

Article

AIGC in digital media as a factor in the development of social infrastructure

Michal Kubovics*, Peter Murár

Department of Marketing Communication, Faculty of Mass Media Communication, University of St. Cyril and Methodius in Trnava, Trnava 91701, Slovakia

* Corresponding author: Michal Kubovics, michal.kubovics@ucm.sk

CITATION

Kubovics M., Murár P. (2025). AIGC in digital media as a factor in the development of social infrastructure. Journal of Infrastructure, Policy and Development. 9(4): 11634. https://doi.org/10.24294/jipd11634

ARTICLE INFO

Received: 25 March 2025 Accepted: 6 August 2025 Available online: 28 November 2025

COPYRIGHT

Copyright © 2025 by author(s). Journal of Infrastructure, Policy and Development is published by EnPress Publisher, LLC. This work is licensed under the Creative Commons Attribution (CC BY) license.

https://creativecommons.org/licenses/by/4.0/

Abstract: The aim was to explore the relationships between selected demographic and digital citizenship factors and public trust and citizens' willingness to accept content generated by advanced technological innovations (AIGC) in social infrastructure. AIGC is defined as a proposition of social infrastructure that includes digital public services, education, and public administration, where its implementation has direct political and regulatory implications. The sample consisted of 1,308 respondents. Spearman's correlation coefficient was used to examine the relationships between the ordinal variables. To assess the differences between groups of respondents, a one-way analysis of variance was used, during which multiple linear regression analysis was used to confirm the predictive power of awareness and experience of AI-generated content in relation to the propensity to accept such content. The study confirmed a statistically significant but weak negative relationship between the age of respondents and their willingness to accept AIGC, with younger age groups showing slightly higher acceptance rates. Respondents' attitudes towards the use of personal data through AI and their overall awareness of technological trends had a more significant impact on acceptance. The findings show that respondents who are open to data collection through AI technologies show significantly higher levels of acceptance of automatically generated content. Similarly, respondents who rate the current quality of AIGC positively also have higher expectations regarding the future transformation of marketing strategies and media practices. The decisive factors in the social infrastructure for AIGC acceptance are not so much the age of respondents, but rather their awareness, technological literacy and level of trust in the technology itself. We recommend introducing regulatory frameworks to ensure the transparency of AIGC in public infrastructure and supporting educational programmes focused on digital literacy and accessibility of AIbased services, which would increase citizens' trust in AIGC in digital public services. The results have direct implications for policy-making, digital citizenship and the setting of rules for fair access to AIGC within the social infrastructure.

Keywords: digital trust; citizens' attitudes; data transparency; communication automation; digital citizenship

1. Introduction

Artificial intelligence (AI) is currently being used extensively in various sectors of society (Xu et al., 2021; Bharadiya et al., 2023) and has expanded significantly in recent years, particularly in the media, education and marketing communication (Xu et al., 2021). Equally important is its deployment in public-oriented infrastructure, such as e-government, healthcare, transport systems and digital education, where AI directly influences the quality of public services and citizens' trust (Robles & Mallinson, 2023). Artificial intelligence generating content (AIGC) is increasingly seen as an important tool for the development of social infrastructure, including public services, education and public administration. Research points to the need to link AI

technologies with policy measures and regulation to ensure transparency, public trust and fair access to digital services (Guo et al., 2023). This boom is supported by continuous technological progress, which enables increasingly sophisticated applications of artificial intelligence in a wide range of human activities. By definition, artificial intelligence is a set of technologies that enable machines or software to mimic human abilities such as learning, pattern recognition (Huang and Rust, 2021), planning and decision-making (Davenport et al., 2020). These capabilities of artificial intelligence are used not only to automate routine tasks, but also for more complex operations that require creative thinking and adaptation to a dynamic market environment. In marketing communications, AI is most commonly used to generate creative content, personalise advertising campaigns and automate customer interactions. AI enables marketing departments to efficiently create advertising copy, graphics or even videos that are tailored to the preferences and needs of target groups (Kumar et al., 2019). Personalisation, which is a key advantage of AI, allows marketers to better target their communication and increase the effectiveness of marketing campaigns. On the other hand, the mass application of AI raises questions about the credibility of content created in this way, data security and ethical issues arising from the absence or minimisation of human control (Wang et al., 2025). An important issue that comes to the fore is the willingness of citizens to accept content that has been created by artificial intelligence without any human intervention. Citizens' trust does not depend solely on the quality of AI outputs, but also on the transparency of information about their origin (Pramanik and Jana, 2025). It appears that citizens are generally more willing to accept AIGC if they are convinced of its quality, relevance and reliability. In this context, it is therefore important to examine the factors influencing the extent of this acceptance, which include individuals' technical literacy, previous experience with AI, and socio-demographic characteristics, particularly age and gender (Graham & Stough, 2025). Research by Bhatnagr and Rajesh (2024) shows that the younger generation is generally more open to AI technologies and shows a higher level of acceptance of machine-generated content without human correction. The higher level of acceptance can be attributed to the fact that younger respondents grew up in a digital environment that is more influenced by AI and automation technologies. Conversely, older respondents may express some scepticism stemming from lower trust in technological reliability, privacy concerns, or simply a preference for human-generated content. For this reason, it is essential to examine in more detail how different age groups respond to AI in marketing and media. However, in addition to age, direct experience with AI-generated content also plays an important role. Respondents who have regular experience with AI-generated content are better able to assess its quality and added value compared to respondents who encounter it only occasionally or not at all (Miyazaki et al., 2024). Qadri (2025) defines that there is an indisputable area, particularly in terms of examining the frequency of contact with AIgenerated content, which can also significantly influence citizens' expectations regarding the quality and authenticity of such content. It is this aspect that opens up space for further research focused on examining differences in the evaluation of AIgenerated content among different segments of citizens. Another relevant area that may significantly influence the acceptance of AI in media and marketing communication is the willingness of respondents to allow AI technology to analyse

their personal data for various purposes, including educational and marketing activities (Li et al., 2024). Citizens who express greater trust in AI-based technological solutions and agree to the use of their personal data may also be more open to AI-generated content without human intervention (Khan & Mishra, 2024). This correlation can be explained by the fact that individuals who are willing to hand over their data to AI have a higher level of technological trust and are more confident in AI's ability to generate valuable content (Park, 2024). In addition, respondents who rate the current quality of AI-generated content positively may also expect more significant changes in marketing communication as a result of the development of advanced AI tools (Grewal et al., 2024) (Brown et al., 2024). They expect such advanced tools to fundamentally change the long-term strategies and approaches of marketers, as well as the very structure of the media and advertising industry (Elhajjar, 2025). This aspect also highlights the importance of monitoring citizens' attitudes and expectations regarding future trends and transformations in the marketing and media industry, which may raise questions about the future role of people in creative and marketing positions (Gonçalves et al., 2023). These elements create a broader theoretical framework for further exploration of the relationships between age groups, experience with AI, level of awareness of AI, and their subsequent acceptance of AI-generated content without human correction. Further research will need to analyse individual factors and their interactions, which may yield new insights for marketing and media practice. An important part of the current discussion on AI is the issue of the authenticity and originality of AI-generated content. Although current AI tools can generate content that is almost indistinguishable from human content, many citizens still perceive a difference between content generated by humans and machines (Bown, 2025). In this context, further research is needed, particularly on the factors that contribute to citizens' perceptions of the authenticity of AI-generated content. These may include, for example, the type of content, its purpose, the context in which it is presented, or even the level of awareness among citizens that a particular piece of content has been created by artificial intelligence. When examining the level of acceptance of AI-generated content, transparency on the part of media and marketing agencies is also an important aspect. If citizens know that the content they encounter has been created or edited by AI, their expectations may differ significantly (Borden et al., 2024). Transparent information can increase the credibility of such content within the social infrastructure and contribute to a more positive attitude among citizens towards the use of AI in media communication. Conversely, according to Toff and Simon (2024) and Ioku et al. (2024), a lack of transparency can lead to negative reactions and doubts about the quality and truthfulness of the information provided. Another factor influencing the acceptance of AI-generated content is the level of understanding of the technology itself. Citizens who better understand how AI works and its limitations may also be more critical or, conversely, more tolerant of potential errors and imperfections in AI-generated content (Tully et al., 2025). This issue also touches on education and awareness, where the role of the media is not only to create content but also to educate the public about the possibilities and risks of AI (Tully et al., 2025). In addition to individual characteristics of citizens (such as age, gender or technical literacy), it is important to look at the broader social context and the influence of cultural factors on the perception of AI. Different cultures and societies may

perceive AIGC differently depending on prevailing values, technological maturity or public discourse on technology and automation. It is therefore useful to pay attention to comparing different socio-cultural contexts and their impact on the acceptance of AI-generated content in a global environment. A particular issue that has a significant impact on the perception of AI in media and marketing communications is the question of ethics. The mass use of AI raises new questions about privacy, data security, and the legal and ethical boundaries of content creation. It is increasingly important for citizens to be clear about how their data is used, what control they have over the content they receive, and what ethical rules apply to the use of AI technologies in communication campaigns. Last but not least, the future of the labour market as a result of the widespread use of AI in marketing communications and the media needs to be addressed. The advent of automation and the ability of artificial intelligence to create ever-better content may lead to significant changes in jobs and tasks in the media and marketing sector. This may raise concerns about job losses, but it may also open up new opportunities for jobs focused on managing, controlling or creatively using AI. These areas are important topics for further research and can contribute to a better understanding of the complex relationship between society, media, technology and citizens' attitudes towards AI-generated content. At the same time, exploring them in greater depth can help to establish more effective communication strategies and the right direction for further technological development. Based on the theoretical starting points, the research question of the hypothesis was defined:

Research question:

VO: What is the relationship between the age of respondents and their willingness to accept AIGC as part of digital social infrastructure such as digital public services, education, and public administration, with regard to trust in public institutions?

Hypothesis:

H1: There is a statistically significant relationship between the age of the respondent and the level of acceptance of content generated by artificial intelligence without human correction in elements of social infrastructure. (Younger age groups show a higher level of acceptance than older groups).

H2: Respondents who have more frequent experience with AI-generated content rate the quality of this content higher than respondents without experience.

H3: Respondents who are more aware of trends in AI in marketing communication expect a more significant transformation of the marketing industry as a result of AI development.

H4: Respondents who are open to the use of AI to analyse their personal data for the purposes of providing digital public services, education and communication with public authorities are more willing to accept AI-generated content in its entirety without human correction, including in the field of marketing and media.

H5: Respondents who positively evaluate the current quality of AI-generated content also expect a more significant change in the long-term strategies of marketers and media as a result of the development of advanced AI tools.

2. Materials and methods

The aim of the research was to determine the relationship between the age of respondents and their willingness to accept AIGC without human correction in marketing communications and social infrastructure media. The questionnaire was collected through an online survey (CAWI). The sample consisted of 1,308 respondents. The sample was stratified by age into cohorts according to generations. There were 194 respondents aged 18-28 (14.8%), 195 respondents aged 29-44 (14.9%), 359 respondents were aged 45-60 (27.4%), and 519 respondents were aged 61-79 (39.7%), with respondents aged 79 and over making up only a marginal proportion (3.1%) with 41 respondents. The questionnaire was developed using proven measurement tools adapted to the Slovak environment. The variables were defined as follows. The age of respondents was measured as an ordinal categorical variable with categories according to the above age groups. Respondents' experience with AIgenerated content was measured ordinally on a scale from "never" to "always", while experience with specific AI technologies such as machine learning, chatbots, etc. was measured using a nominal multiple choice variable. Awareness of trends in artificial intelligence was captured by an ordinal variable with a scale ranging from "not at all" to "very familiar". Attitudes towards the use of AI for personal data analysis were a nominal ordinal variable categorised as "yes", "no", "depends on the use of data". The assessment of the quality of AI content was ordinal, ranging from "excellent" to "poor". The acceptance of content created by artificial intelligence was also an ordinal variable with categories ranging from complete acceptance to preference for human correction. The expected transformation in marketing communication as a theoretical construct was an ordinal variable ranging from "no change" to "significant transformation". The hypotheses were tested using statistical methods in IBM SPSS 30 software, and MS Excel was used for data collection. Spearman's correlations were used for ordinal variables with the following formula

rho = 1 -
$$(6 \times \Sigma d^2)/(n \times (n^2 - 1))$$
 (1)

Where rho is Spearman's correlation coefficient, d are the differences between ranks, and n is the number of observations. One-factor ANOVA to compare differences between groups of respondents with the formula:

$$F = MSB/MSW (2)$$

Where F is the resulting value of the ANOVA test, MSB represents the mean square variance between groups, and MSW represents the mean square variance within groups. And multiple linear regression to test the predictive power of awareness and experience in relation to willingness to accept AIGC. The content validity of the questionnaire was ensured by expert review of the questionnaire by experts in AI and marketing communication. The sample of respondents represents a broad spectrum of users of digital public services and educational platforms. However, the present study did not include explicit identification of respondents as active users of e-government infrastructure or digital educational tools. The research was conducted in accordance with ethical standards applicable to social science research. The numbers N shown in the tables correspond to the number of valid responses for specific pairs or sets of

variables. Respondents were informed about anonymity, voluntary participation, the purpose and processing of the data collected. Personal data protection was ensured in accordance with the GDPR and applicable legislation.

3. Results

In this section of the study, we present the results of statistical analyses performed to verify the research hypotheses. H1 assumed that there is a statistically significant relationship between the age of respondents and their willingness to accept AIGC without human correction, with younger respondents having a higher acceptance rate. The analysis confirmed a statistically significant negative relationship between the age of respondents and their willingness to accept AIGC (ρ = -0.065; p = 0.018). Although this relationship was confirmed to be statistically significant, its strength was only low, suggesting that the age of respondents has only a minimal impact on their level of acceptance (**Table 1**).

Table 1. Correlation between age and AIGC acceptance.

			Age	Content acceptance
		Correlation coefficient	1.000	-0,065*
	Age	Sig. (2-tailed)		
		N	1307	1306
Correlation rho	Acceptance of content	Correlation coefficient	-0,065*	1.000
		Sig. (2-tailed)	0.018	
		N	1306	1306

^{*.} The correlation is significant at the 0.05 level (2-tailed).

Based on the results, hypothesis H1 was confirmed, confirming a negative relationship between age and acceptance, but its intensity is low. H2 assumed that respondents who have more frequent experience with content created by artificial intelligence will rate the quality of the content more favourably than those who do not have such experience. The relationship between respondents' experience with AI-generated content and their assessment of its quality was tested using Spearman's correlation. The results did not confirm a statistically significant relationship between respondents' experience and their assessment of quality ($\rho = 0.050$; p = 0.095). The correlation coefficient obtained is very low and statistically insignificant (**Table 2**).

Table 2. Correlation between AI experience and quality assessment.

			Respondents' experience with artificial intelligence	Quality assessment
	Respondents' experience with artificial	Correlation coefficient	1.000	0.050
	intelligence	Sig. (2-tailed)		
Correlation		N	1305	1117
	Quality assessment	Correlation coefficient	0.05	1.000
		Sig. (2-tailed)	0.095	

	N	1117	1118
	- '	1117	1110

Based on the above findings, hypothesis H2 was not confirmed. The data do not allow us to conclude unequivocally that respondents' experience with AI content influences their assessment of its quality. Another hypothesis, H3, claimed that respondents with greater awareness of trends in AI in marketing communication expect a more significant transformation of the industry as a result of further AI development. The analysis confirmed a statistically significant positive relationship between respondents' awareness of AI trends and their expectations of the impact of further AI development ($\rho = 0.142$; p < 0.001). This means that better-informed respondents expect a more significant transformation of the marketing industry (**Table 3**).

Table 3. Correlation between AI awareness and expected impact.

			Awareness of trends in artificial intelligence	Expectations regarding impact
	Awareness of trends in artificial	Correlation coefficient	1.000	0,142**
	intelligence	Sig. (2-tailed)		< 0.001
Correlation		N	1308	862
Correlation	Expectations regarding impact	Correlation coefficient	0,142**	1.000
		Sig. (2-tailed)	<0.001	
		N	862	862

^{**.} The correlation is significant at the 0.01 level (2-tailed).

Hypothesis H3 was confirmed and the correlation is statistically significant, although its strength is moderate. H4 assumed that respondents open to the use of artificial intelligence for personal data analysis would be more willing to accept AIGC without human correction. To verify the hypothesis, a comparison of mean values (Mean Rank) was used using a non-parametric method (Kruskal-Wallis test). The results show that respondents who agreed with data collection by artificial intelligence were significantly more willing to accept AIGC (Mean Rank = 832.20) compared to those who disagreed or only partially agreed (569.31 and 718.35) (**Table 4**).

Table 4. AIGC acceptance by consent to AI data collection.

Ranks			
	Consent to data collection	N	Average rank
	1	664	569.31
Company to company	2	525	718.35
Consent to content	3	115	832.20
	Total	1304	

Policy Takeaways

- Transparency in the use of personal data increases acceptance of AIGC.
- Public agencies should clearly communicate the purposes and methods of data collection through AI.
- Citizens' trust in AIGC depends on a clearly defined data protection policy.

The results confirm hypothesis H4 and confirm that willingness to accept AIGC increases with respondents' openness to the use of artificial intelligence for personal data analysis. H5 tested the hypothesis that respondents who positively evaluate the current quality of AI-generated content also expect a more significant change in marketing strategies as a result of the development of advanced AI tools. A statistically significant positive relationship between content quality assessment and expected transformation of marketing strategies was confirmed ($\rho = 0.234$; p < 0.001) (**Table 5**).

Table 5. Correlation between content quality and expected marketing transformation.

Correlation						
			Content quality	Transformation of marketing strategies		
		Correlation coefficient	1.000	0.234**		
	Content quality	Sig. (2-tailed)		<0.001		
a 1 .:		N	921	921		
Correlation	Transformation of marketing strategies	Correlation coefficient	0,234**	1.000		
		Sig. (2-tailed)	< 0.001			
		N	921	921		

The results confirmed hypothesis H5, with the correlation between these two variables being relatively the strongest of all the hypotheses tested. Multiple linear regression analysis examined the impact of two main predictors, access to AI and awareness, on respondents' willingness to accept AI-generated content. The regression model was statistically significant (F = 57.261; p < 0.001) and explained 13.7% of the variability of the dependent variable (R² = 0.137) (**Table 6**).

Table 6. ANOVA of the regression model on AIGC acceptance.

ANOVA ^a							
Mod	del	Sum of squares	df	Average square	F	Sig	
1	Regression	52.827	2	26.414	57.261	<0.001 ^b	
	Rest	333,506	723	0.461		Î	
	Total	386,333	725				

a. Dependent variable.

Individual coefficients showed that access to AI (β = 0.315; p < 0.001) had a stronger influence on content acceptance than awareness alone (β = 0.117; p = 0.001) (**Table 7**).

b. Predictors.

Table 7. Regression coefficients predicting AIGC acceptance.

Co	efficients ^a					
М-	. 1 - 1	Unstandardised coefficients		Standardised coefficients		Sig
Model		В	Std. error	Beta	t	
	(constant)	0.533	0.153		3.484	< 0.001
1	informativeness	0,156	0,049	0,117	3,219	0,001
	Access	0,474	0,055	0,315	8,652	< 0.001

a. Dependent variable: acceptance

The results suggest that respondents who have better access to artificial intelligence technologies and are better informed show a significantly higher willingness to accept content created by artificial intelligence. The results confirmed most of the hypotheses formulated, with the most significant influence being the respondents' knowledge of AI and their openness to the use of AI technologies. Although the relationship between age and acceptance of AI-generated content was confirmed, it proved to be minimal, suggesting that further research should explore other variables that may be more relevant to understanding the factors influencing the level of acceptance of AI-generated content.

3. Discussion

Findings on the relationship between selected demographic and digital citizenship factors and the acceptance of content generated by artificial intelligence (AI) without human intervention in marketing communications and the media. 's findings provide a more comprehensive view of an issue that is currently the subject of intense debate among practitioners and researchers (Xu et al., 2021; Bharadiya et al., 2023). Although several assumptions based on existing theoretical knowledge (Kumar et al., 2019; Graham & Stough, 2025), some results have indicated weaker relationships than originally expected. Hypothesis H1, which predicted that younger age groups would show a higher willingness to accept AI-generated content, was indeed confirmed, but the relationship proved to be relatively weak ($\rho = -0.065$). These findings are consistent with previous studies reporting that younger generations are generally more open to new technologies (Bhatnagr & Rajesh, 2024), but also suggest that age alone may not be a decisive factor. The weak correlation points to the possibility that other factors, such as technological literacy, specific life experiences or socio-cultural aspects, may also influence the acceptance of AI content (Miyazaki et al., 2024). Hypothesis H2, which assumed a positive influence of experience with AI-generated content on its evaluation, was not confirmed. The correlation was weak and statistically insignificant, suggesting that the frequency of encounters with content alone may not lead to a better evaluation of its quality. A possible explanation for this result is that although respondents have more opportunities to interact with AIgenerated content, this experience may not always be positive (Tully et al., 2025). It is also possible that respondents are unable to reliably distinguish between AIGC and human-created content, which reduces their ability to objectively assess its quality (Brown et al., 2024). A more significant result was obtained by hypothesis H3, which

examined the relationship between respondents' level of awareness of AI and their expectations of a more significant transformation of the marketing industry. A weak but statistically significant positive relationship was confirmed, supporting similar findings that respondents with better knowledge have more realistic and optimistic expectations regarding the adoption of AI technology (Grewal et al., 2024). The result suggests a need for further education and awareness-raising about AI, which could lead to greater acceptance of technological change in practice (Xu et al., 2021; Davenport et al., 2020). Hypothesis H4, which focused on the relationship between respondents' consent to the collection of personal data through AI and their willingness to accept AI-generated content, was also strongly supported. Respondents who expressed a higher level of trust in the use of AI for data analysis also expressed a higher willingness to accept content without human correction. The result is consistent with research emphasising that trust in technology plays a key role in the acceptance of AI (Li et al., 2024; Khan & Mishra, 2024). Higher levels of trust may be related to process transparency, security measures and clearly defined data protection rules (Wang et al., 2025). The recommendation for marketing managers and the media is to place greater emphasis on transparent communication about the use of artificial intelligence and related data practices (Toff & Simon, 2024). Similar to hypothesis H5, a positive relationship was confirmed between the perceived quality of current AI content and the expectation of more significant changes in the marketing and media environment as a result of further technological developments. The results support the hypotheses that respondents who already perceive the quality of AI content positively are more likely to perceive the long-term impact of AI technologies on marketing strategies positively (Gonçalves et al., 2023; Elhajjar, 2025). It is therefore possible that these citizens will be better prepared to accept AI-related changes and will seek them out more actively (Borden et al., 2024). Regression analysis confirmed that respondents' awareness and overall attitude towards AI have a positive impact on their willingness to accept AIGC ($R^2 = 0.137$). However, this model also points to the existence of other unidentified variables that could influence AI acceptance. Such factors could include individual digital citizenship factors such as technological anxiety, perceived content authenticity, or general attitudes towards automation (Bown, 2025). The findings of the analysis suggest that the perception of AI-generated content is a complex phenomenon that requires further analysis of additional factors. The results have important implications for policymakers and digital infrastructure management. First, regulatory frameworks ensuring the transparency of AIGC in areas such as education, e-government and public services need to be implemented. Subsequently, we recommend the creation of digital and AI literacy programmes to reduce differences between age and socio-economic groups. In the area of civic communication and education, tools for detecting and preventing AI-generated disinformation need to be introduced. Future research could therefore focus on a more detailed examination of the impact of specific types of content generated by artificial intelligence and the influence of cultural differences and their consequences for the global acceptance of artificial intelligence in society. Further studies should focus on the specific categorisation of respondents according to the type of use of specific social infrastructure services, such as e-, e-government, healthcare and education platforms. As lessons for infrastructure experts, we must first mention the political implications. The present study provides relevant insights for policymakers in the field of social infrastructure. Based on the results, we recommend the following measures. First and foremost, regulatory frameworks should be introduced to ensure the transparency of the origin and reliability of AIGC used in public services in order to minimise the risks of AI-generated disinformation. Digital literacy programmes should be implemented to specifically address existing differences in access to AIGC in different communities. Strengthen the transparency of personal data use through AI, which will increase public trust in digital citizenship and e-government services. Raise awareness of the opportunities and risks of AIGC through regular information campaigns and educational activities targeting different demographic groups. Invest in ensuring the transparency of all AI-enabled processes in social infrastructure, with an emphasis on personal data protection and the prevention of disinformation. Actively engage with communities in the development of AI solutions that reflect citizens' needs and promote inclusive access to digital public services.

4. Conclusion

The objectives were met and clarified, and the study confirmed that the age of respondents has only a minimal impact on their willingness to accept AIGC, with factors such as awareness and attitudes towards the use of personal data by artificial intelligence appearing to be more decisive. The results also show that better awareness of AI technologies and positive experiences with AI-generated content are associated with a more optimistic view of the future development of marketing communication. For public institutions, this suggests that more attention should be paid to transparency in the use of AI and to raising awareness of this technology, which will significantly promote the acceptance of AIGC in digital public services. Similarly, public agencies and social infrastructure institutions should invest in AI literacy programmes and transparent communication strategies to strengthen citizens' trust in public services using AIGC. Future research should explore the adoption of AIGC in public sector contexts such as healthcare and education to inform fair infrastructure policy.

Author contributions: Conceptualization, MK and PM; methodology, MK; software, MK; validation, PM and MK; formal analysis, MK; investigation, MK; resources, PM; data curation, PM; writing—original draft preparation, MK; writing—review and editing, MK and PM; visualization, MK; supervision, PM; project administration, MK; funding acquisition, MK. All authors have read and agreed to the published version of the manuscript.

Funding: Funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V04-00367.

Conflict of interest: The authors declare no conflict of interest.

References

Bharadiya, J. P., Thomas, R. K., & Ahmed, F. (2023). Rise of Artificial Intelligence in Business and Industry. Journal of Engineering Research and Reports, 25(3), 85–103. https://doi.org/10.9734/jerr/2023/v25i3893
Bhatnagr, P., & Rajesh, A. (2024). Artificial intelligence features and expectation confirmation theory in digital banking apps: Gen Y and Z perspective. Management Decision. https://doi.org/10.1108/md-07-2023-1145

- Borden, S.-L., Codina, L., & Ufarte-Ruiz, M.-J. (2024). Introduction. Our relationships with GenAI and the media: Testing the limits of transparency, trust and moral agency. Communication & Society, 217–221. https://doi.org/10.15581/003.37.4.217-221
- Bown, O. (2024). From genies performing magic to sages imparting wisdom: a value-centred survey of music AI user interfaces, creative affordances and artist objectives. Journal of New Music Research, 53(1–2), 5–18. https://doi.org/10.1080/09298215.2024.2442360
- Brown, O., Davison, R. M., Decker, S., et al. (2024). Theory-Driven Perspectives on Generative Artificial Intelligence in Business and Management. British Journal of Management, 35(1), 3–23. Portico. https://doi.org/10.1111/1467-8551.12788
- Davenport, T., Guha, A., Grewal, D., et al. (2019). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24–42. https://doi.org/10.1007/s11747-019-00696-0
- Elhajjar, S. (2024). Unveiling the marketer's lens: exploring experiences and perspectives on AI integration in marketing strategies. Asia Pacific Journal of Marketing and Logistics, 37(2), 498–517. https://doi.org/10.1108/apjml-04-2024-0485
- Gonçalves, A. R., Pinto, D. C., Rita, P., et al. (2023). Artificial Intelligence and Its Ethical Implications for Marketing. Emerging Science Journal, 7(2), 313–327. https://doi.org/10.28991/esj-2023-07-02-01
- Graham, C., & Stough, R. (2025). Consumer perceptions of AI chatbots on Twitter (X) and Reddit: an analysis of social media sentiment and interactive marketing strategies. Journal of Research in Interactive Marketing, 19(7), 1096–1124. https://doi.org/10.1108/jrim-05-2024-0237
- Grewal, D., Satornino, C. B., Davenport, T., et al. (2024). How generative AI Is shaping the future of marketing. Journal of the Academy of Marketing Science, 53(3), 702–722. https://doi.org/10.1007/s11747-024-01064-3
- Guo, D., Chen, H., Wu, R., et al. (2023). AIGC challenges and opportunities related to public safety: A case study of ChatGPT. Journal of Safety Science and Resilience, 4(4), 329–339. https://doi.org/10.1016/j.jnlssr.2023.08.001
- Huang, M.-H., & Rust, R. T. (2020). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/s11747-020-00749-9
- Ioku, T., Song, J., & Watamura, E. (2024). Trade-offs in AI assistant choice: Do consumers prioritize transparency and sustainability over AI assistant performance? Big Data & Society, 11(4). https://doi.org/10.1177/20539517241290217
- Khan, A. W., & Mishra, A. (2023). AI credibility and consumer-AI experiences: a conceptual framework. Journal of Service Theory and Practice, 34(1), 66–97. https://doi.org/10.1108/jstp-03-2023-0108
- Kumar, V., Rajan, B., Venkatesan, R., et al. (2019). Understanding the Role of Artificial Intelligence in Personalized Engagement Marketing. California Management Review, 61(4), 135–155. https://doi.org/10.1177/0008125619859317
- Li, H., Ren, T., & Zhang, Z. (2024). Assistive Tools or Insecurity: The Impact of Technological Readiness on Willingness to Use AI. International Journal of Human–Computer Interaction, 41(18), 11657–11667. https://doi.org/10.1080/10447318.2024.2443802
- Miyazaki, K., Murayama, T., Uchiba, T., et al. (2024). Public perception of generative AI on Twitter: an empirical study based on occupation and usage. EPJ Data Science, 13(1). https://doi.org/10.1140/epjds/s13688-023-00445-y
- Park, H. E. (Grace). (2024). The double-edged sword of generative artificial intelligence in digitalization: An affordances and constraints perspective. Psychology & Marketing, 41(11), 2924–2941. Portico. https://doi.org/10.1002/mar.22094
- Pramanik, P., & Jana, R. K. (2025). A consumer acceptance model in the artificial intelligence era. Management Decision, 63(9), 3136–3163. https://doi.org/10.1108/md-03-2024-0574
- Qadri, U. A., Moustafa, A. M. A., & Abd Ghani, M. (2025). They misused me! Digital literacy's dual role in AI marketing manipulation and unethical young consumer behavior. Young Consumers. https://doi.org/10.1108/yc-08-2024-2207
- Robles, P., & Mallinson, D. J. (2023). Catching up with AI: Pushing toward a cohesive governance framework. Politics & Policy, 51(3), 355–372. Portico. https://doi.org/10.1111/polp.12529
- Toff, B., & Simon, F. M. (2024). "Or They Could Just Not Use It?": The Dilemma of AI Disclosure for Audience Trust in News. The International Journal of Press/Politics, 30(4), 881–903. https://doi.org/10.1177/19401612241308697
- Tully, S. M., Longoni, C., & Appel, G. (2025). Lower Artificial Intelligence Literacy Predicts Greater AI Receptivity. Journal of Marketing, 89(5), 1–20. https://doi.org/10.1177/00222429251314491
- Wang, T., Zhang, Y., Qi, S., et al. (2024). Security and Privacy on Generative Data in AIGC: A Survey. ACM Computing Surveys, 57(4), 1–34. https://doi.org/10.1145/3703626
- Xu, Y., Liu, X., Cao, X., et al. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), 100179. https://doi.org/10.1016/j.xinn.2021.100179