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Abstract: Finding the right technique to optimize a complex problem is not an easy task. There 

are hundreds of methods, especially in the field of metaheuristics suitable for solving NP-hard 

problems. Most metaheuristic research is characterized by developing a new algorithm for a 

task, modifying or improving an existing technique. The overall rate of reuse of metaheuristics 

is small. Many problems in the field of logistics are complex and NP-hard, so metaheuristics 

can adequately solve them. The purpose of this paper is to promote more frequent reuse of 

algorithms in the field of logistics. For this, a framework is presented, where tasks are analyzed 

and categorized in a new way in terms of variables or based on the type of task. A lot of 

emphasis is placed on whether the nature of a task is discrete or continuous. Metaheuristics are 

also analyzed from a new approach: the focus of the study is that, based on literature, an 

algorithm has already effectively solved mostly discrete or continuous problems. An algorithm 

is not modified and adapted to a problem, but methods that provide a possible good solution 

for a task type are collected. A kind of reverse optimization is presented, which can help the 

reuse and industrial application of metaheuristics. The paper also contributes to providing proof 

of the difficulties in the applicability of metaheuristics. The revealed research difficulties can 

help improve the quality of the field and, by initiating many additional research questions, it 

can improve the real application of metaheuristic algorithms to specific problems. The paper 

helps with decision support in logistics in the selection of applied optimization methods. We 

tested the effectiveness of the selection method on a specific task, and it was proven that the 

functional structure can help the decision when choosing the appropriate algorithm. 

Keywords: logistics; metaheuristics; optimization; decision support; framework; discrete; 

continuous; algorithm 

1. Introduction 

Many logistics problems are classified as NP-hard due to their complexity. In 

many cases, large data sets have to be handled, the tasks have large problem instances 

and the constraints are complex. Because of this, literature considers metaheuristics 

suitable for solving these problems (Sörensen and Glover, 2010), as they are able to 

provide an approximate optimal solution within an acceptable calculation time. 

Hundreds of thousands of articles are devoted to the efficient problem-solving ability 

of metaheuristics, and there are hundreds of different algorithms (Ma et al., 2023). The 

problem can be traced back to the multitude of scientific works and metaheuristics: it 

is not easy and clear to choose a metaheuristic to solve a problem. Even though 

countless metaheuristics have already been designed, there is still little reuse of these 

algorithms (Swan et al., 2022). Professionals in the industry need help to choose the 

right algorithm, which the scientific community can provide by identifying the 
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parameters and data that can connect problems and metaheuristics along a defined 

principle. 

We identified as a research gap that there is no selection, assignment structure or 

framework that connects logistics problems and metaheuristics: assigning 

metaheuristics to a problem that are most likely to solve the given problem properly 

based on general information and schemes, not in the case of specific, special tasks. 

Thus, metaheuristics and the grouping of problems based on their components and 

structural elements, which are responsible for basic optimization performances, are 

missing. This leads to the main research question: How can metaheuristic algorithms 

and logistics optimization problems be effectively connected, taking into account the 

characteristics of the problems and algorithms, as well as the real experiences of 

practical applications? It is therefore necessary to connect metaheuristic algorithms 

and logistic problems based on characteristics relevant to optimization, with particular 

regard to the nature of the decision variables, which can serve as the basis for a 

selection framework. It is also important to examine the actual areas of application of 

metaheuristics through the systematic analysis of previous research and practical 

results, because the definition of the real areas of application of the algorithms needs 

to be reconsidered and fine-tuned based not only on the original design goals, but also 

on the basis of practical experience. 

Therefore, we classify problems and metaheuristic algorithms using a new kind 

of matching technique, which can be used to identify the appropriate solution method 

for type tasks. The common cluster is discrete and continuous: in the case of problems, 

the examination of variables, and in the case of metaheuristics the analysis of what 

kind of problems the given algorithm has mostly successfully solved based on 

literature. The goal is to create a simple assignment system to make an appropriate 

decision regarding the method used. The need to introduce a new type of classification 

structure is clearly shown in Figure 1: the presence of discrete and continuous tasks 

is not typical for the classification of metaheuristics, nor is the categorization of 

metaheuristics based on them. 

 

Figure 1. The connection of metaheuristics and classification (tool: VOSviewer; 

search term: Classification of metaheuristics; data retrieval: 09.10.2024; database: 

ScienceDirect.). 
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According to our further assumption, assigning the appropriate optimization 

procedure to a task also depends on how quickly we have to make a decision. It does 

not matter how much time is available to solve a task. Therefore, it is also important 

to determine whether a task belongs to the strategic, tactical or operational level. If 

more time is available to find the right solution, in that case it is worthwhile to try 

several metaheuristics and determine which algorithm gives the most favorable result. 

If there is not much time available, metaheuristics represent a suitable compromise 

between the quality of the solutions and the speed of the calculation time. In this case, 

it is advisable to select an algorithm from among the possible methods providing a 

good solution. According to our assumption, time is a factor during the choice that 

does not represent a particular limitation at the strategic and tactical level, but 

represents a bottleneck at the operational level. 

The paper presents a selection structure, with the help of which metaheuristics 

that can efficiently solve a given logistics task can be determined with high probability, 

taking into account the level of the task (strategic, tactical or operational). With all this, 

the more frequent use of existing metaheuristic procedures can be promoted, and the 

reuse of procedures can be realized. 

The paper is structured as follows: in Sections 2 and 3, the research difficulties 

and the literature related to the topic are reviewed. In Section 4, the strategic, tactical, 

operational levels and tasks in logistics are described. In Section 5 and 6 there is a 

presentation of the selection framework, and then in Section 7 the efficiency test. In 

Section 8, we examine the operation of the framework in an infrastructural context. 

Finally, in Section 9, we provide the conclusions of the paper and identify further 

research directions. 

2. Research problem and literature statistics: Difficulties in 

assigning metaheuristics and logistic problems 

Choosing the right metaheuristic and associating it with a specific logistics task 

is a difficult and complicated task due to many factors. On the one hand, it is not 

possible to clearly define which are the structural elements between the algorithms and 

tasks that can be connected in order for a given metaheuristic to be able to properly 

solve a given problem. On the other hand, it is very difficult to find a metaheuristic 

that provides a possible good solution for a given task, since there are hundreds of 

thousands of research materials related to the topic and their number shows an 

exponential increase. This huge number makes the work of research communities and 

practitioners extremely difficult, as it is not easy to find and select the work or works 

that can clearly help in choosing the optimization technique in such a large set. 

Table 1 shows the most important terms of the topic, as well as some examples 

of metaheuristics and logistic tasks. (In this case, the specific examples are not of 

particular importance, they were only analyzed to provide a more comprehensive 

picture. There are hundreds of metaheuristics and countless logistical problems, so the 

analysis of all of them is an extremely time-consuming task and irrelevant from the 

point of view of the paper.) The literature statistics include—based on the search term 

given in Table 1—all search results found in the specified article type, as well as the 

number of research materials published in the last 5 years. Based on the numbers, it 
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has been proven how difficult it is to get to a relevant publication. Based on the data 

obtained, it can be clearly stated that the number of scientific works is huge and it is 

really not easy to search among different types of materials. And this does not facilitate 

decision support for choosing the appropriate optimization technique. 

Table 1. Literature statistics (retrieved: 03.11.2024, database: ScienceDirect). 

Search term Article type 
All results Results 2020–2024 

−2024 2020 2021 2022 2023 2024 

Optimization 

Review articles 234,278 15,868 20,777 22,486 24,113 33,125 

Research articles 1,000,000+ 166,313 192,958 215,805 233,849 293,981 

Encyclopedia 21,255 474 1024 1528 1081 2523 

Book chapters 173,367 9557 9380 11,369 10,830 11,165 

Algorithm 

Review articles 108,289 7081 8582 9204 10,035 12958 

Research articles 1,000,000+ 105,031 121,919 133,612 142,682 167,028 

Encyclopedia 9562 343 406 525 623 1082 

Book chapters 103,225 4692 4831 5479 5214 5724 

Metaheuristic 

Review articles 1415 112 134 209 221 323 

Research articles 29,039 2119 2855 3608 3882 4721 

Encyclopedia 69 4 9 6 8 11 

Book chapters 1019 78 117 136 115 196 

Genetic Algorithm 

Review articles 8591 607 798 1022 1134 1503 

Research articles 149,845 9896 11,955 13,730 14,635 17,197 

Encyclopedia 702 38 43 26 35 87 

Book chapters 5454 355 459 527 465 538 

Ant Colony 

Optimization 

Review articles 1220 104 121 158 144 214 

Research articles 15,952 1232 1443 1655 1725 1874 

Encyclopedia 42 2 2 ND 2 11 

Book chapters 579 51 70 68 60 83 

Firefly Algorithm 

Review articles 477 46 52 71 81 91 

Research articles 5378 577 699 771 808 868 

Encyclopedia 8 ND ND ND 1 4 

Book chapters 239 23 35 28 21 49 

Marine Predators 

Algorithm 

Review articles 52 1 5 8 17 21 

Research articles 822 10 81 178 237 310 

Encyclopedia ND ND ND ND ND ND 

Book chapters 21 ND ND 3 2 15 

Sine Tree-seed 

Algorithm 
All type 10 2 3 1 3 ND 

Logistics 

Review articles 38,487 2647 3249 3416 3802 4928 

Research articles 640,197 40,060 47,047 48,024 48,277 56,214 

Encyclopedia 3858 120 247 241 171 468 

Book chapters 27,491 1566 1413 1717 1677 1849 
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Table 1. (Continued). 

Search term Article type 
All results Results 2020–2024 

−2024 2020 2021 2022 2023 2024 

Traveling Salesman 

Problem 

Review articles 421 30 34 33 39 54 

Research articles 11,415 533 597 691 718 815 

Encyclopedia 55 ND 3 ND ND 6 

Book chapters 601 41 23 24 37 41 

Vehicle Routing 

Problem 

Review articles 324 29 35 36 35 46 

Research articles 9227 633 801 865 955 1019 

Encyclopedia 11 ND 5 ND ND 1 

Book chapters 163 25 11 11 11 18 

Knapsack Problem 

Review articles 222 14 21 27 13 21 

Research articles 6086 324 356 371 349 390 

Encyclopedia 15 ND ND ND 2 1 

Book chapters 186 7 6 9 16 10 

Warehouse location 

Review articles 57 2 1 1 3 7 

Research articles 1240 75 60 71 84 110 

Encyclopedia 8 1 1 ND ND ND 

Book chapters 90 3 4 3 1 6 

Inventory 

Review articles 29,668 2025 2404 2560 2487 2938 

Research articles 347,530 17,541 19,914 19,619 19,755 22,276 

Encyclopedia 5165 183 235 278 202 449 

Book chapters 33,172 1376 1311 1393 1226 1226 

Based on the results of Table 1, the question arises as to why this 5-5 specific 

example shows such a varied picture in terms of the number of hits. In the case of 

metaheuristics and problems, there are those that are more widely researched and more 

popular, on the one hand because of their practical applicability, and on the other hand, 

in terms of adaptability. Furthermore, in the case of algorithms, it doesn’t matter when 

it was introduced, since the research of “a few years old” metaheuristics is not 

competitive with methods that have existed for 20–30 years.  

Even in the case of simple expressions, there are plenty of results in the scientific 

databases, but it is an even more difficult task to find or assign the appropriate 

metaheuristic algorithm to a specific logistics problem. In Table 2, we examined five 

metaheuristics in terms of whether they have already been applied to a given logistics 

problem, whether there is research material on the given task. In the case of certain 

algorithms, there are thousands of works/articles for a given problem, however, we 

can also find application possibilities in the case of recently designed metaheuristics. 

And their number increases exponentially over the years, which makes it even more 

difficult to assign optimization techniques to a task. 
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Table 2. Literature statistics: “Name of metaheuristic” and “name of logistic problem” (retrieved: 21.11.2024, 

database: ScienceDirect). 

AND 
“Traveling Salesman 

Problem” 

“Vehicle Routing 

Problem” 

“Knapsack 

Problem” 

“Warehouse 

location” 
Inventory 

“Genetic Algorithm” 5880 4753 2310 280 10,989 

“Ant Colony 

Optimization” 
2650 1872 767 52 1568 

“Firefly Algorithm” 393 246 212 10 285 

“Marine Predators 

Algorithm” 
45 16 42 0 19 

“Sine Tree-Seed 

Algorithm” 
2 0 0 0 0 

Based on the results, it can be concluded that there is a need to define a new type 

of assignment structure, a framework that can facilitate the assignment of algorithms 

to tasks using a unified, general scheme. There are approximately 700 different 

metaheuristics, so it can be clearly stated that finding the algorithm that provides the 

best solution for a given task is an almost impossible task based on the literature. 

3. Literature review 

In the field of logistics and supply chains, countless metaheuristic algorithms are 

used for optimization in both general and special tasks. Many metaheuristics have 

already been applied to the classic Traveling Salesman Problem (Many logistics 

problems, such as vehicle routing, distribution and network optimization, etc., can be 

transformed into Traveling Salesman Problem (TSP) (Wang and Han, 2021).), for 

example: African Buffalo Optimization, Ant Colony Optimization, Artificial Bee 

Colony Algorithm, Firefly Algorithm, Fish Swarm Algorithm, Genetic Algorithm 

(Ezugwu et al., 2021), Discrete Bacterial Memetic Evolutionary Algorithm (Kóczy et 

al., 2018), etc. RDS (reconfiguration of distribution systems (RDS) is a classical 

optimization problem that involves the planning and operation of the electrical 

distribution systems) is a more specialized field and the following metaheuristics have 

already been used to solve the problem (non-exhaustively): Simulated Annealing, 

Particle Swarm Optimization, Tabu Search, Ant Colony Search, Harmony Search 

Algorithm, Genetic Algorithm, Artificial Immune Algorithm, etc. (Silveira et al., 

2021). Pérez et al. (2023) proposed a hybrid metaheuristic approach for tasks 

belonging to the inventory-route problem. 

Simply, metaheuristic optimization can be described as a technique that can find 

the most suitable solution among the possible solutions of a given problem (Turkoglu 

et al., 2023). A metaheuristic searches for the optimal result among a large set of 

feasible solutions, which it can often involve less computational effort than the use of 

calculus-based methods (Gil-Rios et al., 2021). The formalization of the optimization 

model is usually linked to the nature or type of the decision variables of the system. 

Models with discrete variables are called discrete optimization problems, while 

models with continuous variables are called continuous optimization problems 

(Dagdia and Mirchev, 2020). In the case of discrete optimization, the feasible set is 

finite (Hladík, 2022), the variables are discrete, which can be binary (0 and 1) or 
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integer values. Many real-world problems are modeled with discrete variables, since 

resources are usually indivisible. Discrete systems can be, for example, assignment 

problems, scheduling tasks, routes (Dagdia and Mirchev, 2020). During continuous 

optimization, the feasible set is uncountably infinite (Hladík, 2022), the decision 

variables are continuous by nature (Abdel-Basset et al., 2024), which can take an 

infinite number of possible values within a given range. This type of problem can be, 

for example, determining locations based on coordinates. It is characteristic of 

continuous type tasks that the data is mostly collected by measurement. 

An optimization problem (OP) is the determination of the most favorable solution 

within a given feasible range. OPs generally fall into two categories: discrete and 

continuous (Abdel-Basset et al., 2024). However, real optimization problems (e.g. 

logistics, transportation, engineering design) contain both continuous and discrete 

variables. This is also why it is difficult to assign a suitable metaheuristic to a problem, 

since a metaheuristic algorithm cannot efficiently handle tasks containing mixed 

variables. One of the reasons for this is that standard metaheuristics are basically 

designed to solve either continuous (e.g., Differential Evolution, Evolutionary 

Strategies, Cuckoo Search, Firefly Algorithm) or discrete (Particle Swarm 

Optimization, Ant Colony Optimization, Simulated Annealing, Tabu Search) 

optimization problems (Talbi, 2024). 

In the study of Badejo and Ierapetritou (2022), it was found that the sub-goals 

and sub-problems of supply chains are emphasized when defining most problems, 

even though it would be important to focus on cooperation and integration between 

different levels and elements of the supply chain. Many compromises can be reached 

between the global optimum and the decisions made at different levels of supply 

chains, if mutual benefits and dependencies are found and exploited (Badejo and 

Ierapetritou, 2022). An important factor in the framework presented in the paper is 

whether a problem belongs to a strategic, tactical or operational level. 

Designing an algorithm is time-consuming and expensive, and the process itself 

is rarely documented (because of this, the thought process is often impossible to follow, 

and it is not clear what motivated certain design decisions) (Swan et al., 2022). The 

aim of the paper is to reduce the time, cost and resources needed to create a 

metaheuristic optimization procedure with the help of expert knowledge that can be 

obtained based on the literature. With all this, scientific work and practical application 

can be brought closer to each other. Figure 2 shows the development of an algorithm 

in broad outline—of course, each part has many more components (Osaba et al., 

2021)—highlighting which part the paper focuses on developing. 
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Figure 2. Broad development of metaheuristics. 

4. Strategic, tactical and operational levels and tasks in logistics 

Logistics decision-making can also be divided into 3 main levels, strategic, 

tactical and operational levels. Each level involves different goals, scopes and different 

time frames. From the point of view of a well-functioning logistics system, each level 

is equally important, and their proper coordination is necessary to ensure efficiency 

(Alvarez et al., 2020).  

Strategic decisions are long-term, high-level planning decisions and serve a long-

term goal. They are typically for a period of 5–10 years. They provide a framework 

for determining the direction and goals of an organization. In the field of logistics, this 

includes decisions related to the development of the network, for example, the 

definition of infrastructure needs, the location of distribution centers and warehouses, 

the selection of markets, the selection of suppliers, technological investments, and the 

selection of key partners. Extremely complex tasks, numerous data analyses, forecasts, 

and trends are required to be taken into account in order to make decisions (Badejo 

and Ierapetritou, 2022). 

The primary role of tactical decisions is to support strategic goals. They are 

intended for medium-term planning, the duration of which is usually 1–3, possibly 5 

years. The distribution of resources necessary for feasibility and the definition of 

planning methods take place at this level. Tasks belonging to this can be e.g. 

determination of delivery routes, determination of delivery frequency, development of 

stocking guidelines. An extremely high level of knowledge of logistics systems, 

guidelines and the resources required for implementation is required (Steadie Seifi, 

2011). 

Operational decisions include short-term, daily, weekly or monthly decisions and 

operations. Their goal is to effectively implement the goals defined on the basis of 

logistics plans and manage the allocation of resources and the necessary processes on 

a daily basis. Operational tasks can include, for example, scheduling deliveries, 
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monitoring stock levels, allocating daily labor or handling customer inquiries. Fast and 

efficient decision-making and excellent problem-solving skills are required to deal 

with challenges at this level (SteadieSeifi, 2011). Table 3 summarizes the most 

important aspects of each level. 

Table 3. The main aspects of the strategic, tactical and operational decision levels. 

Aspect Strategic Tactical Operative 

Time frame 5–10 years (long-term) 1–3 years (medium term) 1–30 days (short term) 

Task focus Broad, enterprise-wide goals Optimization and resource use, allocation 
Fulfillment and management of day-to-day 

tasks 

Complexity High Medium Low or medium 

Main goals 
Structural design, direction 

determination 
Process optimization Completing tasks and problem solving 

Impact Large (long-term) Medium (medium term) Immediate (short term) 

In order to choose the right optimization method, it is necessary to organize the 

logistics tasks to which level they belong. An example of this can be seen in Table 4 

(Alvarez et al., 2020; Badejo and Ierapetritou, 2022; Gritsch, 2001; Steadie Seifi, 

2011). 

Table 4. Strategic, tactical and operational tasks in logistics. 

Strategic tasks Tactical tasks Operational tasks 

Determining the location of distribution centers 
Development of inventory 

management policies 

Organization and scheduling of daily 

shipments 

Determining the location of warehouses Choice of delivery method Order picking 

Definition of logistics functions that are outsourced to a third-

party logistics service provider 
Optimizing the layout of warehouses 

Packaging of orders and preparation 

for delivery 

Definition of logistics functions that are solved within the 

company 
Supplier relationship management 

Continuous monitoring of stock 

levels, intervention if necessary 

Development of strategies to reduce the environmental impact 

of logistics operations (sustainability, green logistics) 
Selection of Carriers 

Allocation and planning of vehicles 

and routes 

Determining the integration possibilities of new, advanced 

technologies 
Route optimization Real-time tracking of shipments 

Developing emergency plans and strategies 
Continuous monitoring and 

development of applied systems 

Preparation of daily work schedules, 

shift planning 

Investigating the possibilities of global expansion and new 

market entry 

Negotiation with carriers to ensure 

competitive prices 
Loading of goods 

Development of long-term efficiency improvement strategies 
Determining how the vehicles will be 

used (leasing or purchasing) 
Quality control 

Determination of optimization techniques for different subareas  Solving sudden problems 

Building long-term partnerships   

5. Modeling a framework for choosing the right metaheuristic 

The majority of logistical problems are extremely complex and complicated tasks. 

Optimization is crucial in countless areas: the proper allocation of resources, 

minimizing the time or distance traveled, choosing the right warehouse structure, and 

the proper placement of depots are just a few examples of the countless tasks to be 
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solved. In many cases, these tasks can only be performed properly if the processes are 

coordinated and properly optimized. Figure 3 shows the structure of the framework, 

which helps to assign a metaheuristic that provides a possible good solution to a task. 

 

Figure 3. Selection framework model. 

The framework consists of 2 main branches from the point of view of the problem:  

1) Determination of the nature of the problem: discrete or continuous based on the 

variables. 

2) Level classification of the problem: does it belong to strategic, tactical or 

operational decision levels. 

The steps for branch 1 are: 

After formulating and briefly describing the problem, it is necessary to determine 

the most important variables of the problem, based on which it can be classified as 

discrete or continuous tasks. After that, metaheuristics should be analyzed according 

to whether they are typically suitable for solving discrete or continuous problems. 

Once a specific task has been classified into discrete or continuous classes, and the 

groups of metaheuristics that are suitable for solving discrete or continuous tasks have 

been determined, tasks and metaheuristics of the same class can be connected and the 

specific algorithm with which we want to optimize a given task can be determined.  

Steps for branch 2: 

After formulating the problem, it is necessary to decide which decision level the 

given problem belongs to: strategic, tactical or operational. When choosing the 

algorithm, it does not matter how much time is available to perform the optimization 
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task: as already mentioned, the time factor does not represent a particular limitation at 

the strategic and tactical level, but it represents a bottleneck at the operational level. 

As a result, we defined the following regarding the number of selectable 

metaheuristics: 

Once the algorithms that provide a possible good solution have been determined, 

as well as the nature and level of the task, the required number of specific algorithm(s) 

can be selected from the appropriate sets (discrete or continuous) based on Table 5 

and the actual application can begin. 

Table 5. The effect of level of problems on the choice of metaheuristics. 

Level 
Recommended number of 

metaheuristics to choose from 
Explanation 

Strategic unlimited/no need to specify 

In theory, it is possible to examine and test the application of any number of metaheuristics at this 

level. The number of algorithms chosen may depend on the company’s policy, available time and 

resources. 

Tactical 1, 2 or 3 

The time factor is not a particular limitation at this level either, although there is less time 

available to find the right method than at the strategic level. At the tactical level, it can be a 

compromise between the quality of the solutions and the available time - which, depending on the 

task, can be a few years, a few months, or even weeks - if the company chooses and tests 

maximum 3 metaheuristics (if necessary). 

Operative 1 

The time available for optimization is a bottleneck at the operational level, and practice also 

shows that quick and efficient decisions must be made to deal with problems at this level. 

Therefore, it is only recommended to choose one metaheuristic here, because even a medium-

quality solution is preferable to the absence of a complete solution. 

Connection of branches 1 and 2: 

The connection point of branches 1 and 2 is clearly represented by metaheuristics: 

after identifying and classifying the characteristics of the problems, it is possible to 

determine whether it is worth choosing an algorithm suitable for solving discrete or 

continuous tasks, and the number of metaheuristics that can be chosen from a defined 

set is influenced by which decision-making level a given problem belongs to. Overall, 

the 1st branch helps to specify the possible good optimization procedures, and the 2nd 

specifies the suggested number of selectable algorithms, how many algorithms it is 

advisable to try in order to reach the optimal solution before making the final decision. 

The complexity of the framework promotes efficient algorithm selection for a 

specific task in such a way that it requires the fulfillment of 3 important boundary 

conditions for the final choice: 

(1) Determination of the nature of the task: discrete or continuous (binary 

classification variable). 

(2) Identification of metaheuristics, which have already been successfully applied to 

discrete or continuous tasks. 

(3) The level affiliation of the task, which can be strategic, tactical or operational. 

With the help of this formulation, it can be ensured that the framework 

systematically selects the appropriate algorithm based on the combination of the nature 

of the problems (discrete or continuous), the matching of metaheuristics (algorithms 

suitable for solving discrete or continuous problems) and the level situation of the 

problems (strategic, tactical or operational). 

This is a new type of selection method, where the main hypothesis is that a 

logistics problem consisting of discrete or continuous variables can most likely be 
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efficiently solved with metaheuristics that, based on literature, have been used 

successfully to solve mostly discrete or continuous tasks. Therefore, after assigning 

logistics tasks to strategic, tactical or operational levels, it is still necessary to 

determine whether the nature of the problem is discrete or continuous. It is advisable 

to identify the goal and the most important constraints. Examples of this can be seen 

in Table 6. 

Table 6. Example: The nature of the tasks and their most important goals and constraints. 

Problem Level Description Type of the problem 

Determining the location of 

distribution centers 
Strategic 

Optimizing network design by evaluating up to thousands of 

configurations and selecting the best one. 

Goal: minimizing total costs.  

Constraints: cost, distance, certain service level limits. 

Continuous 

Route optimization Tactical 

Determination of optimal route. 

Goal: minimize travel distance, time or cost. 

Constraints: travel distance, time or cost. 

Discrete 

Allocation and planning of vehicles 

and routes 
Operative 

Determination of optimal route and vehicles of transport. 

Goal: minimize travel distance, time or cost. 

Constraints: number and size of resources, time, cost. 

Discrete 

6. Metaheuristics for discrete or continuous tasks 

Metaheuristic algorithms have already been classified in many different ways, 

but there is no structural aggregate analysis that would help to solve the logistical task 

given to select an algorithm. That is why it is necessary to introduce a new type of 

interconnection system. However, this requires knowledge of the classification 

methods presented so far.  

Presenting a systematic classification of all metaheuristic algorithms available in 

the literature is an extremely difficult task and a great challenge (Ezugwu et al., 2021). 

Since most algorithms imitate processes and patterns inspired by nature, this is 

the category that researchers in the field deal with the most. The majority of 

classification techniques classify these algorithms into different categories. Currently, 

one of the newest taxonomies with the most subcategories is represented by the work 

of Darvishpoor et al. (2023). The nature-based algorithms were classified according 

to the source of inspiration and can actually be interpreted as an extended version of 

the classification of Abdel-Basset et al. (2018). Nine main categories are distinguished: 

bio-based, ecosystem-based, social-based, physics-based, chemistry-based, music-

based, sports-based, hybrid and math-based. The bio-based category is further divided 

into 10 subcategories: evolution-based, organ-based, behavior-based, disease-based, 

microorganism-based, insect-based, avian-based, aquatic-based, terrestrial animal-

based, and plant-based (Darvishpoor et al., 2023). The classification categories shown 

in Figure 4 according to Darvishpoor et al. (2023). 
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Figure 4. Classification of nature-inspired algorithms by Darvishpoor et al. (2023). 

We selected the metaheuristics examined in the paper from these groups, one 

from each, and analyzed the algorithms according to whether they were successfully 

used to solve more discrete or more continuous problems, according to the literature 

(Table 7). (One selected reference was attached to the metaheuristics.) 

Table 7. Metaheuristics for discrete or continuous problems. 

Metaheuristic Variable’s type (Problem) References 

African Vultures Optimization Algorithm (AVOA) continuous Rajaguru and Annapoorani (2023) 

Bacterial Colony Chemotaxis Optimization (BCCO) continuous Lu et al. (2013) 

Flower Pollination Algorithm (FPA) continuous Lyu et al. (2023) 

Gravitational Search Algorithm (GSA) continuous Jiang et al. (2020) 

Grey Wolf Optimizer (GWO) continuous Zhang et al. (2024) 

Selfish Herd Optimizer (SHO) continuous Zhao et al. (2020) 

Swine Influenza Models-Based Optimization 

(SIMBO) 
continuous Sharma et al. (2016) 

Whale Optimization Algorithm (WOA) continuous Xue et al. (2024) 

Ant Colony Optimization (ACO) discrete Cui et al. (2024) 

Artificial Immune System (AIS) discrete Schmidt et al. (2017)  

Chemical Reaction Optimization (CRO) discrete Xiao et al. (2022) 

Golden Ball Algorithm (GBA) discrete Worawattawechai et al. (2022) 

Harmony Search (HS) discrete Makhmudov et al. (2024) 

Hybrid Metaheuristic (HM) discrete Nohair et al. (2024) 

Particle Swarm Optimization (PSO) discrete Afrasyabi et al. (2023) 

Sine Cosine Algorithm (SCA) discrete Liu et al. (2023) 

Water Cycle Algorithm (WCA) discrete Sadollah et al. (2015) 

Genetic Algorithm (GA) discrete-continuous 
Esmaelian et al. (2018), Roghanian and Pazhoheshfar 

(2014) 

Based on the results and the Table 7, it can be seen that in practice metaheuristics 

are applied to discrete tasks in a relatively large proportion, although a significant part 

of metaheuristics were found to be suitable for solving continuous optimization, and 
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were originally designed for solving continuous tasks (Ezugwu et al., 2019; 

Mohammadi and Sheikholeslam, 2023). However, our research shows that in practice 

there is not a very big difference between solving discrete and continuous tasks. Based 

on this, the following conclusions can be made: 

⚫ It is important to examine what algorithm has already been used to solve a given 

type of problem in practice, and from this it is advisable to draw conclusions 

regarding the suitability of a metaheuristic, furthermore 

⚫ It has the right to exist as a new classification of metaheuristics according to the 

fact that mostly discrete or continuous tasks have already been solved effectively, 

since this study reflects well the actual fields of application of metaheuristics. 

With the help of these data, we determined the metaheuristics that provide a 

possible good solution for a given task from among the 18 selected algorithms, which 

are summarized in Table 8. 

Table 8. Possible metaheuristics providing good solutions for logistics tasks. 

Problem 
Determining the location of distribution 

centers 
Route optimization 

Allocation and planning of vehicles and 

routes 

Nature of the 

problem 
Continuous Discrete Discrete 

Possible 

metaheuristics 

Genetic Algorithm 

African Vultures Optimization Algorithm 

Bacterial Colony Chemotaxis Optimization 

Flower Pollination Algorithm 

Gravitational Search Algorithm 

Grey Wolf Optimizer 

Selfish Herd Optimizer 

Swine Influenza Models-Based 

Optimization 

Whale Optimization Algorithm 

Genetic Algorithm 

Ant Colony Optimization 

Artificial Immune System 

Chemical Reaction 

Optimization 

Golden Ball Algorithm 

Harmony Search 

Hybrid Metaheuristic 

Particle Swarm Optimization 

Sine Cosine Algorithm 

Water Cycle Algorithm 

Genetic Algorithm 

Ant Colony Optimization 

Artificial Immune System 

Chemical Reaction Optimization 

Golden Ball Algorithm 

Harmony Search 

Hybrid Metaheuristic 

Particle Swarm Optimization 

Sine Cosine Algorithm 

Water Cycle Algorithm 

7. Operational testing 

After defining the selection structure, the effectiveness must be examined on a 

specific example with specific algorithms. These steps are shown in Figure 5. 



Journal of Infrastructure, Policy and Development 2025, 9(2), 10934. 
 

15 

 

Figure 5. Selection steps. 

The task is described below using the model. The goal is to identify a potential 

good solution algorithm: 

Step 1: Defining the problem: Determining the optimal location of facilities. 

Step 2: Brief description of the problem: Determining the optimal location of 

facilities and assigning customers to these facilities by minimizing the total cost. Total 

cost is the sum of facility opening/operating and delivery costs. Customers are in a 

specific location. 

Step 3: The nature of the problem in terms of the solution: Continuous 

optimization task, with continuous variables (facilities can be anywhere). 

Step 4: Identifying metaheuristics that can provide a possible good solution: It 

was necessary to identify metaheuristics that, based on the literature, have already 

effectively solved tasks of a continuous nature. (Examples in Table 8.) 

Step 5: Choosing a specific algorithm: We chose the African Vultures 

Optimization Algorithm (AVOA) (based on Table 8).  

Step 6: Application of metaheuristics to a specific task. 

Representation of the problem: 

⚫ n customers, each with a fixed location; 

⚫ m facilities that must be located somewhere in the space (facilities are not limited 

to predetermined locations); 

⚫ cost function: cost related to opening/operating a facility + delivery cost (the cost 

of transporting the goods from the facility to the customers). 

Constraints: 

⚫ each customer must be assigned to exactly one facility; 

⚫ a facility can only serve customers when it is open. 
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Mathematical representation: 

minimize ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 + ∑ 𝐹𝑗

𝑚
𝑗=1 𝑦𝑗, 

where 

cij: the cost of transporting the goods from facility j to customer i; 

xij: binary variable, which is 1 if customer i is assigned to facility j, otherwise 0; 

Fj: fixed cost of opening facility j; 

yj: binary variable, which is 1 if facility j is open, 0 otherwise. 

Constraints: 

∑ 𝑥𝑐𝑓 = 1      ∀𝑐 ∈ {1, 2, … , ∁}𝐹
𝑓=1 , 

where 

xcf: binary variable that is 1 if customer c is assigned to facility f, otherwise 0; 

F: set of available facilities. 

𝑥𝑐𝑓 ≤ 𝑦𝑓      ∀𝑐 ∈ {1, 2, … , ∁},      𝑓 ∈ {1, 2, … , 𝐹}, 

where 

yf: binary decision variable that is 1 if facility f is open and 0 if not.  

Example parameters: 

⚫ location (coordinates) of customers in a two-dimensional space: [(2, 3), (5, 6), (8, 

8)]; 

⚫ opening each facility has a fixed cost: F1 = 10, F2 =10; 

⚫ cost per unit distance: 1; 

⚫ maximum number of iterations: 100; 

⚫ number of agents (vultures): 10. 

An algorithm inspired by the African Vultures Optimization Algorithm (AVOAn) 

was tested in Python. The results are shown in Table 9. 

Table 9. Comparison of AVOAn and ACOn. 

Metaheuristic Short general description Problem nature* References Task solution result 

African Vultures 

Optimization 

Algorithm 

(AVOA) 

The African Vultures Optimization 

Algorithm (AVOA) - like countless 

other algorithms - was inspired by 

collective intelligence and the foraging 

of creatures living in nature. AVOA 

was inspired by the lifestyle of African 

vultures: it simulates their foraging and 

navigational behavior (Abdollahzadeh 

et al., 2021). 

Continuous 

Abdollahzadeh et al., 2021; 

Diab et al., 2022; 

Ghafari and Mansouri, 2023; 

Rajaguru and Annapoorani, 

2023 

Optimal Facility Locations:  

[[4.34698593 6.82859876], 

[4.99789714 5.99690372]] 

Optimal Total Cost:  

17.85 

Ant Colony 

Optimization 

(ACO) 

ACO is a popular algorithm based on 

mimicking the foraging behavior of 

ants. Ants essentially find and follow 

the shortest path between their colony 

and food sources. They use 

pheromones to mark the tracks, as well 

as information on the quantity and 

quality of the food. This natural 

behavior of ants was the main 

motivation for the creation of ACO 

(Blocho, 2020). 

Discrete 

Chaharsooghi and Kermani, 

2008; 

Cui et al., 2024; 

Skinderowicz, 2022; 

Wu and Gao, 2023 

No location was founded 

Best Cost = 24.43 

* The nature of the tasks/problems, which have already been effectively solved by the given 

metaheuristic based on the literature. 
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However, it is not enough to test a selected metaheuristic on a problem, it is also 

worth examining what kind of result we get in the event that we do not choose an 

algorithm that was identified based on the selection model. Therefore, we tested the 

task with a method suitable for discrete problems. We chose Ant Colony Optimization 

(ACO), which can efficiently solve discrete tasks based on Table 8. The method and 

testing data are identical to the procedure used for the African Vultures Optimization 

Algorithm. The results of the ACO-inspired algorithm (ACOn) can also be seen in 

Table 9. 

The Table 9 also shows a short description of the selected algorithms, as well as 

some references to already solved problems. It should be noted here that the result 

obtained with AVOA can most likely be further improved by fine-tuning the 

parameters and an even better result can be achieved. However, the fine-tuning of the 

parameters is not the focus of this paper. 

Based on the results, it can be concluded that an algorithm that we identified with 

the help of the selection model presented in the paper really performed better. 

8. The impact of the framework on the logistics infrastructure 

Table 10. Analysis of tasks related to logistics infrastructure. 

Problem Field Key variable(s) Type of problem Metaheuristics 

Global supply chain 

network design 
infrastructural 

Binary or integer decision variables 

for placing different facilities. 
discrete 

ACO, AIS, CRO, GBA, HS, 

HM, PSO, SCA, WCA, GA 

Determining the 

location of 

distribution centers 

infrastructural 

A finite set of integer decision 

variables (if predefined locations are 

considered)/an infinite range of 

values if the distribution centers can 

be anywhere in a defined space. 

discrete/continuous 

ACO, AIS, CRO, GBA, HS, 

HM, PSO, SCA, WCA, 

GA/AVOA, BCCO, FPA, 

GSA, GWO, SHO, SIMBO, 

WOA, GA 

Determination of the 

optimal number of 

warehouses 

infrastructural 
Number of warehouses to be opened: 

integer variables. 
discrete 

ACO, AIS, CRO, GBA, HS, 

HM, PSO, SCA, WCA, GA 

Determination of 

optimization 

techniques for 

different subareas 

efficiency improvement 

It involves the selection of 

optimization techniques from a 

predefined set (e.g. exact or 

metaheuristic methods): discrete 

variables representing the chosen 

techniques. 

discrete 
ACO, AIS, CRO, GBA, HS, 

HM, PSO, SCA, WCA, GA 

Development of 

long-term efficiency-

enhancing strategies 

sustainability/efficiency 

improvement 

Optimizing performance indicators 

with different measurements: 

continuous variables. 

continuous 

AVOA, BCCO, FPA, GSA, 

GWO, SHO, SIMBO, WOA, 

GA 

Monitoring the fuel 

consumption of 

transport vehicles 

sustainability 
Continuous variables for fuel levels 

and consumption rates. 
continuous 

AVOA, BCCO, FPA, GSA, 

GWO, SHO, SIMBO, WOA, 

GA 

One of the most important tasks of logistics systems and network planning is to 

determine the optimal location of various facilities (e.g. warehouses, distribution 

centers). These are complex optimization problems that can be efficiently solved with 

metaheuristics. The rethinking and development of existing infrastructures or the 

appropriate optimization of planned infrastructures all contribute to the efficiency of 

the entire logistics network. The Table 10. contains some infrastructural and 

efficiency-enhancing tasks, the nature of which we determined using the most 
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important variables, which is one of the most important tasks of the framework. The 

metaheuristics defined in Table 7. can be assigned to individual tasks after their 

classification into discrete or continuous classes has been identified. 

The use of metaheuristics in logistics optimization also has many advantages in 

an infrastructural context. Thanks to the flexibility and adaptability of the algorithms, 

these methods can be properly adapted to the optimization of different infrastructural 

elements. Thanks to their robustness, they are able to adapt to changes in the 

environment, which makes them suitable for solving dynamic and real-time logistics 

problems. In logistics systems, metaheuristics are able to find the near-optimal 

solution to a specific problem, which helps reduce the operating cost of the entire 

network and improves the overall performance of the entire supply chain. 

Metaheuristics offer an efficient, flexible approach to optimizing logistics operations 

at all decision levels, for all complex, high-volume, many-constrained tasks. The 

framework primarily helps with how existing techniques can be adapted to tasks. This 

means both a reduction in development costs and a reduction in the time devoted to 

optimization. This not only facilitates the effective solution of specific tasks, but also 

contributes to sustainable logistics practices by optimizing resource use or supporting 

economic development. The use of advanced algorithms is essential in the decades of 

the Fourth Industrial Revolution and in maintaining the competitiveness of companies. 

9. Discussion 

Selecting and applying a metaheuristic suitable for a given problem is a difficult 

task. Metaheuristics basically provide a solution of adequate quality within an 

acceptable calculation time. But what if there is a relatively short time available for 

optimization, for choosing an optimization technique? How can the results and 

suggestions of thousands of scientific works be applied in practice? We were looking 

for a solution proposal for these problems, because we saw that unexpected events 

happen in countless cases in the industry, which affect the predetermined scenarios. In 

the case of real, complex problems, the uncertain environment and, in many cases, the 

expected result within a short period of time influence the choice and effectiveness of 

the optimization method. The trade-off between the quality of the solution and the 

speed of the calculation time can be seen in practice in countless cases. Depending on 

whether a problem belongs to a strategic, tactical or operational level, it is possible to 

decide on the procedure used: more emphasis is placed on the accuracy of the solution 

in the event that there is a lot of time available in the decision-making process, and 

accepting one possible good solution can mean promoting efficient work in the case 

of operational tasks. For this, we were looking for a solution that would facilitate and 

speed up the time devoted to optimization while ensuring an acceptable result. 

For this reason, we investigated metaheuristic algorithms and logistic problems 

and found that it is very difficult to find the right algorithm for a task type among 

thousands of research materials. As a solution, we proposed the use of a framework 

and presented the steps necessary to select a metaheuristic. We classified logistic 

problems and metaheuristics according to a similar, novel principle: the common 

denominator was the aspects of discrete and continuous concepts. This makes it easier 

to identify the right optimization method for a given task, and the framework also 
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reduces the time allocated to the optimization process. We also demonstrated the 

suitability and applicability of the selection system through a specific example. The 

results showed that the categorization and matching of logistics tasks and algorithms 

along a novel principle has many advantages: it provides a good framework to 

facilitate the decision-making process; can contribute to more frequent reuse of 

metaheuristics; and can promote the real industrial application of these algorithms. All 

this can increase efficiency in the field of optimization and make processes more 

sustainable. 

Based on our current research, several additional directions and goals can be 

formulated. We extend the study to several metaheuristics and to the solution of 

additional logistics tasks. Our goal is also to identify even more common points of 

connection between a task and an algorithm, which can be used to further narrow down 

the methods that provide a good solution. 
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