spread out and less reliable (Kollo et al., 2005). The maximum response value 

was 4, representing strongly agree, and the minimum value was 1, representing 

strongly disagree. 

Table 3. Summary of the statistics. 

Variable Obs Mean Std. Dev. Min Max 

A1 230 3.4 0.5575993 2 4 

A2 230 3.15217 0.6463668 1 4 
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Table 3. (Continued). 

Variable Obs Mean Std. Dev. Min Max 

B1 230 3.3913 0.5865397 1 4 

B2 230 3.17826 0.6188146 1 4 

C1 230 3.24783 0.6767309 1 4 

C2 230 3.22609 0.6482879 1 4 

D1 230 3.33913 0.5510919 1 4 

D2 230 3.3 0.6067308 2 4 

Aint 230 3.42609 0.5845294 2 4 

4.3. Test for multicollinearity 

In Table 4, all items show positive covariance between one construct and 

another. This implies that these variables move in the same direction in their 

relationship (Kollo et al., 2005). For the covariance results, the values are low, less 

than 0.5, which implies that they are not highly correlated. A high correlation, for 

example, 0.9, could indicate the presence of multicollinearity in the dataset. The 

consequence of multicollinearity is that it makes the standard errors much larger than 

they would otherwise be, thereby decreasing the t-statistics and increasing the 

probability. The consequence of this is that the study variables will not be significant. 

The values are low, less than 0.5, which is suggestive of moderate correlation and 

low multicollinearity. 

Table 4. Correlation matrix. 

 A1 A2 B1 B2 C1 C2 D1 D2 Aint 

A1 0.3109         

A2 0.2707 0.4178        

B1 0.3188 0.2895 0.344       

B2 0.2603 0.3789 0.2749 0.3829      

C1 0.3197 0.3944 0.3393 0.3705 0.458     

C2 0.2934 0.3847 0.3129 0.3613 0.4153 0.4203    

D1 0.2742 0.2844 0.2816 0.2755 0.3392 0.3116 0.3037   

D2 0.2943 0.3297 0.31 0.3218 0.3882 0.3598 0.3083 0.3681  

Aint 0.3004 0.2799 0.3216 0.2687 0.3263 0.3006 0.2654 0.2996 0.3417 

4.4. Model fitness 

The criteria for determining whether or not a model is a good fit are listed in 

Table 5. The model’s accuracy can be assessed with four different metrics: the root-

mean-squared error of approximation (RMSEA), the comparative fit index (CFI), the 

Tucker–Lewis index (TLI), and the LR test of model fitness (TLI). Browne and 

Cudeck (1993) suggested that the LR should be greater than 0.05. A small RMSEA 

(0.05) indicates a good fit between the hypothesized model and the observed data, 
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while a moderate RMSEA (0.05–0.10) indicates a fair fit, and a large RMSEA (> 

0.10) indicates a poor fit. However, an RMSEA of 0.06 may indicate a good fit, as 

suggested by Hu and Bentler (1999) in the root-mean-squared error of approximation 

(RMSEA) formula. Higher values of CFI, a fit index with a range from 0 to 1, 

indicate a better fit. Thus, CFI is the most popular measure of compatibility at 0.95 

(Hu and Bentler, 1999; West et al., 2012). The TLI (Tucker and Lewis, 1973) 

assesses the degree to which there has been a reduction in misfitting. As shown by 

the data, the model fitness hypothesis cannot be supported (RMSEA = 0.048). This 

means the model was fitted according to this measure of appropriateness. The CFI 

and TLI values should be close to 1 to be considered acceptable; these values can be 

used as criteria for model fitness (West et al., 2012). The study results show values 

of CFI = 0.756 and TLI = 0.582. Evidence from these statistics suggests that the 

study’s model is appropriate, and that the study’s estimates can be used to 

confidently advise policymakers. Standardized root-mean-squared residual 

coefficient of determination. 

Table 5. Model fitness. 

Fit statistic  Value Description 

Likelihood ratio chi2_ms (121) p > chi2 chi2_bs 

(36) 

1020.060 

4136.97 

model vs. saturated baseline vs. saturated 

 p > chi2 0.357  

Population error RMSEA 
90% CI, lower bound upper 

bound 

0.048 
0.037 

Root mean squared error of approximation 

 p-close −0.000 Probability RMSEA ≤ 0.05 

Information criteria AIC 

BIC 

767.822 

881.279 

Akaike’s information criterion 

Bayesian information criterion 

Baseline comparison CFI 

TLI 

0.756 

0.582 

Comparative fit index 

Tucker-Lewis index 

Size of residuals SRMR 

CD 

0.54 

0.998 

Standardized root mean squared residual 

Coefficient of determination 

4.5. Model stability test 

As shown in Table 6, all eigenvalues lie inside the unit circle (SI = 0.593987), 

thus satisfying the structural equation model stability condition. Model stability is a 

condition for accepting the results of the model for policy recommendations. 

Table 6. Stability test. 

Eigenvalue Modulus 

0+ 0.5939587i 0.59396 

0− 0.5939587i 0.59396 

0  0 

0  0 
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Table 6. (Continued). 

Eigenvalue Modulus 

0  0 

0  0 

0  0 

0  0 

0  0 

0  0 

All eigenvalues lie inside the unit circle. SEM satisfies the stability conditions. 

4.6. Path analysis 

Figure 6 depicts a pathway analysis, a method for determining the effects of 

multiple variables on a specified outcome. The model shows that research and 

development, patenting, and curriculum development are exogenous variables, while 

educational opportunities and artificial intelligence usage are endogenous variables. 

 

Figure 6. Path analysis. 

The path for the covariance between the exogenous variables in the model is 

represented by res-dev, patent, and curr. The recursive nexus between educational 

opportunities and artificial intelligence is established. The path shows that all the 

exogenous variables are positive and significant predictors of the dependent 

variables. 

Table 7 shows the conceptual model’s SEM results. SEM models the 

relationships between latent variables, not their means, to control for measurement 

errors(Preacher and Hayes, 2004). In the first system of the equation, the recursive 

nexus between artificial intelligence and educational opportunities [aint & edu] 

indicates that educational opportunities is a positive and significant predictor of 

artificial intelligence (β = 1.099941, p < 0.05). This result supports the hypothesis 

that the deployment of artificial intelligence positively and significantly improves 

educational opportunities. The second system of the equation presents the nexus 

between the endogenous variable of educational opportunities (eduop) and a set of 

three other predictor variables: research and development (res_dev), product 
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patenting (patent), and curriculum development (curr). Res_dev positively and 

significantly impacts educational opportunities (β = 1.099941, p < 0.05). 

Table 7. Structural equation model result. 

  Coef. OIM 

Std. Err. 

z p > |z| [95% Conf. Interval] 

Structural 

Aint<− 

eduop_cons 1.099941 

4.628884 

0.0462845 

0.2671965 

23.76 

17.32 

0.000 

0.000 

1.009224 

4.105188 

1.190657 

5.152579 

eduop<− Aint 

Res_dev 

Patent 
Cur 

−0.3207327 

0.4691786 

0.3128488 
0.4053915 

0.066768 

0.0705133 

0.0661369 
0.0445172 

−4.80 

6.65 

4.73 
9.11 

0.000 

0.000 

0.000 
0.000 

−0.4515956 

0.3309751 

0.1832229 
0.3181393 

−0.1898699 

0.6073822 

0.4424746 
0.4926437 

var (e.A1) 

var (e.A2) 

var (e.B1) 

var (e.B2) 

var (e.C1) 

var (e.C2) 

var (e.D1) 

var (e.D2) 
var (e. Aint) 

var (e. eduop) 

var (Res_dev) 

var (patent) 

var (cur) 

0.0345934 

0.1517086 

0.044637 

0.1261177 

0.0064627 

0.0380115 

0.0260292 

0.0197908 
0.0876614 

0.0055586 

0.2749718 

0.2314285 

0.4495108 

0.007506 

0.0155744 

0.006473 

0.0124299 

0.0060898 

0.0062344 

0.0032946 

0.0036084 
0.0094441 

0.0031074 

0.0294761 

0.0314248 

0.0429452 

  0.02261 

0.1240584 

0.0335938 

0.1039641 

0.0010194 

0.0275617 

0.0203105 

0.0138441 
0.0709749 

0.0018583 

0.2228652 

0.1773518 

0.3727507 

0.0529279 

0.1855216 

0.0593103 

0.1529919 

0.0409731 

0.0524233 

0.033358 

0.0282918 
0.1082708 

0.0166269 

0.3392612 

0.3019939 

0.5420782 

cov (Res_dev, patent) 

cov (patent, cur) 

0.2720847 

0.0630601 

0.0290304 

0.0190935 

9.37 

3.30 

0.000 

0.000 

0.2151863 

0.0256374 

0.3289832 

0.1004827 

LR test of model vs. saturated: chi2(21) = 1020.06, Prob > chi2 = 0.0846. 

In accordance with the hypothesis, artificial intelligence is a significant 

predictor of educational opportunities (β= −0.3207327, p < 0.05). This result 

demonstrates a negative correlation between artificial intelligence and educational 

opportunities. This may be the case due to a number of factors, including low 

investment in science and technology and the absence of national strategies 

(Abrahams et al., 2010). The patent was signed in accordance with a priori 

expectations (β= 0.3128488, p < 0.05). Curriculum development (cur) was shown to 

have a positive impact on educational opportunities in the study area (β = 0.405391, 

p < 0.05), and this effect was statistically significant and consistent with a priori 

expectations. This indicates that an increase of one unit in [cur] will result in a 

0.4053915. 

The research and development construct is significantly predicted by item A2 (β 

= 0.9803375, p < 0.05), which indicates that the outcomes of R&D are freely 

transferred or traded in the market. B2 is a significant predictor of product patenting 

(β = 0.9009662, p < 0.05). This indicates that there is an increase in patenting due to 

greater interaction between the university and industry in product development. 

Curriculum development is positively and significantly affected by C2 (β = 

0.9299666, p < 0.05). The D2 measure of how collaboration increases the supply of 

quality workers to the industry is a strong indicator of future academic success. 
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Cov (res dev, patent) and Cov (patent, curr) are positively and significantly 

correlated (cov1 = 0.2720847, p = 0.000 and cov2 = 0.0630601, p = 0.001). Positive 

covariance indicates that the two variables are positively related and have similar 

trends over time. However, because the variables all trend in the same direction, 

there is not much of a correlation between them. The sign of the covariance between 

two variables specifies the direction of their linear dependence. Coefficients are 

positive if there is a general trend toward an increase or decrease in both variables 

(Xie and Bentler, 2003). 

Specific mechanisms through which AI contributes to educational opportunities 

(direct and indirect effect). 

This structural equation model (SEM) Table 8 focuses on the direct effects in 

the context of how artificial intelligence (Aint) mediates the relationship between the 

role of industry-academia collaboration and educational opportunities (EduOp) 

within the digital-driven Industry 4.0 landscape. The coefficient (Coef.) of 

0.2262638 indicates a statistically significant positive direct effect of artificial 

intelligence (Aint) on educational opportunities (EduOp). Aint plays a crucial role in 

enhancing educational opportunities, particularly in the context of Industry 4.0. The 

statistical significance (p-value < 0.001) and a 95% confidence interval ([0.1764826, 

0.2760449]) suggest a robust and reliable effect. The coefficient (Coef.) of 

−0.009969 suggests a statistically significant negative direct effect of educational 

opportunities (EduOp) on itself. This negative effect may imply a regulatory 

mechanism where an increase in educational opportunities could lead to a slight 

decrease in further opportunities, possibly due to saturation or other contextual 

factors. The statistical significance (p-value < 0.001) and a narrow 95% confidence 

interval ([−0.010293, −0.0096451]) indicate a highly reliable effect. 

Table 8. Direct effects. 

 Coef. OIM 

Std. Err. 

z p > |z| [95% Conf.  Interval] 

Structural 

EduOp<- 

      

Aint 0.2262638 0.025399 8.91 0.000 0.1764826 0.2760449 

EduOp −0.009969 0.0001653 −60.32 0.000 −0.010293 −0.0096451 

Res_dev −0.0089512 0.0116673 −9.75 0.000 −0.0908396 −0.1365746 

Patenting 0.1316513 0.0024307 −6.16 0.000 −0.0102057 −0.0197337 

Curr_dev 0.7254695 0.026716 27.12 0.000 0.6730372 0.7779017 

The coefficient (Coef.) of −0.0089512 suggests a statistically significant 

negative direct effect of research and development (Res_dev) on educational 

opportunities (EduOp). Increased research and development may have a dampening 

effect on educational opportunities, potentially due to resource allocation or other 

factors. The coefficient (Coef.) of 0.1316513 suggests a statistically significant 

positive direct effect of product patenting (Patenting) on educational opportunities 

(EduOp). This implies that product patenting positively influences educational 

opportunities, likely through innovation and knowledge dissemination. The 
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coefficient (Coef.) of 0.7254695 indicates a statistically significant strong positive 

direct effect of curriculum development (Curr_dev) on educational opportunities 

(EduOp). Enhancements in the curriculum development significantly boost 

educational opportunities, underscoring the critical role of educational structures in 

the context of Industry 4.0. 

The direct effect of Aint on EduOp in the SEM model suggests that artificial 

intelligence (AI) has a positive and statistically significant effect on educational 

opportunities, even after controlling for other factors such as research and 

development (Res_dev), product patenting (Patenting), and curriculum development 

(Curr_dev). Overall, these direct effects illuminate how artificial intelligence and 

other key variables directly influence educational opportunities, shedding light on 

the dynamics of the relationship within the context of Industry 4.0. 

This SEM Table 9 presents the result of the indirect effects in the context of 

how artificial intelligence (Aint) mediates the relationship between the role of 

industry-academia collaboration and educational opportunities (EduOp) within the 

digital-driven Industry 4.0 landscape. The coefficient (Coef.) of 0.0257278 indicates 

a statistically significant positive indirect effect of artificial intelligence (Aint) on 

educational opportunities (EduOp). This indirect effect suggests that Aint has a 

positive influence on EduOp through other pathways or mediating variables. The 

statistical significance (p-value < 0.001) and a 95% confidence interval ([0.0200673, 

0.0313883]) suggest a robust and reliable indirect effect. The coefficient (Coef.) of 

0.1137071 suggests a statistically significant positive indirect effect of educational 

opportunities (EduOp) on itself. This indirect effect implies that the level of 

educational opportunities positively affects itself through various pathways or 

mediated by other variables. 

Table 9. Indirect effects. 

 Coef. OIM 

Std. Err. 

z p > |z| [95% Conf.  Interval] 

Structural 
EduOp<- 

      

Aint 0.0257278 0.002888 8.91 0.000 0.0200673 0.0313883 

EduOp 0.1137071 0.0116673 9.75 0.000 0.0908396 0.1365746 

Res_dev −0.0010178 0.0001653 −6.16 0.000 −0.0013417 −0.0006939 

Patenting 0.0149697 0.0024307 6.16 0.000 0.0102057 0.0197337 

Curr_dev 0.082491 0.0115652 7.13 0.000 0.0598236 0.1051584 

As shown in Table 10, the statistical significance (p-value < 0.001) and a 95% 

confidence interval ([0.0908396, 0.1365746]) indicate a highly reliable indirect 

effect. For Res_dev, the coefficient (Coef.) of −0.0010178 suggests a statistically 

significant negative indirect effect of research and development (Res_dev) on 

educational opportunities (EduOp). This implies that the impact of Res_dev on 

EduOp is partially mediated through other variables. However, for the variable 

Patenting, the coefficient (Coef.) of 0.0149697 suggests a statistically significant 
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positive indirect effect of product patenting (Patenting) on educational opportunities 

(EduOp). This implies that the impact of Patenting on EduOp is partially mediated 

through other variables. For, Curr_dev, the coefficient (Coef.) of 0.082491 suggests 

a statistically significant positive indirect effect of curriculum development 

(Curr_dev) on educational opportunities (EduOp). This indicates that the impact of 

Curr_dev on EduOp is partially mediated through other variables.Overall, these 

indirect effects shed light on the complex interplay of variables, particularly the 

mediating role of artificial intelligence (Aint) and the impact of research and 

development, product patenting, and curriculum development on educational 

opportunities (EduOp) within the context of Industry 4.0. The significant indirect 

effects underscore the importance of considering these mediators when exploring the 

relationship between industry-academia collaboration and educational outcomes. 

Table 10. Total effects. 

 Coef. OIM 

Std. Err. 

z p > |z| [95% Conf.  Interval] 

Structural 

EduOp<- 

      

Aint 0.2519916 0.0282871 8.91 0.000 0.1965499 0.3074332 

EduOp 0.1137071 0.0116673 9.75 0.000 0.0908396 0.1365746 

Res_dev −0.009969 0.0001653 −60.32 0.000 −0.010293 −0.0096451 

Patenting 0.146621 0.0024307 60.32 0.000 0.141857 0.151385 

Curr_dev 0.8079605 0.023006 35.12 0.000 0.7628695 0.8530515 

The structural equation model (SEM) total summary table provides crucial 

insights into the relationship between the independent variables “Res_dev”, 

“Patenting”, and “Curr_dev”, and the dependent variable “EduOp”, while 

considering the mediating influence of “Aint”. The analysis reveals a multifaceted 

picture of how “Aint” impacts “EduOp”. Firstly, the direct total effect of “Aint” on 

“EduOp” is substantial (Coef. 0.2519916) and statistically significant, implying that 

changes in “Aint” have a pronounced influence on “EduOp” without any mediation. 

Additionally, considering the indirect effects through intermediate variables, 

“Res_dev” and “Patenting” play crucial roles, exhibiting significant indirect effects 

on “EduOp”. “Res_dev” exhibits a negative indirect effect, suggesting that increased 

research and development may dampen the impact of “Aint” on “EduOp”, while 

“Patenting” has a positive indirect effect, indicating that innovation, as reflected by 

patenting, amplifies the effect of “Aint” on “EduOp”. Notably, “Curr_dev” 

demonstrates a remarkable positive indirect effect, underscoring the strong role of 

current development activities in enhancing the influence of “Aint” on “EduOp”. 

4.7. Discussion 

This study answers crucial research questions about how R&D, product 

development, patenting, and curriculum development bring about educational 

opportunities, contributing to previous research on industry–academia collaboration. 
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Further, it shows the influences of causal variables and their respective directions. 

The first set of equations revealed a positive and statistically significant relationship 

(β = 1.099941, p < 0.05) between AI and educational possibilities. This indicates that 

access to education can increase the application of AI in teamwork, and vice versa. 

In the first set of equations, AI is a significant predictor of educational 

opportunities, despite its negative sign (β = −0.3207327, p < 0.05). This is in contrast 

to the views of Polt et al. (2001), who credited industry-academia collaboration with 

increasing productivity in the workplace. The researchers found that higher levels of 

innovation, productivity, competitiveness, and growth (educational opportunities) are 

the desired outcomes when university–industry cooperation is used in innovation 

processes (such as AI) (Argyropoulou et al., 2019). One of the biggest obstacles to 

the implementation of AI in the classroom is the current state of funding and 

investment in the field. Several things could be at play here. While artificial 

intelligence has the potential to greatly enhance educational opportunities in China, 

the country’s low investment in science and technology (such as AI) and lack of 

national strategies in these areas make this goal extremely challenging to achieve, as 

stated by Abrahams et al. (2010). The “innovation paradox” is not unique to Europe; 

it is also present in China. This paradox describes a scenario in which high-quality 

scientific outputs or inputs (like AI) have low conversion to productivity 

(Argyropoulou et al., 2019; Dosi et al., 2006; Wang and Wang, 2016). The findings 

indicate that while China has made some investments in AI, putting those resources 

to use to improve educational opportunities has not been a top priority. 

There is a connection between the exogenous variable “educational 

opportunities” (eduop) and three explanatory variables: “research and development”, 

“product patenting” and “curriculum development” (curr). [β > 1 p < 0.05)] . This 

finding is consistent with the opinions of Hommaet et al. (2008) and Munyoki et al. 

(2011), who argued that one common way that universities link up with industry to 

carry out research and development collaborations is by providing opportunities for 

student attachments and co-op placements in the productive sector. Student research 

projects may also have input from industries if they address problems and issues that 

are of immediate relevance to those sectors (Boersma et al., 2008). Similarly, Hou, 

Hong, Wang et al. (2018) discovered that R&D collaboration between academic 

institutions and commercial businesses boosts innovation productivity. Universities 

are the key to science and technology innovation. Patents are an important indicator 

of scientific and technological innovation. Positive patent signing is expected (β = 

0.3128488, p < 0.05). When product patent and development increases by 1, the 

endogenous variable increases by 0.3128488. In the study of Hou, Hong, Wang et al. 

(2018), it was found that Chinese universities lack experience in successful industry 

collaboration and market understanding, which may lead to inefficient collaborative 

outcomes. Positive patenting figures indicate technological knowledge creation, 

which benefits education (Griliches, 1990; Nagaoka et al., 2010). Incentives for 

patenting in China have been successful (Prud’homme, 2017). This positive effect 

could be due to political pressure in China via state-set patent targets tied to the 

performance evaluations of managers at State Owned Enterprises and university and 

government officials (Liefner et al., 2016; Cheng and Drahos, 2017). 
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In China, the incentivization of patenting has shown considerable success, a 

phenomenon attributed to various factors, including a unique blend of government 

policies and institutional mechanisms that encourage and reward patenting activities. 

This positive effect can be linked to the exertion of political pressure within China’s 

governance structure, where state-set patent targets play a pivotal role. One crucial 

factor driving this success is the alignment of patenting goals with the performance 

evaluations of key stakeholders, such as managers at State Owned Enterprises 

(SOEs), university faculties, and government officials. The Chinese government has 

set specific patent targets that individuals and organizations are expected to achieve 

within a defined timeframe. These targets are tied to performance assessments, 

promotions, and other professional advancements. This effectively integrates the 

pursuit of patents into the core objectives and career advancement pathways of 

professionals within these sectors. As expected, curriculum development (cur) was 

found to improve educational opportunities in the study area (β = 0.4053915, p < 

0.05). A unit increase in [cur] will increase educational opportunities by 0.4053915. 

This may be why instruction has shifted from a teacher-centered input model to one 

that emphasizes student–teacher communication. 

Cov (res dev, patent), Cov (patent, curr) are positive and significant (cov = 

0.2720847, p = 0.000 & covβ = 0.0630601, p = 0.001). Positive covariance means 

the two variables are related and move in the same direction. The study’s variables 

move in the same direction, but the variance is low, so their relationship is weak. 

Covariance determines the direction of the linear relationship. There is a positive 

coefficient if both variables increase or decrease together (Xie and Bentler, 2003). 

This shows that the study’s exogenous variables move in the same direction 

regarding the explanation of educational opportunities. 

For the direct and the indirect effect, the SEM results illuminate key dynamics 

in educational opportunities (EduOp) within Industry 4.0. Artificial intelligence 

(Aint) positively impacts EduOp, while EduOp’s negative direct effect on itself hints 

at potential regulatory mechanisms. Research and development (Res_dev) negatively 

affect EduOp, emphasizing the need for a balanced research approach. Conversely, 

product patenting (Patenting) and curriculum development (Curr_dev) exhibit 

positive direct effects on EduOp, highlighting the role of innovation and structured 

curricula in enhancing educational prospects. These insights emphasize leveraging 

AI, managing research effectively, and innovating product strategies and curricula to 

boost educational outcomes in the evolving digital era. For the indirect effect result, 

the SEM results underscore the significant indirect impact of artificial intelligence 

(Aint) on educational opportunities (EduOp) within the context of Industry 4.0. This 

indirect effect emphasizes the pivotal role of AI as a mediator, influencing EduOp 

through various pathways. Additionally, the positive indirect effect of EduOp on 

itself implies a self-enhancing relationship, suggesting that educational opportunities 

contribute to their own augmentation. Conversely, research and development 

(Res_dev) exhibit a negative indirect effect on EduOp, signifying a need for careful 

management to ensure a positive impact. Furthermore, product patenting (Patenting) 

and curriculum development (Curr_dev) demonstrate positive indirect effects on 

EduOp, underlining the importance of innovation and structured curriculum in 

shaping educational prospects within the Industry 4.0 landscape. These insights 
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emphasize the intricate interplay of factors and the critical mediating role of AI, 

providing valuable guidance for optimizing educational opportunities amidst the 

evolving digital landscape. 

5. Conclusion and recommendations 

The study examined the role of industry–academia collaboration in enhancing 

educational opportunities and outcomes under the digital driven Industry 4.0 using 

the proxies of research and development, patenting and development, curriculum 

development mediated by artificial intelligence.The study was anchored on double 

helix theory and relevant conceptual and empirical studies were reviewed to provide 

the empirical background to the study. Purposive sampling was used while data was 

collected using questionnaire. Validity and reliability of the instrument was done 

using content validity and reliability of the instrument was accessed Cronbach Alpha 

statistics. The study was estimated using descriptive and inferential statistics. The 

inferential statistics deals with frequencies and percentages. Other results were 

presented using graph. The results of the descriptive statistics showed the 

distributions of the respondents in the study area. The specific objectives of the study 

were estimated using structural equation model. 

This study significantly contributes to the Triple Helix hypothesis by 

investigating the pivotal role of industry–academia collaboration in augmenting 

educational opportunities and outcomes within the digitally driven Industry 4.0 

paradigm. Grounded in the Double Helix theory, the research employs proxies such 

as research and development (R&D), patenting, and curriculum development, 

mediated by artificial intelligence (AI), to delineate the intricate relationship between 

academia and industry. Drawing on empirical evidence and conceptual frameworks, 

the study underscores universities as not only conduits for disseminating knowledge 

and nurturing innovative talent but also as crucibles for knowledge and technology 

innovation. The findings illuminate that collaborative efforts between academia and 

industry, fortified by AI, engender a virtuous cycle, positively influencing 

educational opportunities. Notably, the results underscore the burgeoning 

advancements in China, positioning the nation to stride alongside Western 

economies in the digital economy of the 21st century, fueled by robust R&D, 

patenting, and curriculum development. Furthermore, the research emphasizes the 

imperative for increased investment and attention directed towards integrating AI 

into educational pursuits within the studied domain. The study advocates for 

resource allocation from governmental bodies and stakeholders to harness the 

potential of AI in amplifying educational opportunities through industry–academic 

collaboration. The insights gleaned from this study are paramount for businesses, 

governments, and policymakers, urging a paradigm shift towards prioritizing 

Industry–Academia Collaboration (IAC) to enrich educational prospects, thus 

propelling socioeconomic development and sustainability, particularly in the era of 

Industry 4.0. 
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