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Abstract: Given the heavy workload faced by teachers, automatic speaking scoring systems 

provide essential support. This study aims to consolidate technological configurations of 

automatic scoring systems for spontaneous L2 English, drawing from literature published 

between 2014 and 2024. The focus will be on the architecture of the automatic speech 

recognition model and the scoring model, as well as on features used to evaluate phonological 

competence, linguistic proficiency, and task completion. By synthesizing these elements, the 

study seeks to identify potential research areas, as well as provide a foundation for future 

research and practical applications in software engineering. 
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1. Introduction 

In any educational systems, faculty often face substantial workloads, including 

extensive testing and grading responsibilities. This highlights the need for accessible 

training tools that enable students to practice and improve their skills independently. 

To release faculty members from these assessment tasks and allow them to re-allocate 

their time to fulfil other obligations, such as course design, as well as provide students 

access to an independent English speaking training tool, the development of automatic 

scoring systems has been gaining traction. Among these efforts are those under the 

research umbrella of Computer-Assisted Language Learning (CALL). 

While the automatic scoring system for English writing has been well-researched, 

and commercial applications, such as Grammarly, well-established, the demanding 

technological requirements for automated English-speaking assessment, especially for 

spontaneous or unrestricted speech, which is also more data demanding in training 

process than read speech, has slowed the pace for research in this area (Cheng et al., 

2015). Nevertheless, recent technical advancement with machine learning, neural 

networks, and transformer-based learning models have broken this bottleneck. 

Although systematic literature reviews exist summarizing the technical specifications 

of automatic speech assessment, none specifically address the niche of non-native, 

spontaneous English speech. To bridge this gap, the present study aims to examine the 

techniques employed in the automatic scoring of spontaneous L2 (second language) 

English speaking tasks.  
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2. Literature review 

In the following sections, existing literatures on the construction of automatic 

speech recognition systems, as well as their application in recognizing non-native and 

spontaneous speeches will be summarized.  

2.1. Automatic speech recognition (ASR) systems 

A typical automatic speech scoring system consists of a speech recognizer and 

scoring model (Figure 1). Based on the audio input, the speech recognizer generates 

signals through which speech features are extracted. Subsequently, these features are 

fitted into the scoring model for grading purposes. 

 

Figure 1. A simplified architecture for an automatic speech evaluation system. 

Being the fundament of automatic scoring system, an automatic speech 

recognition system normally has four main components: 1. signal processing and 

feature extraction, 2. acoustic model (AM) relevant with the pronunciation, 3. 

language model (LM) related to the language patterning, and 4. hypothesis search 

(Saon and Chien, 2012; Yu and Deng, 2015).  

During the recognition process, the audio input is pre-processed to remove the 

background noise and correct distorted channels before it undergoes framing and 

windowing processes to divide the input into smaller segments with minimal edging 

effects (Lee et al., 2022; Tamazin et al., 2019). These segments are then converted into 

time and frequency domains and salient feature vectors applicable to the AM and LM 

are extracted (Alharbi et al., 2021; Saon and Chien, 2012; Yu and Deng, 2015), using 

common feature extraction techniques, including MFCC (Mel Frequency Cepstral 

Coefficients), LDA (Linear Discriminant Analysis) and Probabilistic LDA (Fendji et 

al., 2022). The AM and LM then calculate the probability of potential word sequences, 

and the hypothesis search outputs the word sequence with the highest combined AM 

and LM probability. 
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2.1.1. Acoustic modeling in ASR models 

Taking in the feature vectors, the AM will generate the possible acoustic vectors, 

or statistical representations for the distinct sounds, for which the AM scores will be 

calculated referencing to the acoustics and phonetics knowledge in the database 

(Benkerzaz et al., 2019; Fendji et al., 2022; Saon and Chien, 2012; Yu and Deng, 

2015).  

The most prevalent acoustic modelling approach is the Gaussian mixture 

model—Hidden Markov Model (GMM-HMM), or HMM. In this approach, acoustic 

signals extracted using MFCC are modelled into probability distributions (Saon and 

Chien, 2012). HMMs consist of a hidden part and an observable part (Trentin and 

Gori, 2001). The hidden states, which are abstract and non-observable, conceptualize 

the phonemes in speech—the observable events in the real world; while the observable 

states are the statistical representations of these observable events (Trentin and Gori, 

2001). Forward backward (or Baum Welch) and Viterbi are two popular algorithms 

applied in HMM (Trentin and Gori, 2001), with both of them based on the general 

maximum-likelihood (ML) criterion.  

Other more advanced acoustic modeling approaches include neural network-

based acoustic models and end-to-end models. Unlike traditional GMM-HMM 

models, which require users to train a feature selection model along with the AM and 

LM, neural network-based models can learn the required features, such as fluency 

features, directly from the raw data (Liu et al., 2023; Sainath et al., 2017; Yu and Deng, 

2015). Moreover, the recognition capability of DNN-HMM acoustic models has 

outperformed that of GMM-HMM models, whose performance improvement 

becomes saturated after a certain number of hours of training data (Cheng et al., 2015). 

On the other hand, end-to-end ASRs streamline the training process by using a single 

criterion, eliminating the need to train the AMs, LMs, and feature selection models 

separately—A process that discounts recognition performance (Miao and Metze, 

2017). 

2.1.2. Language modeling in ASR models 

Subsequently, the language model analyses the statistical representation of the 

acoustic vectors referencing to its corpora and proposes the most likely word 

sequences (Fendji et al., 2022). There are two common types of LM, namely grammar-

based (or deterministic LM) and statistic-based (or stochastic LM). Grammar-based 

LMs, designed by linguists to construct the grammatical framework, specify the 

possible word sequences referencing to collocation and grammatical rules in the 

database (Rosenfeld, 2000). On the other hand, statistic-based LMs is represented by 

P(W), the probabilities of the word string 𝑤𝑖, taking into consideration the previous 

word strings ℎ𝑖 = 𝑤1, … , 𝑤𝑖−1 (Fendji et al., 2022): 

P(𝑊) =∏𝑃(𝑤𝑖|𝑤1, 𝑤2 , … , 𝑤𝑖−1)

𝑛

𝑖=1

 

=∏𝑃(𝑤𝑖|ℎ𝑖)

𝑛

𝑖=1
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However, the complexity of this LM accumulates as time go by during the 

recognition. To mitigate this issue, the N-gram approach based on word classes (e.g. 

nouns, verbs, adjectives and adverbs) is commonly applied where the probability P(W) 

of 𝑤1is only determined by the probability of the previous n-1 word string(s) (Brown 

et al., 1992; Fendji et al., 2022; Saon and Chien, 2012): 

P(𝑊) =∏𝑃(𝑤𝑖|𝑤𝑖−𝑛+1,… ,𝑤𝑖−1)

𝑛

𝑖=1

 

2.2. ASR for non-native utterance 

The automated recognition of non-native speakers’ spontaneous speech is a 

challenging task, as evidenced by the error rate of speech recognizers developed for 

this task. For instance, Chen and Zechner (2011) reported a 30% word error rate 

(WER) in speech recognition, and these frequent errors at the recognition stage 

negatively affect the subsequent stages of the speech scoring system in general. 

L2 speakers often carry the traits of their native accent into their second language 

(Georgakis et al., 2016). When these traits are analyzed as acoustic signals in an ASR 

system, they manifest as differences in the energy of phoneme classes, formant 

features, and frequency (Arslan and Hansen, 1996; Liu and Fung, 1999), as well as 

their pause patterns (Cucchiarini et al., 2000) compared to those of native speakers 

The challenges posed by the fundamental differences between native and non-

native utterances are significant for ASR models. Empirical studies have consistently 

demonstrated that recognition accuracy for accented speech is lower than that for 

native speech (Wills et al., 2023; Yu and Deng, 2015). While the performance of ASR 

systems for non-native utterances can be improved by using specialized models 

tailored to different accents, there has also been considerable research aimed at 

developing systems capable of identifying various accents through their acoustic 

features (Arslan and Hansen, 1996; Ge, 2015; Liu and Fung, 1999). Additionally, 

training language models with common non-native pronunciation patterns has shown 

promise (Livescu and Glass, 2000). More recent studies have explored the 

construction of accent-independent speech recognition systems using advanced 

machine learning algorithms. These include pre-training wav2vec 2.0 with 

unsupervised datasets (Aksënova et al., 2022), applying standard time-delayed neural 

network structure (TDNN) pre-trained with the Kaldi toolkit (Li et al., 2021) and 

maximum likelihood linear regression (MLLR) algorithm (Deng et al., 2007). 

2.3. ASR for spontaneous speeches 

Spontaneous speech is commonly believed to be characterized by unclear 

pronunciation and disfluency, such as fillers or filled pauses (um, uh) and corrections 

(Lease et al., 2006; Van Bergem, 1995). Furthermore, the grammatical mistakes in 

spontaneous utterances will increase the number of errors in the recognition (Knill et 

al., 2019).  

When considering unclear pronunciation, interpreted acoustically, spontaneous 

speech has a more concentrated and limited spectral profile, which implies a relatively 

constrained pitch range (Nakamura et al., 2008), its phonemes are shorter and scattered 
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in the acoustic space (Gerosa et al., 2006; Shriberg, 1999), as well as more varied and 

less uniform than those in read speech, indicating that phonemes are pronounced with 

greater diversity (Nakamura et al., 2008). Since most AM in ASR models are trained 

with read speech corpora, the different acoustic features between read and spontaneous 

speech limit the AM’s adaptability, making ASR models to often underperform in 

spontaneous speech (Gabler et al., 2023; Yu and Deng, 2015). 

Alongside unclear pronunciations, ASR models also need to overcome 

disfluencies in spontaneous speech. A typical challenge in recognising spontaneous 

speech is the prevalence of self-correction, which involves disfluencies such as false 

starts and repetition (Dufour et al., 2014; Lease et al., 2006). These phenomena often 

exhibit cross-serial dependencies, which are complex and difficult to model using 

traditional grammar-based LMs which incorporate context-free or finite-state 

grammars as foundational structures; as well as for statistical language models that 

relay on local context (N-gram) rather than these long-range dependencies (Heeman 

and Allen, 1999; Lease et al., 2006). Also, the inaccurate annotation of disfluency 

tags—such as editing terms, repetitions, repairs, and false starts—in the ASR models 

will affect the automatic grading system (Yoon and Bhat, 2018). 

To improve the recognition accuracy of the spontaneous speech, Heeman and 

Allen (1999) proposed a language model employing PoS (part of speech) tagging and 

discourse marker identification to identify the segmenting turns or interruption points. 

Other approaches include the TAG-based model of speech repairs that identifies the 

reparanda within an utterance (Johnson and Charniak, 2004). Building on this model, 

Lease et al. (2006) proposed a TAG-based model of speech repairs with a maximum-

entropy ranker that predicts not only the reparanda but also the fillers. 

2.4. Automated assessment for oral language proficiency 

Most of the automated assessment for oral language skills were error-based, using 

ASR to identify various types of error in the students’ utterance, such as grammatical 

errors (Knill et al., 2019; Yoon and Bhat, 2018), pronunciation errors (Chen et al., 

2019). In addition to error-base studies, researchers also developed systems to assess 

the fluency of speech (Cucchiarini et al., 2002) and prosody of the delivery. While 

some studies focused on read aloud utterance (Cucchiarini et al., 2000; Molenaar et 

al., 2023), others examined conversational response and spontaneous speech on a 

given topic (Cucchiarini et al., 2002; Zechner et al., 2014). 

Various features extracted by ASR models have been studied for agreement with 

human raters (Cucchiarini et al., 2000; Kobayashi and Abe, 2016; Zechner et al., 

2014). Correlation studies have identified that speech rate, articulation rate, phonation-

time ratio, number of silent pauses, total pause duration, and mean length of speech 

runs are acoustic features that correlate with human raters' assessments of perceived 

fluency (Cucchiarini et al., 2000). Additionally, linguistic variables such as tokens, 

types, and nouns have been found to correlate with human graders' evaluations of 

students' oral English proficiency (Kobayashi and Abe, 2016).  

Aiming to identify research gaps for future studies, the present study 

systematically reviews the methodologies applied in the modelling of the automatic 
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scoring system for non-native English spontaneous speech in existing literature, 

specifically through the following research questions: 

1) What methods or algorithms are used to model the ASR and scoring components 

in automatic scoring systems? 

2) What features are extracted through automatic scoring systems for scoring. 

3. Methodology 

To systematically review the methodological components incorporated in these 

models and identify areas for further investigation, the current study will adopt the 

PRISMA framework to review the research regarding automatic English scoring 

system for spontaneous speech over the past decade (2014–2024). 

3.1. Bibliometrics and tool selection 

A systematic search was performed using four databases: Web of Science, ERIC, 

IEEE and Scopus, all of them last consulted on 1 May, 2024. The search syntax for 

the databases was: 

(“automatic” OR “automated” OR “automation” OR “machine learning” OR 

“artificial intelligence” OR “AI”) AND (“assessment” OR “assess” OR “score” 

OR “scoring” OR “grade” OR “grading” OR “evaluate” OR “evaluation” OR 

“test” OR “exam”) AND (“English speaking” OR “spoken English” OR “oral 

English”) AND (“spontaneous speech” OR “dialog” OR “dialogue” OR 

“conversation”) 

After the search, a total of 139 studies were found (80 in Web of Science, 30 in 

Scopus, 21 in IEEE Xplore, 8 in ERIC). An initial check of duplication removed 21 

records from the screening. All the remaining research was examined according to the 

following criteria (Figure 2):  

1) The study should be automatically assessing L2 English speaking tasks. 

2) The study should be automatically assessing spontaneous speech. 

3) The study should include the details of the automatic scoring system, namely the 

ASR and the scoring model. 
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Figure 2. Flow diagram of research article selection process (Page et al., 2021). 

3.2. Coding procedures 

To address the research questions, information relevant to the predefined 

categories was extracted from the 11 studies included in the review. The focus of the 

study, the components of the ASR models, the features extracted for scoring, and the 

scoring model were consolidated in Table 1.
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Table 1. Summary of the construction of automatic scoring systems. 

 Author(s) Focus Components of the ASR Features extracted for scoring Scoring model 

1 
(Bhat and Yoon, 
2015)  

Syntactic 

complexity 

AM: 

HMM recognizer; 
Gender independent triphone acoustic 
model; 

LM: 

Bigram LM 
Trigram LM 
Four-gram LM 
Feature selection: 

Vector-space model (VSM) 

Syntactic complexity is represented by POS tag  
Model 1. POS-based vector space model: 

cosi: cosine similarity value of the test response with the representative vector of score level i 
= 1,2,3,4; 

cosmax: the score level with the highest similarity score given the response. 
Model 2. POS language models: 

lmi: logprob (likelihood) of the LM of score level i = 1, 2, 3, 4;  
lmmax: the score level of the LM with the maximum logprob given the response.  

Multiple linear 

regression  

Fluency 

HMM acoustic model score (amscore) 
speaking rate (wpsec)types per second (tpsecutt) 
average chunk length in words (wdpchk) 
global normalized language model score (lmscore) 

SpeechRater 

2 (Qian et al., 2016) Task completion  

AM: 

GMM-HMM 
DNN-HMM 
LM: 

Two trigram LMs 
Feature extraction and transformation: 

MFCCs 
LDA and MLLT 
fMLLR 
i-Vector Extraction 

Latent semantic analysis 
Content vector analysis 
Confidence score 

Random forest 
regressor 
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Table 1. (Continued). 

 Author(s) Focus Components of the ASR Features extracted for scoring Scoring model 

3 (Tao et al., 2016) 

Fluency; 

Linguistic 
proficiency 

AM:  

GMM-HMM 
DMM-HMM  
Tandem 
LM: 

tri-gram language model 

Fluency 
number of words per second 
number of words per chunk 
number of silences 

average duration of silences 
frequency of long pauses (≥ 0.5 sec.) 
number of filled pauses (uh and um)  
Frequency of between-clause silences 
edit disfluencies compared to within-clause silences 
edit disfluencies 
 
Rhythm, Intonation & Stress 

overall percentages of prosodic events 
mean distance between events 
mean deviation of distance between events 
overall percentages, standard deviation, and Pairwise Variability Index 
Pronunciation 
Acoustic model likelihood scores generated during forced alignment with a native speaker 
acoustic model 
the average word-level confidence score of ASR the average difference between the vowel 
durations in the utterance and vowel-specific means based on a corpus of native speech 

Grammar 
Similarity scores of the grammar of the response in ASR with respect to reference response. 
Vocabulary Use 
Features about how diverse and sophisticated the vocabulary based on the ASR output. 

Linear regression 
model (with feature 

selection based on 
LASSO regression) 
SpeechRater 

4 
(Kang and Johnson, 

2018) 
Fluency 

AM and LM: 

KALDI speech recognition engine 
Feature selection: 

Generative algorithm with k-fold cross-
validation 

35 suprasegmental features: 

Number of tone units/number of runs; 
Duration of filled pauses/number of filled pauses; 
Number of syllables/duration of utterance; 
Number of syllables/(duration of utterance – duration of silent pauses); 

Number of tone units with specified relative pitch-tone choice combination per second (Low-
rise rate; Mid-rise rate; Low-level rate; Low-fall rate; Mid-fall rate; High-rise-fall rate; High-
fall-rise rate) 
GA selection method was applied to select the best predictive features (11 suprasegmental 
features) 

The boosting ensemble 

of decision trees 
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Table 1. (Continued). 

 Author(s) Focus Components of the ASR Features extracted for scoring Scoring model 

5 (Wang et al., 2018) 

Fluency; 
Linguistic 
proficiency 
 

AM: 

a speaker adapted Tandem GMM-
HMM system 
a stacked Hybrid system 
LM: 

Kneser-Ney trigram LM 

a general English LM 
Feature selection: 

bottleneck (BN) DNN 

A total of 33 features 
Audio features: 

Energy – mean/ standard deviation; 
Fluency features: 

Silence – duration mean/ duration standard deviation; 
Long silence— duration mean; 
Words – number/ frequency; 
Phone – duration mean/ duration median; 
Linguistic features:  

Parse tree features: plural common noun/ singular common noun/ general adverb/ general 
preposition/ article  
PoS tag features: frequency-inverse document frequency features of PoS tags 

Pronunciation features 

K-L divergence distance 

Gaussian processes 

6 
(Yoon and Bhat, 
2018) 

Syntactic complexity 

AM: 

HMM recognizer, gender independent 
triphone acoustic model (Yoon and 
Bhat, 2012)  
LM: 

four-gram language models 
Feature selection: 

PoS-based VSMs (Yoon and Bhat, 

2012) 

Conventional measure: 
Mean length of clauses (MLC) 
Mean length of T-units (MLT) 
Dependent clause ratio (DCC) 
T-unit complexity (CTU) 
PoS-based similarity measures: 
cosmax: the score level with the highest similarity score given the response. 
cos4: cosine similarity value of the test response with the representative vector of score level i = 

4, the highest score level; 

Multiple linear 
regression 

7 (Li et al., 2020) Task completion  

AM and LM not specified 
Feature selection: 

natural language understanding module 
word2vector model 

cosine similarity 
Multilayer feed-
forward neural 
network 
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Table 1. (Continued). 

 Author(s) Focus Components of the ASR Features extracted for scoring Scoring model 

8 (Fu et al., 2020) Pronunciation 

Non-native ASR based on ERJ 

AM:  
DNN-based acoustic model  
LM:  

CMU pronouncing dictionary 
bigram and trigram language models 
open trigram language model 
Feature selection: 
GMM-HMM system 
Native ASR based on TIMIT 

AM:  
DNN-based acoustic model  

LM: 

CMU pronouncing dictionary 
trigram language model 
open trigram language model 
Feature selection: 

GMM-HMM system  

FBANK or MFCC features 
HMM-based phone log-likelihood score; 
Word error rate; 
Reference-free error rate = Comparing the result from the non-native ASR and the native ASR 

Linear regression 
model 

9 
(Cheng and Wang, 
2022) 

Fluency; 
Grammatical 
proficiency; 
Task completion  

AM+LM: 

Microsoft’s local speech recognizer 
Feature selection: 

Latent Meaning Analysis (LSA)  
GloVe 

Phonetic features: 

Speed of speech 
Number of voice pauses 
Number of pronunciation pauses 

Posterior probability score of pronunciation 
Text features: 

Total number of words in text 
Number of nonrepeating words in the text 
Sum of all syntactic tree depths in text 
Semantic similarity between text and theme (with LSA) 
Correct rate of text grammar 

BP model 
CNN + LSTM model 

10 
(Hayashi et al., 

2024) 
Fluency 

ASR: 

IBM Watson Speech-to-Text 

Feature selection: 

NLP and speech processing algorithms 

token (the length of the utterance) 

complexity; the number of hesitation/filled pauses; confidence scores. 
Random forests  
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Table 1. (Continued). 

 Author(s) Focus Components of the ASR Features extracted for scoring Scoring model 

11 (Kang et al., 2024) Fluency 

ASR: 

end-to-end ASR system using a 
transformer-based encoder–decoder 
framework  

Feature selection: 

transcription using the ASR system 
forced-alignment algorithm determines 
time-aligned sequences of words and 
phonemes 

Acoustic features: 

Segmental features 
Intonation 
Rate 

Linear regression 
Neural network 
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4. Results 

4.1. The construction of the automatic scoring systems 

In the reviewed studies, the automatic scoring systems were constructed with 

ASR models and the scoring models. In this section, the technology or algorithms 

applied in these two components will be elaborated.  

4.1.1. Acoustic modeling in ASR models 

ASR models, which directly influence the performance of scoring systems, are 

an indispensable component in automatic scoring systems. The reviewed studies either 

utilized pre-existing ASR models or ASR models specifically trained for research 

purposes.  

Regarding the existing ASR models applied in the reviewed studies, Cheng and 

Wang (2022) employed Microsoft’s local speech recognizer, Kang and Johnson 

(2018) used the KALDI speech recognition engine, and Hayashi et al. (2024) utilized 

IBM Watson Speech-to-Text model.  

Most of the reviewed studies developed their own ASR models for research 

purposes, typically consisting of separately trained acoustic and language models. 

Bhat and Yoon (2015), Wang et al. (2018), as well as Yoon and Bhat (2018) all 

employed the traditional GMM-HMM acoustic model. However, to cater to different 

research focuses, Bhat and Yoon (2015) used bigram, trigram and four-gram language 

models; Wang et al. (2018) incorporated a Kenser-Ney trigram language model and a 

general language model; and Yoon and Bhat (2018) utilized a four-gram language 

model.  

Additionally, the recognition capability of DNN-HMM acoustic models were 

researched and benchmarked with GMM-HMM acoustic models in studies by Qian et 

al. (2016), Tao et al. (2016) and Fu et al. (2020). These studies suggested that a higher 

accuracy in the recognition, or lower Word Error Rate (WER), can be achieved with 

DNN-HMM acoustic models, ultimately translating into improved performance in 

scoring systems. Furthermore, Fu et al. (2020) also studied the different settings of the 

DNN-HMM acoustic model, namely the NNET1 method and three NNET2 methods. 

Unlike traditional ASR models that require separate training for acoustic and language 

models separately, more advanced end-to-end ASR models can be trained as a single 

model. In Kang et al. (2024)’s study, the end-to-end ASR with transformer-based 

encoder–decoder framework was trained with one set of data only.  

4.1.2. The scoring models in automatic scoring systems 

A proportion of the scoring models in the reviewed studies were built using linear 

regression, based on the assumption of a linear relationship between proficiency and 

features extracted from acoustic signals. Specifically, Fu et al. (2020) and Kang et al. 

(2024) applied standard linear regression to analyze log-likelihood scores generated 

by HMM Acoustic Models. Tao et al. (2016) used a similar approach but incorporated 

LASSO regression for feature selection, while Bhat and Yoon (2015) and Yoon and 

Bhat (2018) employed multiple linear regression to address their research objectives. 

Machine learning algorithms were also incorporated into scoring system 

modeling, specifically Gaussian Processes, ensemble learning methods and neutral 



Journal of Infrastructure, Policy and Development 2025, 9(2), 10078. 
 

14 

networks. Gaussian Processes was applied by Wang et al. (2018). For ensemble 

learning algorithms, Kang and Johnson (2018) utilized decision trees method, while 

Hayashi et al. (2024) and Qian et al. (2016) both applied the random forest method. 

Neutral networks were utilized by Li et al. (2020), who incorporated a multilayer feed-

forward neural network, and Cheng and Wang (2022), who employed a CNN and an 

LSTM model, along a BP model.  

Regarding the prediction accuracy of the scoring models, all the reviewed studies 

applied Pearson correlation against the human raters. 

4.2. Feature extraction in automatic scoring systems  

The features selected for the evaluation are categorized into three types in the 

present study, namely, phonological competence, linguistic proficiency and task 

completion. These three categories reflect fluency, complexity, and accuracy as 

measures of oral proficiency in English as a second language (Housen and Kuiken, 

2009), in which fluency measures whether speakers can speak with similar pace like 

native (Lennon, 1990), complexity reflects the variety of language patterns and 

accuracy the ability to utter the language without mistakes (Ellis, 2009). 

4.2.1. Feature selections for the evaluation of phonological competence 

In the studies reviewed, phonological competence was evaluated through 

assessments of fluency, pronunciation accuracy, and intonation, stress and rhythm. 

a) Fluency 

Being a major criterion in language assessment, the definition of fluency 

surprisingly lacks consensus. There is debate on whether it should be considered in a 

broad sense as synonymous with oral proficiency, and even as overall mastery of a 

language, or in a narrow sense as just one component of oral proficiency – the 

uninterpreted flow of speech (Chambers, 1997). Applying the narrower definition, 

Lennon (1990) quantified fluency using 12 temporal variables related to pauses, run-

time, self-correction, and repetition, laying the foundation for most of the automatic 

evaluation system research that studies fluency. In these systems, fluency is typically 

conceptualized through a set of acoustic features, namely the speed of the speech, the 

number of words and its frequency in an uninterrupted chunk, the mean length and 

frequency of pauses and filled pauses (Bhat and Yoon, 2015; Cheng and Wang, 2022; 

Hayashi et al., 2024; Kang et al., 2024; Tao et al., 2016; Wang et al., 2018). 

b) Pronunciation 

While the assessment of fluency, or the uninterrupted flow of speech, can rely 

solely on the analysis of acoustic vectors extracted from the audio, evaluating 

pronunciation accuracy requires a benchmark—a model trained on speech corpora, 

against which the spoken words in the audio can be compared. Wang et al. (2018) 

compared the differences between the audio inputs from test takers and those of 

proficient speakers in the model using Kullback-Leibler (K-L) divergece, whereas Tao 

et al. (2016) and Fu et al. (2020) employed likelihood scores calculated during the 

forced alignment with the acoustic model trained on corpora of native speech. 

c) Intonation, stress and rhythm 

Intonation, stress and rhythm have been empirically tested to be distinguishable 

between proficiency and novice language learners (Anderson‐Hsieh et al., 1992). In 
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automatic assessment systems, these prosody features are quantified using 

suprasegmental features from the acoustic mode (Kang et al., 2024; Kang and Johnson, 

2018; Tao et al., 2016). Specifically, Tao et al. (2016) employed Pairwise Variability 

Index, the widely used metric for language rhythm quantification, while Kang et al. 

(2024) incorporated the number of tone units/number of interrupted chunks the 

number of syllables/duration of utterance, the number of tone units with specified 

relative pitch-tone choice combination per second (Low-rise rate; Mid-rise rate; Low-

level rate; Low-fall rate; Mid-fall rate; High-rise-fall rate; High-fall-rise rate). 

4.2.2. Feature selections for the evaluation of linguistic proficiency 

In the studies reviewed in this study, the evaluation of linguistic proficiency was 

achieved by quantifying lexical diversity, grammatical proficiency, and syntactic 

complexity. 

a) Lexical diversity 

The measurement of lexical diversity, or vocabulary range, was straightforward. 

Studies approached it by counting the number of non-repeated words in the ASR 

output (Cheng and Wang, 2022; Tao et al., 2016). 

b) Grammatical proficiency 

Applying a similarity measure, Tao et al. (2016) evaluated grammatical 

proficiency by calculating the similarity score between the grammar in students’ 

utterances and the reference answers. Likewise, Wang et al. (2018) benchmarked 

candidates’ usage of PoS tags against proficient speakers. By applying TF-IDF to 151 

PoS tags, the importance of each PoS tag was calculated, and the linguistic features 

that correlated most with proficient performance were identified: plural common noun, 

singular common noun, general adverb, general preposition and article (e.g., the, no) 

(Wang et al., 2018). On the other hand, Cheng and Wang (2022) approached through 

EASE, an open source composition scoring system, in which 3-gram and 4-gram PoS 

tags were extracted from Sherlock Holmes’ novel collection. The underlying 

assumption is there is no grammatical mistakes in this published series of novels; 

therefore, all the PoS tag combinations are the correct combinations of part of speech. 

If a PoS tag combination extracted from a student’s oral delivery cannot be found in 

the EASE, it is deemed grammatically incorrect (Cheng and Wang, 2022). 

c) Syntactic complexity 

Besides being a crucial feature in the evaluation of grammatical accuracy, PoS 

tags have also been employed to assess the syntactic complexity of students’ oral 

deliveries. Bhat and Yoon (2015) used PoS tags to benchmark students’ oral deliveries 

against those of students in four different grade categories, assuming students from the 

same grade category share similar patterns in their usage of parts of speech. 

Approaching the task through PoS-based vector space modelling and PoS n-gram 

language modelling, Bhat and Yoon (2015) found PoS-based vector space modelling 

to have a better correlation between human and machine grading of students’ oral 

performance. This method was also found to be more effective than traditional 

measures such as dividing the number of words by the number of clauses, dividing the 

number of words by the number of T-units, calculating the percentage of dependent 

clauses relative to the total number of clauses, and counting the number of clauses per 

T-unit (Yoon and Bhat, 2018). Approaching it differently were Cheng and Wang 
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(2022), who incorporated syntax trees to evaluate candidates’ syntactic complexity in 

the oral deliveries—the deeper the tree, the more syntactically complex their 

deliveries. 

4.2.3. Feature selections for the evaluation of task completion  

The assessment of task completion requires grading systems to evaluate the 

meaning of utterances, or if the participants have provided off-topic answers to the 

question. To achieve this, natural language understanding methods, particularly 

semantic similarity measures, are applied.  

In the reviewed studies on evaluating task completion in candidates’ oral 

deliveries, similarity measures were widely adopted. These studies often employed 

TF-IDF for text vectorization, and Word2Vec, GloVe, LSA or CVA for transforming 

the ASR output into a lower-dimensional space before applying similarity 

measurement techniques that benchmarked the utterances against a language model 

trained on specific topics or score levels (Cheng and Wang, 2022; Li et al., 2020; Qian 

et al., 2016).  

To assess the semantic similarity between candidates’ utterance and the given 

topic of the speaking task, Li et al. (2020) applied Word2vector and cosine similarity. 

Taking a different approach, Cheng and Wang (2022) vectorized the ASR output using 

TF-IDF and carried out similarity measurement by training an LSA topic model. 

5. Potential research areas and conclusion 

The present study reviewed existing empirical studies on the automatic scoring 

systems of spontaneous L2 English conducted over the past decade, from 2014 to 

2024, mapping the components involved in the construction of automatic speech 

recognition systems and scoring models, as well as the features studied for different 

evaluation aspects. Overall, the architecture of the scoring system transformed from 

statistical modelling to deep learning modelling, and in recent years, scholars are 

exploring the application of transformer modelling. This progression has streamlined 

model training, as well as improved the accuracy of the grading.  

5.1. The development of an automatic scoring model with a holistic 

approach 

In these studies, audio features have been extracted to evaluate students’ 

phonological competence, linguistic proficiency, and task completion, aligning with 

fluency, complexity, and accuracy as measures of oral proficiency in English as a 

second language (Housen and Kuiken, 2009). While the studies have successfully 

developed automatic scoring systems with grades that correlate with human ratings, 

these systems have typically assessed only one or two evaluation aspects—rather than 

all three criteria of phonological competence, linguistic proficiency, and task 

completion. However, each criterion alone is insufficient for building a reliable and 

effective grading system. For example, if a student delivers a fluent, grammatically 

accurate response that is off-topic, it cannot be considered a correct answer to the 

question. Therefore, research is still needed to develop a scoring system that 

comprehensively evaluates all three criteria. 
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Another issue in current automatic speaking assessment research is the 

predominant focus on evaluating spontaneous monologues. Given the crucial 

communicative aspect of oral language skills, a scoring system that can engage in 

meaningful conversations with students would more accurately assess their real-world 

language proficiency. Developing an evaluation system that can handle both 

spontaneous and interactive dialogue would advance the field, allowing for a more 

comprehensive assessment of students' ability to respond dynamically in various 

contexts.  

With advancements in large language models (LLMs), speech-based 

conversational AI models have emerged. These models can not only “listen,” 

“comprehend,” and “respond” to unscripted audio inputs but also “listen” while 

“speaking” simultaneously (Défossez et al., 2024; Ma et al., 2024), facilitating the 

simulation of natural conversations. This development lays the groundwork for 

communicative automatic speech evaluation systems.  

By incorporating evaluation components into these conversational models—

where system responses to students can be pre-configured using prompts—such 

systems can engage in interactive dialogues, aligning with the communicative essence 

of language. Beyond assessing traditional criteria—phonological competence, 

linguistic proficiency, and task completion—these systems could evaluate students' 

ability to manage real-time conversations, offering a more comprehensive and 

dynamic approach to assessing language as a tool for communication. 

5.2. Study of the effect of the application of these automatic scoring 

systems 

Automatic writing assessment systems have been shown to motivate students 

(Nunes et al., 2022). With real-time feedback provided by these systems, students who 

received input from both teachers and the system demonstrated greater persistence in 

L2 English writing (Franzke et al., 2005; Wilson and Czik, 2016) compared to the 

control group, who received feedback solely from their teachers. Students expressed 

that the immediacy of feedback, rather than waiting for comments from teachers, 

motivated them to write more frequently (Grimes and Warschauer, 2010).  

However, findings on whether automatic writing assessment systems improve 

students' writing skills are mixed. In a comparison study by Wang et al. (2013), 

students who received feedback from both teachers and the system outperformed the 

control group, who received feedback only from teachers. Conversely, other studies 

found no significant difference between the test and control groups (Franzke et al., 

2005; Mørch et al., 2017).  

Research on the effectiveness of automatic speaking assessment remains limited. 

Further investigation is needed to determine whether these systems can motivate 

students in ways similar to automatic writing evaluation systems and to what extent 

they can enhance users' oral skills. Addressing these questions could help fill this gap 

and provide deeper insights into the potential of automatic speaking assessment to 

support language learning and development. 
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5.3. Conclusion 

Given the preliminary nature of automatic scoring systems for spontaneous L2 

English and the numerous areas for further exploration, future studies should adopt a 

more holistic approach to the automatic evaluation of utterances. This approach should 

encompass not only phonological competence, linguistic proficiency, and task 

completion but also elements of communicative effectiveness across varied 

conversational contexts. Additionally, research should investigate the effectiveness of 

these automatic scoring systems, assessing their impact on students’ second language 

development. 

Furthermore, exploring automatic assessment models can contribute to the 

sustainability of education by creating scalable and accessible tools that reduce the 

need for extensive human resources. Such systems can also democratize access to 

language training, providing students worldwide with an accessible method to develop 

and assess their skills consistently. By supporting a more inclusive and resource-

efficient educational environment, these advancements can help create long-term, 

equitable access to quality language education. 
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