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Abstract: Electricity consumption in Europe has risen significantly in recent years, with
households being the largest consumers of final electricity. Managing and reducing
residential power consumption is critical for achieving efficient and sustainable
energy management, conserving financial resources, and mitigating environmental
effects. Many studies have used statistical models such as linear, multinomial, ridge,
polynomial, and LASSO regression to examine and understand the determinants of
residential energy consumption. However, these models are limited to capturing
only direct effects among the determinants of household energy consumption. This
study addresses these limitations by applying a path analysis model that captures the
direct and indirect effects. Numerical and theoretical comparisons that demonstrate
its advantages and efficiency are also given. The results show that Sub-metering
components associated with specific uses, like cooking or water heating, have
significant indirect impacts on global intensity through active power and that the
voltage affects negatively the global power (active and reactive) due to the physical and
behavioral mechanisms. Our findings provide an in-depth understanding of household
electricity power consumption. This will improve forecasting and enable real-time
energy management tools, extending to the design of precise energy efficiency policies
to achieve SDG 7’s objectives.

Keywords: household power consumption; regression models; residential electricity
modeling; path analysis model

1. Introduction
Sustainable Development Goal 7 (SDG 7, Affordable and Clean Energy) is the

key to achieving climate goals, and constructing effective policies has an immense role
in fostering these actions. Residential electricity consumption is a major component
of SDG 7, and its influence is predominantly on all three components of SDG 7 [1].
Electricity plays a main role in modern economies and in the increasing demand for
energy services [2]. The electricity demand is increasing internationally in all sectors
due to factors including increased family incomes, technological advancements and the
Internet of Things (IoTs), electrification of the transportation system, the replacement
of non-electric heaters with electric ones, and increased usage of air conditioning [2].
The residential sector is always the world’s second or third largest final electricity
consumer [2].

Electricity consumption in Europe has been on the rise in recent years.
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Consequently, the world’s energy shortage is getting worse and worse. Growth in
global electricity demand in 2024 and 2025 is set to be among the fastest in the past
two decades [3]. Based on the report of IEA’s Electricity Mid-Year Update, electricity
demand is forecast to grow by around 4% in 2024, up from 2.5% in 2023, and this is
the highest annual growth rate since 2007, excluding the exceptional rebounds seen in
the wake of the global financial crisis and the Covid-19 pandemic [3]. In European
countries, including France, the residential sector is one of the largest consumers
of electricity, accounting for about a third of the total final electricity demand [4].
Besides, many European countries, including France, have launched an urgency to
reduce greenhouse gas emissions [5]. In 2023, 65% of the electricity produced in
France came from nuclear power, and solar energy sources accounted for 14% [6].

According to the International Energy Agency’s 2013 reference scenario, by 2040,
14% of worldwide energy consumption will come from households, a 57% increase
compared with the 2010 rate [7]. The residential sector is thus responsible for a large
proportion of energy consumption [7]. In France, the residential sector is the second
largest source of consumption, at 46 million metric tons of oil equivalent (Mtoe) in
2012, just behind the transport sector [7]. Apart from the fact that energy efficiency in
buildings represents the largest source of energy consumption, it also largely reflects
household energy practices. This explained the increasing and interrelated interest of
researchers and governments in understanding the determinants of domestic energy use
to develop measures to rationalize consumption [7–9].

Furthermore, according to the “Energy Balance of France” published by the
Department of Observation and Statistics (SOeS), the residential sector remains the
second final energy consumer after transport (49 Mteo), with 30% of final energy
consumption and nearly 20% of greenhouse gas emissions [9].

The significant increase in household energy consumption, frequent electricity
shortages and blackouts, and rising electricity prices in the residential context [4,7–11].
Given these challenges, it is imperative to adopt efficient energy usage strategies
[4,9–11]. To adopt this efficient and optimized usage, we need a significant reduction
in residential energy demand. Despite all this, compared to the three end-use sectors
(transportation, industrial, etc.), the residential sector is largely understudied [7,9,10].
This scarcity of studies has driven many researchers and policymakers to try to
better understand the determinants of energy consumption and to identify conservation
strategies [4,8–11].

In the past few years, many empirical studies have used statistical models
[4, 7, 9] and machine learning (ML) approaches [10] to examine and understand
the determinants of residential energy consumption. However, modeling household
energy consumption is a complex issue because it is sorely linked to the multitude
of interrelated factors, such as technical attributes of the buildings, household
characteristics, and behavior [9], energy systems, climate, equipment, and
socio-cultural factors (e.g., household size and composition, greying of society) [8].

Many recent studies have been conducted to address this issue: [12] used a
quantile regression model to examine predictors of household energy consumption
among single-family residences; [9] used a multivariate regression analysis
(Specifically, log-linear models based on Ordinary Least Square (OLS)) to tease
out the impacts of various factors on the domestic energy consumption in France; and
[10] offers an extendable experimental analytical framework to modeling household
electric power consumption in France by comparing multinomial, ridge, polynomial,
and Least Absolute Shrinkage and Selection Operator (Lasso) regression models.

Unfortunately, these models are limited in their ability to capture complex indirect
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effects [8,11] among the determinants of household energy consumption. In this study,
we have proposed a Path Analysis Model (PAM) that overcomes these limitations
by capturing and understanding the components of the direct and indirect effects on
household energy consumption. Thismodel is based on a dataset of over 2million users
spanning four years in France. This study examined the key characteristics of power
consumption, analyzed energy consumption patterns, identified unusual behaviors
about household characteristics, and offered insights into the key determinants of
residential energy consumption to inform energy policies. The findings of the proposed
model provide deeper insight into the effect of building and occupant attributes on
electricity use.

In addition to this introduction (Section 1), the rest of this paper is structured as
follows: Section 2 details the data source and description, our hypothesis, and our
proposed model. Section 3 presents the findings and discussion. Finally, Section 4
offers the main conclusions, perspectives, and policy implications.

2. Methodology
This section describes the scope and context of this study, the data source, and the

description. In addition, it presents our hypothesis and our proposed model.

2.1. Data description
The dataset used in this research comprises 2,075,259 observations of household

electric power consumption, collected at a one-minute interval over a period of four
years (2006 to 2010) from a residence in Sceaux (7 km of Paris, France) [10,13–15].
This dataset, licensed under a Creative Commons Attribution 4.0 International (CC
BY 4.0) license, is publicly available, and used in the Centre for Machine Learning
and Intelligent Systems [10,13–15]. The dataset contains seven key variables, which
are [10,13–15] :
• Global active power: Global quantity of electrical energy consumed in the

household.
• Global reactive power: Is the global quantity of electrical power that oscillates

between the load and the source without performing any useful work.
• Volatge: Minute-averaged voltage.
• Global intensity: Household global minute-averaged current intensity.
• Sub metering 1: Energy consumption of the first sub-meter, typically associated

with laundry room appliances (washing machine, tumble dryer, refrigerator, and
lights).

• Sub metering 2: Energy consumption of the second sub-meter, often linked to
kitchen appliances.

• Submetering 3: Energy consumption of the third sub-meter, typically associated
with water heating and air conditioning.
To ensure the integrity and accuracy of the analysis, we performed an in-depth

data cleaning to keep the analysis robust, which included processing missing values
(that represent only 1.25% [13–15]) but also checking for outliers or inconsistencies
that may have been biasing results. This step was done using specialized libraries in
Python and R. Table 1 below contains the statistical summary of these variables.

After finishing the data sourcing, cleaning, and presentation of descriptive
statistics for each variable, we move to an exploratory analysis focused on examining
the correlations among these variables. The next part 2.2 is dedicated to this analysis.
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Table 1. Summary statistics of the variables.

Statistic Voltage
Sub
Metering1

Sub
Metering2

Sub
Metering3

Global
Active Power

Global
Reactive Power

Global
Intensity

Min −5.0144 −0.1863 −0.2322 −0.7227 −0.9138 −1.0801 −0.9485
1st Qu. −0.6058 −0.1863 −0.2322 −0.7227 −0.7261 −1.0801 −0.7385
Median 0.0762 −0.1863 −0.2322 −0.7227 −0.4942 −0.1851 −0.4866
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3rd Qu. 0.6638 −0.1863 −0.0748 1.3478 0.3858 0.6185 0.3531
Max 3.7084 12.4696 12.0460 3.0530 8.4652 11.6133 8.7501

2.2. Exploratory data analysis and hypotheses
According to Table 1, all variables are continuous. Hence, to explore the

interrelationships and potential causal connections among these variables. We
standardized these variables and computed the Pearson correlation matrix using
respectively the scale, and cor functions in R.

Table 2 below presents the first 6 lines of the table extracted after standardization.

Table 2. Extract of the standardized dataset showing six observation records.

Observation
Global
Active Power

Global
Reactive Power

Voltage
Global
Intensity

Sub
Metering1

Sub
Metering2

Sub
Metering3

1 2.7514 2.7371 −1.5588 2.8722 −0.1863 −0.0748 1.3478
2 3.7642 2.9015 −1.9272 3.8378 −0.1863 −0.0748 1.2260
3 3.7766 3.4676 −2.0307 3.8378 −0.1863 0.0826 1.3478
4 3.7890 3.5042 −1.8937 3.8378 −0.1863 −0.0748 1.3478
5 2.2644 3.7416 −1.3030 2.3264 −0.1863 −0.0748 1.3478
6 2.1352 3.6868 −1.5040 2.1584 −0.1863 0.0826 1.3478

Table 3 below presents this correlation matrix.

Table 3. Extract of the standardized dataset showing six observation records.

Voltage
Sub
Metering1

Sub
Metering2

Sub
Metering3

Global
Active Power

Global
Reactive Power

Global
Intensity

Voltage 1.0000 −0.2038 −0.1789 −0.2849 −0.4010 −0.1206 −0.4113
SubMetering1 −0.2038 1.0000 0.0608 0.1156 0.4741 0.1377 0.4782
SubMetering2 −0.1789 0.0608 1.0000 0.1065 0.4567 0.1505 0.4622
SubMetering3 −0.2849 0.1156 0.1065 1.0000 0.6241 0.0763 0.6132
Global
Active Power

−0.4010 0.4741 0.4567 0.6241 1.0000 0.2548 0.9990

Global
Reactive Power

−0.1206 0.1377 0.1505 0.0763 0.2548 1.0000 0.2718

Global Intensity −0.4113 0.4782 0.4622 0.6132 0.9990 0.2718 1.0000

Table 3 shows the correlations between Global Active Power and (SubMetering1,
Sub Metering2, Sub Metering3, and Voltage), Global Reactive Power with (Voltage
and Global Active Power), and Global Intensity with (Global Active Power and
Global Reactive Power). These correlations indicate potential associations and suggest
possible causal effects. To test the significance of these correlations, we compute the
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Test for Significance of Pearson’s Correlation Coefficient using cor.test function in R
software [16–18]. Tables 4–6 below present the results of this test.

Table 4. Test for significance of pearson’s correlation coefficients.

Voltage
Correlation with
Global Active Power

P-value Significance

Voltage −0.4 < 2.2× 10−16 Significant
SubMetering1 0.48 < 2.2× 10−16 Significant
SubMetering2 0.46 < 2.2× 10−16 Significant
SubMetering3 0.62 < 2.2× 10−16 Significant

Table 5. Test for significance of pearson’s correlation coefficients.

Voltage
Correlation with
Global Active Power

P-value Significance

Voltage −0.12 < 2.2× 10−16 Significant
Global Active Power 0.25 < 2.2× 10−16 Significant

Table 6. Test for significance of pearson’s correlation coefficients

Voltage
Correlation with
Global Intensity

P-value Significance

Global Reactive Power 0.27 < 2.2× 10−16 Significant
Global Active Power 0.99 < 2.2× 10−16 Significant

Tables 4–6 show that all correlations are significant (< 0.05). Hence, based on
the significance of these correlations and the existing studies in energy consumption
and power demand management [2,10,19–22] the following hypotheses are proposed:
1) H1: Voltage, Sub Metering 1, Sub Metering 2, and Sub Metering 3 positively

influence Global Active Power. This hypothesis indicates a direct impact of
these sub-metered consumption metrics on overall power usage.

2) H2: Voltage andGlobal Active Power positively influenceGlobal Reactive Power.
H2 suggests an interaction (causal effect) between power demands and reactive
power management.

3) H3: Global Active Power and Global Reactive Power positively influence Global
Intensity. H3 indicates that increases in overall and reactive power demand could
drive intensity variations.

4) H4: SubMetering 1, SubMetering 2, and SubMetering 3 indirectly and positively
influence Global Reactive Power, potentially through their effects on Global
Active Power.

5) H5: SubMetering 1, SubMetering 2, and SubMetering 3 indirectly and positively
influence Global Intensity, mediated through their impact on both Global Active
Power and Global Reactive Power.
Each hypothesis reflects and suggests meaningful potential causal effects (direct1,

and indirect2) or associative relationships based on the physical interactions expected
between these variables, which we propose to confirm or reject by a conceptual model.

For this purpose, PAM is chosen as a conceptual model to test and confirm these
hypotheses, especially when both direct and indirect effects are relevant [16, 23–29].
Since PAM can deal with complex relations between more than two variables when
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both direct and indirect effects are of interest, Consequently, we employed it [16,
23–29]. Other models (Multiple Linear Regression, Multinomial Regression, Ridge
Regression, LASSO Regression, Polynomial Regression) [10,19] were considered, but
they were later deemed less appropriate for our aims based on their inability to model
causal and mediating relationships. A detailed analysis of these alternative models is
shown below, which roughly explains why they were not selected.

Multiple Linear Regression (MLR): is a statistical method for estimating the value
of a dependent numerical variable using one or more predictor (independent) variables
by assuming that the dependent variable is linearly related to the independent variables
[16].

In this study, MLR was also considered to examine the relationships between
variables proposed in the hypothesis. However, it was identified as inappropriate for
our conceptual model given its inability to handle highly complex dependencies where
variables function as dependent and independent of other variables in these hypotheses.
For instance, in H1 Global Active Power is a dependent variable that is affected by
(Voltage, Sub Metering 1, Sub Metering 2, and Sub Metering 3). In contrast, in
H2 and H3, Global Active Power itself serves as an independent (predictor) variable
affecting both Global Reactive Power and Global Intensity, respectively. Hence Global
Active Power is a dependent (outcome) in one hypothesis (i.e. H1 ), and a predictor
independent in other hypotheses (i.e. H2, and H3).

MLR is effective for situations when there is only one dependent variable and
multiple predictors influencing it [16,23–25,28,29]. Yet it does not have the ability to
model dependencies, where a variable plays the role of dependent in one context and
independent in another [16,23,24,26–29]. Therefore, the flexibility afforded by MLR
would not enable the exploration of the causal pathways and mediating effects in our
hypothesis.
• Multinomial Regression: is a statistical method used to model the relationship

between a binary or categorical (polytomous) dependent variable with more than
two categories and a set of independent variables (continuous or categorical)
[31, 32]. It is an extension of the logistic regression, in which a dependent
variable has only a binary choice (e.g., presence/absence of a characteristic),
the dependent variable in a multinomial logistic regression model can have
more than two choices that are coded categorically, and one of the categories
is taken as the reference category [31,32]. Although it is powerful in scenarios
where we need to understand the influence of predictors on binary or categorical
outcomes, it lacks the flexibility to capture and interpret indirect effects and
mediating relationships, which are essential for the complex causal structures in
our hypotheses where all variables are continuous (See Table 1). This limitation
makes it unsuitable for our study.

• Ridge Regression (RR): is an approach for estimating the coefficients of MLR in
scenarios where the independent variables are highly correlated [33–35]. It is
an extension of ordinary least-squares regression that introduces a regularization
term to handle multicollinearity and prevent overfitting [33, 34, 36]. Although
RR is an extension of MLR that addresses issues of multicollinearity (when
independent variables are highly correlated), it is limited by the obligation
to model a single dependent variable and cannot be used to model complex
relationships where a variable may be both dependent and independent [34,35].
Hence, it cannot accommodate the hypotheses of complex relationships, where
intermediate variables may convey indirect effects.

• LASSO Regression: is a regularization method that overcomes the limitations
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of linear regression concerning the instability of estimation and unreliability of
prediction in a high-dimensional context [37]. The main advantage of LASSO
regression lies in its ability to perform variable selection, which can prove
invaluable in the presence of a large number of variables [37]. However, like
RR, it is constrained nevertheless by its incapacity to manage indirect effects
and causal linkages inside a model. Lasso does not facilitate the simultaneous
estimation of links among several variables in a causal network; instead, it
concentrates on variable selection and regularization.

• Polynomial Regression: Polynomial regression is a statistical model to study the
non-linear relationships between a dependent variable and a set of predictor
variables by adding polynomial terms of predictor variables [38]. The core
limitations of polynomial regression in our context are: Firstly, it enables only
modeling the non-linear relationships; this is not the case for us, as all the causal
relationships we have are linear. Secondly, it cannot differentiate between direct
and indirect effects, as it focuses on fitting a specific non-linear relationship
rather than exploring the complex causal structures.
After justifying the choice of PAM as a conceptual model, the next part 2.3

presented this model’s basic definitions, concepts, and assumptions.

2.3. Proposed conceptual model: Path analysis
PAM is a set of statistical techniques used to assess the causal relationships

between observed variables [30,39–43]. In other words, PAM is an advanced statistical
method for identifying and examining both the direct and indirect causal relationships
among a set of exogenous variables (ξ)3 (independence, predictor, input) [11] and
endogenous variables (η)4 (dependence, output) [11, 30]. PAM can be considered an
extension of multiple regression models in the sense that it allows several variables to
be dependent. Unlike multiple regression, where only one variable is dependent, PAM
permits variables to serve as both causes and effects [30,39,43]. Figure 1 below, which
illustrates the limitations of multiple regression models when dealing with multiple
intermediate dependent variables or situations where variables form a causal chain (e.g.,
Z1 depends on Z, which in turn depends on Y). PAM overcomes these limitations by
examining both direct and indirect (intermediate) effects [11,30,41,43].

X

Y

Z Z1

X

Y

Z

Multiple regression model PAM

Figure 1. Multiple regression models vs PAM.

On the other hand, PAM is a special case of Structural Equation Modeling (SEM)
which is a set of related statistical techniques used to evaluate the fit of a hypothesized
causal model with available data, the differentiation of PAM from other SEM models
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is that it concerns the directs and indirect effects only between the observed variables
[11, 30]. PAM was first developed in the first half of the 20th century by Sewall
Wright [11, 30]. In recent years, PAM has had many applications in the energy
sector, such as in analyzing household energy consumption factors, the energy supply
chain, CO2 emission intensity factors, emissions, consumer intentions, and renewable
energy [11,44–48]. However, PAM is rarely used to study household electrical power
consumption. Most studies of household energy consumption focus on econometric
methods, machine learning models, and regression analysis to predict electrical power
consumption [10, 11, 19–21, 49]. A PAM can be expressed algebraically as follows
[30]: 

η1 = γ11ξ1 + . . .+ γ1qξq + ζ1
...
ηj = γj1ξ1 + . . .+ γjqξq + βj1η1 + . . .+ βj(j−1)ηj−1 + ζj
...
ηp = γp1ξ1 + . . .+ γpqξq + βp1η1 + . . .+ βp(p−1)ηp−1 + ζp

where q and p are respectively the number of exogenous and endogenous variables, and
γi,j, and βi,j are respectively the coefficients linking endogenous variables to exogenous
variables, and the coefficients that relate the endogenous variables between them. In
addition, ζj where j = 1 . . . p is the disturbance (error) [30]. The model parameters
are estimated by minimizing a specific criterion such as Unweighted Least Square,
Maximum likelihood, and Generalized Least Square [30,50].

Figure 2 below depicts an example of PAM with two exogenous variables and
two endogenous variables [30].

ζ1
γ11

γ22

ϕ12

ξ1 η1

η2ξ2 ζ2

β21

Figure 2. The path diagram for PAM with two exogenous variables, and two
endogenous variables [30].

After outlining the general structure and framework of PAM,we now present PAM
applied to predict household energy consumption below:

Global Active Power = γ11 × Voltage+ γ12 × Sub Metering1+ γ13 × Sub Metering2
+γ14 × Sub Metering3+ ζ1

Global Reactive Power = γ21 × Voltage+ β21 × Global Active Power+ ζ2

Global Intensity = β31 × Global Active Power+ β32 × Global Reactive Power+ ζ3

(1)

In this model presented in (Equation (1)), Voltage, Sub Metering 1, Sub Metering
2, and Sub Metering 3 are exogenous variables that directly and indirectly influence
Global Active Power, Global Reactive Power, and Global Intensity. Global Active
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Power is an endogenous variable impacted by all exogenous variables (Voltage, Sub
Metering 1, Sub Metering 2, and Sub Metering 3). Global Reactive Power, another
endogenous variable, is influenced both directly by the endogenous variable Global
Active Power and by the exogenous variable Voltage. Finally, Global Intensity is the
last endogenous variable, which is directly influenced by the two endogenous variables
(Global Active Power, and Global Reactive Power).

Numerous computational software, such as SPSS, AMOS, LISREL, MPLUS,
R-Studio, and Python, can be used to fit the model defined in (Equation (1)).
We will use the lavaan package in R, which is a free and open-source package
for estimating a wide range of multivariate statistical models, including all SEM
models [11]. In addition, we employed the Unweighted Least Squares and Maximum
Likelihood criteria to fit the model, utilizing the BFGS optimization procedure [30,50].
Furthermore, the path diagram of the model in (Equation (1)) is presented in Figure 3
below5.

GRP
SB1

VL

SB2

SB3

GAP

GI

γ12

γ13

γ14

γ11

γ21

β21

β31

β32

Figure 3. Path diagram of the conceptual model in (Equation (1)).

The next Section 3 will present a detailed analysis of the estimation results.

3. Results and discussion
This section presents the model performance, the model findings, the hypothesis

validation, the global discussion, and a comparison of the model findings.

3.1. Model performance
In this part, we aim to validate and assess the predictive performance of our model.

To achieve this, the most common various indices used in SEM models are:
1) Comparative Fit Index (CFI): Quantifies the degree to which the hypothesized

model fits the observed data [11,16,30,51]. CFI ranges from 0 to 1, with higher
values indicating better-fit [51].

2) Tucker Lewis Index (TLI): Assesses the relative fit of the hypothesized model by
comparing it with the null model [16,41,52].

3) Goodness-of-Fit-Index (GFI): is used to evaluate how the proposed model fits
the observed data by comparing the difference between the empirical covariance
matrix and the implied covariancematrix. GFI value higher than 0.95 is accepted
[16,51].

4) Adjusted Goodness-of-Fit-Index (AGFI ): is a modification of GFI by considering
the degrees of freedom in the model, penalizing for model complexity [16,41,52,
53].

5) RootMeans Square Error of Approximation (RMSEA): is a fit index that provides
how the model fits the observed data per degree of freedom, and it considers the
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model complexity. Overall, an RMSEA less than 0.10 implies a poor fit, and an
RMSE higher than 0.94 implies a good fit [16,41,53].

6) Standardized Root Mean Square Residual (SRMR): is the Standardized Root
Mean Square Residual, a measure of the mean absolute correlation residual, with
smaller values revealing a good model fit [11,16,41]. An SRMR value closer to
0 indicates a better fit.

7) Bentler-Bonett Normed Fit Index (NFI): is an incremental fit index that compares
the fit of the model to the baseline model. An NFi value closer to 1 indicates a
better fit [11,16,41,53].
Table 7 presents the values of these indices:

Table 7. The values of fit indices.

Index CFI GFI AGFI GFI TLI RMSEA NFI

Value 0.974 0.959 0.836 0.945 0.170 0.018 0.974

Table 7 reveals key insights into the adequacy of the proposed model’s fit to
the data. With a CFI of 0.974, the model demonstrates a strong comparative fit,
indicating that it closely aligns with the observed covariance matrix. Similarly, a
GFI at 0.959 suggests a satisfactory overall fit and a higher value of AGFI at 0.836.
In addition, TLI at 0.945 means the model fits the data very well, and the RMSEA
of 0.170 is acceptable, although it is a little higher than the global threshold used
in SEM models, which is 0.11 [41]. Furthermore, an SRMR of 0.018 is extremely
low, indicating that the differences between the observed and predicted covariances are
very small and that the model captures the relationships between variables very well.
Besides, an NFI of 0.974, meaning that the model fits the data very well, explains a
significantly greater proportion of the variance in the data than the null model, and that
the relationships specified in the model are justified by the data. Hence, the proposed
model is statistically significant, highly predictive, and more adequate, in efficiency
and reliability in predicting household energy consumption.

After proving the validity and the coherence of our model, we proceed to compare
numerically the performance and efficiency between our model and the other models in
the previous studies presented in Part 2.2. We show the performance of our model with
that of MLR that is purely independent, and which does not take into account indirect
effects between variables. Therefore, we compare the values of R-squared (R2) for the
fit that was found for each of the applications of the MLR using lm function in R for
each dependent variable separately (Global Active Power, Global Reactive Power, and
Global Intensity) with their values found in our model in (Equation (1)), and conducted
using lavaan package.

Table 8 below presents these values of R2.

Table 8. Comparison between PAM, and MLR using R2.

Dependent variable PAM R2 MLR R2

Global Active Power 0.704 0.704
Global Reactive Power 0.065 0.065
Global Intensity 0.998 0.998

Table 8 shows the R2 values are equal for both approaches, which is expected
since, in simple cases where there is a single dependent variable and several
independent variables, PAM and MLR give the same fitting results. As mentioned in
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Part 2.2, PAM is an extension of MLR and retains the same fitting performance for an
isolated equation. However, its advantage lies in its ability to model indirect effects,
taking into account intermediate relationships between variables. For example, it can
measure the indirect impact of Sub Metring 1 on Global Intensity via Global Active
Power and Global Reactive Power, which is not possible with independent regression
models.

After showcasing the performance and efficiency of our model, we proceed to
interpret and examine the estimated coefficients. The next part 3.2 is dedicated to this
task.

3.2. Model findings and hypotheses validation
In this part, all direct and indirect effects between the variables will be analyzed

and examined. In addition, all hypotheses proposed above will be discussed. Table 9
below presents the coefficients and their p-values indicating all variables are significant.

Table 9. Estimates and significance levels.

Variable Coefficient P-value

Global Active Power

Voltage −0.116 0.000
Sub Metering 1 0.370 0.000
Sub Metering 2 0.359 0.000
Sub Metering 3 0.510 0.000

Global Reactive Power

Global Active Power 0.246 0.000
Voltage −0.022 0.000

Global Intensity

Global Active Power 0.994 0.000
Global reactive Power 0.018 0.000

The results in Table 9 show the direct, and indirect effects of several variables on
household energy consumption in the context of the hypothesis proposed. By analyzing
these findings, we can reveal how different factors influence the energy parameters in
the system.

For hypothesis H1, the findings confirmed a large part of this hypothesis, with
significant coefficients for all variables. However, voltage has a negative effect
(−0.116) on the global active power. This negative direct effect shows that if
voltage increases, active power tends to decrease slightly, this can be explained by
the adjustments in the system to maintain energy balance. This inverse effect between
voltage and direct energy consumption is a frequent adjustment in systems where one
tries to maintain energy stability with changes in voltage. On the other hand, the
sub-metered consumption metrics (Sub Metering 1, Sub Metering 2, and SubMetering
3) have significant and highly positive effects respectively (0.370, 0.359, and 0.510
) on the global active power. This direct impact of these sub-measures on active
energy consumption, suggests that each sub-measure adds to the energy consumption
in a proportional way to their coefficient, a key point to understanding the individual
contributions of each subsector to overall energy consumption.

Concerning H2, the results indicate that global active power has a significant

11



Journal of Infrastructure, Policy and Development 2025, 9(2), 10621.

positive effect (0.246) on global reactive power. This effect supports the idea that
the expansion of active power supply leads to an increase in reactive power demand,
supporting the proposal of a direct interaction between active and reactive power
requirements within the system. In addition, the low negative effect (−0.022) of
voltage on global reactive power, suggests a decrease in the reactive power demand
when the voltage increases. This inverse effect is said to be the automatic corrections
in the system to adjust the voltage fluctuations.

For H3, the results show that the effect of active global power on global intensity
is very high, with a coefficient value very close to (0.994). This impact shows that
energy intensity is largely based on active consumption and that it is likely that energy
intensity is almost based on the turnaround of active consumption in this system. In
addition, global reactive power also has a positive impact on global intensity, which
is (0.018), albeit on a smaller scale. In any case, a small contribution from reactive
power is contained within the contributions to overall energy intensity, which justifies
that variations in reactive power contribute even marginally to the evolution of energy
intensity.

For H4, and H5, the results can be examined and viewed in a coherent logic. As
regards the direct effect of the sub-measures on global active power, it is important
to note that it plays an indirect but essential role in meeting reactive power demand
and energy intensity. Because of the primacy of active power and therefore of active
demand, these sub-measures lack direct power over reactive power as well as energy
intensity due to their cumulative effect on active consumption, which clarifies the type
of mediated interaction hypothetically expected.

Table 10 below explicitly summarizes the outcomes of the five hypotheses.

Table 10. Summarization of the outcomes for the hypotheses.

Hypothesis Outcome

H1

Voltage→ (Positively) Global Active Power Not Confirmed
Sub Metering 1→ Global Active Power Confirmed
Sub Metering 2→ Global Active Power Confirmed
Sub Metering 3→ Global Active Power Confirmed

H2

Voltage→ (Positively) Global Reactive Power Not Confirmed
Global Active Power→ Global Reactive Power Confirmed

H3

Global Active Power→ Global Intensity Confirmed
Global Reactive Power→ Global Intensity Confirmed

H4

Sub Metering (1, 2, and 3)→ (Indirectly) Global Reactive Power Confirmed

H5

Sub Metering (1, 2, and 3)→ (Indirectly) Global Intensity Confirmed

Furthermore, Table 11 below presents the values of indirect effects.
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Table 11. Indirect effects values.

Indirect effect Value

Between Sub Metering (1, 2, and 3), and Global Reactive Power

Sub Metering 1→ (Indirectly) Global Reactive Power 0.37 × 0.25 = 0.092
Sub Metering 2→ (Indirectly) Global Reactive Power 0.36 × 0.2 = 0.09
Sub Metering 3→ (Indirectly) Global Reactive Power 0.51 × 0.25 = 0.13

Between Sub Metering (1, 2, and 3), and Global Intensity

Sub Metering 1→ (Indirectly) Global Intensity 0.37 × (0.99 + 0.25 ×0.018) = 0.37
Sub Metering 2→ (Indirectly) Global Intensity 0.36 × (0.99 + 0.25 ×0.018) = 0.358
Sub Metering 3→ (Indirectly) Global Intensity 0.51 × (0.99 + 0.25 ×0.018) = 0.50

Finally, Figure 4 below visualizes the path diagram of the model with estimated
coefficients and calculated indirect effects.
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Figure 4. Path diagram of the model with estimated coefficients and calculated indirect
effects.

The next Part 3.3 discusses these findings and compares them with the findings
of previous studies.

3.3. Discussion
Our model findings provide insightful revelations about household electricity

consumption and offer a detailed view of how energy consumption behaviors are
interconnected in a residential context. Our model has made it possible to break down
direct and indirect effects, making it an appropriate tool for research into domestic
energy consumption. Compared with MLR, our model takes account of complex
interactions and chain effects. This confirms the findings of [10, 11, 19, 21, 54]
that more advanced analytical tools are needed to understand energy consumption in
high-intensity urban areas and as climate change progresses. These advanced analytical
tools also provide a basis for making informed policy decisions by identifying the most
significant impacts on energy behavior in the home and developing specific measures
to address them [10, 11]. Each examined variable in our model illuminates various
aspects of energy consumption offering a robust foundation for crafting targeted policy
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interventions.
SubMetering components (1, 2, et 3) significantly influence global reactive power

demand indirectly via their effects on global active power. These findings align with
the findings of [10,11] which underline the need for better management of consumption
sub-segments to relieve pressure on limited sources of available energy. By targeting
sub-measures, energy efficiency policies can become more precise and provide more
in-depth knowledge, making it possible to optimize the use of domestic energy and
reduce reactive energy [9–11,19–21].

In addition, the positive effect of the sub-measures (Sub Metering 1, 2, and 3)
such as cooking or space heating/cooling or heating water on the global power (active
and reactive) suggests that each undervalued source contributes proportionately to
global energy consumption. This outcome aligns with the findings of [9, 22] that
identified portable electric heating and electric water heating as significant drivers of
high electricity demand in UK homes, and also the studies of [2] that said that space
heating/cooling, domestic hot water, and cooking represent, respectively 30%, 12%,
and 7% of global consumption in Tours (France). Consequently, appropriate bespoke
energy interventions could be made to optimize the use of critical sub-segments, which
may be more effective in high-cost random resource environments [10,11,19].

As shown in Figure 4, each SubMetering (1, 2, et 3) also has a significant indirect
effect with different scales on the global intensity, which means that each household’s
ownership of electrical appliances will indirectly affect electricity consumption. This
aligns with the outcome of [55] that announces that the household’s ownership of
electrical appliances alone will not affect electricity consumption, but the greater the
number of appliances owned, the more opportunities that exist for electricity use in UK
homes.

Furthermore, the voltage has a significant negative impact on global power (active
and reactive). While these findings are consistent with studies of [56] that present the
effects of voltage reductions on real power, reactive power, and energy for individual
and composite loads, other studies could explore whether this relationship holds across
diverse climatic or socio-economic conditions [55]. This negative effect of voltage and
global power can be understood through physical and behavioral mechanisms. Also,
the fact that higher voltages can ensure efficient operation of appliances, consequently
reducing energy demand [10,11,19].

Finally, Figure 4 demonstrates that the main components (global reactive power,
global active power, voltage, global intensity, Sub Metering 1, Sub metering 2, and
Sub-Metering 3) have a considerable impact directly and indirectly on electricity
demand, confirming and reinforcing the previous studies [10,11,19,22].

The next Section 4 presents the conclusions, limitations of the study and discusses
directions for future research.

4. Conclusions
This study addresses the challenge of reducing household power consumption,

a critical task for achieving efficient and sustainable energy management. Reducing
household energy use is essential for conserving financial resources and protecting
the environment. Our approach involved examining household power consumption
patterns and identifying unusual behaviors to achieve SDG 7’s objectives. We
have proposed several hypotheses to model household power consumption usage
and behaviors based on the analysis of a dataset of over 2 million users spanning
four years, by considering correlations between variables and existing studies on
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energy consumption and power demand management. In addition, we have discussed
in depth the models used to study these hypotheses, highlighting their limitations
in capturing causal and mediating relationships. After, we have proposed a PAM
that overcomes these limitations by capturing and understanding the components of
the direct and indirect effects on household energy consumption. Numerical and
theoretical comparisons that demonstrated the advantages and efficiency of PAM are
also given. The results show that Sub-metering components associated with specific
uses, like cooking or water heating, have significant indirect impacts on global intensity
through active power and that the voltage has a negative effect on the global power
(active and reactive) due to the physical and behavioral mechanisms. Our findings
provide an in-depth understanding of household electricity power consumption. This
will improve forecasting and enable real-time energy management tools, extending to
the design of precise energy efficiency policies.

This study presents certain limitations, providing perspectives for future research.
Firstly, the scope of the data is residence Sceaux (7 km of Paris, France), which
may not fully cover France’s household electric power consumption challenges and
opportunities. Secondly, the temporal aspect of the dataset, with the data being 14 years
old. To overcome these limitations, two works are in progress: (1) Extending research
to a national scale can yield insights into regional variances and enable a comprehensive
strategy for the country; (2) An exhaustive approach that updates this dataset with
a complement of socioeconomic variables to ensure its relevance and accuracy and
combines PAMwith advanced time seriesmodels [57] will offer a deep, comprehensive
analysis of household electric power consumption trends, a life-cycle theory analysis
of French household electricity demand, and the determinants of high electrical energy
demand.

In addition, a current work integrates PAM with confirmatory factor analysis [51]
to identify the socio-economic, environmental, and dwelling factors contributing to
high electrical energy demand in Moroccan domestic buildings.

Moreover, another current work that combines Recurrent Neural Networks
(RNNs), Multiple Correspondence Analysis [7], Ascending Hierarchical Classification
with SEM models to identify distinct categories of households based on the electrical
energy demand in Mauritania domestic buildings by analyzing complex direct and
indirect effects between observed socio-economic variables such as household income
and education level and latent variables such as environmental awareness. This
approach will enhance our understanding of household electric power consumption
challenges in African cities.

Finally, an application for the detection and localization of household energy
distribution system leaks in real-time in Ben Guerir city (Morocco) [58] using
wavelet decomposition, machine learning, and SEM models is in progress. Also,
this application that contains smart grid applications to flatten spikes in electricity will
reduce the overall electricity consumption by applying Demand-Side Management
(DSM) strategies [2].
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Notes
1 A direct effect is a causal relationship between two variables that is not mediated by any other variable. It is

represented by a unidirectional arrow and quantified by the coefficient connecting these variables [30].
2 The indirect effect between two variables is an effect mediated by one or more variables andmeasured as the product

of the coefficients from the first one to the last one [30].
3 Variable that is not influenced by other variables in the model [39].
4 Variable that is influenced by one or more variables in the model [39].
5 Where ( SB1, SB2, and SB3) respectively represent Sub Metering 1, Sub Metering 2, and Sub Metering 3, and

(VL, GAP, GRP, and GI) represent respectively Voltage, Global Active Power, Global Reactive Power, and Global
Intensity.
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