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Abstract: This study evaluated the performance of several machine learning classifiers—

Decision Tree, Random Forest, Logistic Regression, Gradient Boosting, SVM, KNN, and 

Naive Bayes—for adaptability classification in online and onsite learning environments. 

Decision Tree and Random Forest models achieved the highest accuracy of 0.833, with 

balanced precision, recall, and F1-scores, indicating strong, overall performance. In contrast, 

Naive Bayes, while having the lowest accuracy (0.625), exhibited high recall, making it 

potentially useful for identifying adaptable students despite lower precision. SHAP (SHapley 

Additive exPlanations) analysis further identified the most influential features on adaptability 

classification. IT Resources at the University emerged as the primary factor affecting 

adaptability, followed by Digital Tools Exposure and Class Scheduling Flexibility. 

Additionally, Psychological Readiness for Change and Technical Support Availability were 

impactful, underscoring their importance in engaging students in online learning. These 

findings illustrate the significance of IT infrastructure and flexible scheduling in fostering 

adaptability, with implications for enhancing online learning experiences. 

Keywords: machine learning algorithms; student adaptability classification; SHAP analysis; 

online learning environments; adaptability factors 

1.Introduction 

The application of machine learning to model and describe real-world 

phenomena has significantly enhanced efficiency and resilience across various sectors. 

From public health (Kooptiwoot et al., 2024) and telemedicine (Kooptiwoot et al., 

2024) to food science (Kooptiwoot and Javadi, 2022), machine learning plays a 

transformative role in driving advancements and optimizing processes. The rapid 

evolution of educational technologies has transformed the learning landscape, 

particularly with the growing prevalence of online learning platforms (An and Oliver, 

2021). While online learning provides flexibility, accessibility, and a wealth of 

educational resources, students’ adaptability to this mode of learning varies greatly 

(Qiao et al., 2021). Understanding the factors that influence students’ adaptability to 

online learning is essential, particularly as educational institutions increasingly 

integrate online education with traditional onsite learning environments (Idrisoglu and 

Javadi, 2024; Kooptiwoot et al., 2024). 

Several key factors impact a student’s adaptability to online learning. These 

include digital literacy, self-regulation, time management skills, and access to reliable 

technology (Besser et al., 2022). Furthermore, learning styles, levels of motivation, 

CITATION 

Suwanjinda D, Kooptiwoot S, 

Tharasawatpipat C, et al. (2024). 

Unraveling the threads of 

adaptability: Analyzing key 

determinants influencing student 

success in online learning 

environments. Journal of 

Infrastructure, Policy and 

Development. 8(14): 9976. 

https://doi.org/10.24294/jipd9976 

ARTICLE INFO 

Received: 30 October 2024 

Accepted: 7 November 2024 

Available online: 21 November 2024 

COPYRIGHT 

 
Copyright © 2024 by author(s). 

Journal of Infrastructure, Policy and 

Development is published by EnPress 

Publisher, LLC. This work is licensed 

under the Creative Commons 

Attribution (CC BY) license. 

https://creativecommons.org/licenses/

by/4.0/ 



Journal of Infrastructure, Policy and Development 2024, 8(14), 9976.  

2 

and the ability to engage in self-directed learning play pivotal roles in determining 

how well students adjust to the online format (Mushtaha et al., 2022). Environmental 

factors, such as having a quiet study space and support systems, also contribute to 

students’ ability to thrive in online learning (Kooptiwoot et al., 2024). In contrast, 

onsite learning environments often provide more structured interactions with peers and 

instructors, which can be a challenge for students transitioning to the relatively 

independent nature of online education (Vieira, 2024). 

Machine learning algorithms offer powerful tools to analyze and predict how 

these factors affect students’ adaptability to online learning (Essa et al., 2023). 

Machine learning algorithms can process large datasets to identify patterns related to 

students’ adaptability to online learning (Kaddoura et al., 2022). They can analyze 

various factors such as learning styles, engagement levels, and external conditions 

(Alhothali et al., 2022). By training on historical data, these algorithms can predict 

which students may struggle or excel in online environments (Barbosa et al., 2024). 

This predictive capability enables educators to tailor support and resources effectively. 

Ultimately, leveraging these tools can enhance student outcomes and foster a more 

personalized learning experience.in particular after modeling the adaptability of 

student with machine learning models, SHAP (SHapley Additive exPlanations) can 

provide clear insights into the importance of individual features in the specific 

machine learning models (Belle and Papantonis, 2021). In the context of education, 

SHAP can be applied to evaluate the specific factors contributing to student success 

or difficulty in adapting to online learning (Fiok et al., 2022). By quantifying the 

influence of features like digital proficiency, time management, and motivation, SHAP 

can help educators better understand which students are more likely to succeed in an 

online environment. 

This paper explores the educational factors that influence students’ adaptability 

to online learning and utilizes machine learning classification models to evaluate these 

factors. SHAP was employed to interpret the contributions of different features, 

providing a clear understanding of the key determinants affecting students’ ability to 

adapt to both online and onsite learning. By gaining these insights, educational 

institutions can better tailor their support strategies to enhance students’ adaptability, 

improve learning outcomes, and create a more effective online learning experience. 

2. Materials and methods 

2.1. Survey design and data collection 

A survey was designed to collect data on various factors influencing students’ 

adaptability to digital learning. This survey included 14 features: Gender-GND (boy, 

girl), Digital Tools Exposure-DTE (1–6 years), Education Level-EDU (first, second, 

third year of university), Technical Support Availability-TSA-(institution, friends), IT 

Skills-ITS (yes, no), Psychological Readiness for Change-PRC (yes, no), Digital 

Literacy-DLT (low, high), IT Resources in the University-ITR (poor, mid-level, rich), 

Access to Reliable Internet-ARI- (mobile, Wi-Fi), Network Infrastructure-NET (4G, 

5G), Class Scheduling Flexibility-CSF (good, poor), Self-Learning Habits-SLH (yes, 

no), Device Ownership-DVC (computer, mobile), and the Adaptability classifier 

(moderate, low, high). These questions were structured to gather demographic, 
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technical, and behavioral data, helping to provide a comprehensive view of factors 

impacting adaptability to digital learning environments. The survey was distributed to 

university students, with data collected over four weeks. Responses were recorded 

using a standardized format and processed for analysis. The adaptability score 

(moderate, low, high) was treated as the primary target variable, while the other 

features served as independent variables. The survey data was anonymized, 

preprocessed, and validated to ensure completeness and accuracy, particularly 

focusing on missing data and inconsistencies. 

2.2. Data preprocessing and feature engineering 

Data preprocessing involved encoding categorical features and standardizing 

numerical values. Missing values were imputed using a mode-based imputation 

approach for categorical features and mean imputation for numerical features. 

Additionally, feature engineering was conducted by converting ordinal variables into 

numerical values, facilitating compatibility with various machine learning algorithms. 

2.3. Machine learning models 

To classify students’ adaptability levels, several machine learning models were 

evaluated, including Decision Trees, Random Forests, Naïve Bayes, and Support 

Vector Machines (SVM), Logistic Regression, Gradient Boosting and K-Nearest 

Neighbors. Each model was trained and tested using a k-fold cross-validation 

approach (k = 5), allowing for a robust evaluation of model performance. Key metrics 

such as accuracy, precision, recall, and F1-score were recorded for comparison. 

Decision Tree Classifier was chosen for its ability to handle categorical data and 

provide interpretability through its tree structure, which displays the importance of 

each feature in predicting adaptability (Sachan and Saroha, 2022). Random Forest 

model as an ensemble of decision trees, provides improved accuracy and robustness 

against overfitting by averaging multiple decision trees. It also allowed for feature 

importance ranking, highlighting key predictors of adaptability (López et al., 2021; 

Alhothali et al., 2022). Naïve Bayes, that is a probabilistic classifier based on Bayes’ 

theorem, assumes feature independence and performs well with categorical data, 

making it suitable for classifying adaptability levels with a simple, interpretable model 

(Gligorea et al., 2023). Support Vector Machines (SVM) was included for its 

effectiveness in high-dimensional spaces and its ability to find the optimal hyperplane 

that best separates classes, providing an alternative approach to decision-tree-based 

methods (Su et al., 2022). Other machine leaning models (Logistic Regression, 

Gradient Boosting and K-Nearest Neighbors) were applied for comparison the results 

and finding the best model performances (Rastrollo-Guerrero et al., 2020). 

2.4. Interpretability with SHAP 

To better understand the contribution of each feature to the adaptability 

predictions, SHapley Additive exPlanations (SHAP) was applied. SHAP values 

provide insights into the impact of each feature on individual predictions, allowing for 

a transparent understanding of how each factor influences adaptability classification. 

SHAP analysis helped reveal the most significant predictors across models, shedding 
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light on the most influential factors affecting students’ adaptability in a digital learning 

environment (Jin et al., 2022). 

3. Results 

The performance metrics of seven machine learning models—Logistic 

Regression, Decision Tree, Random Forest, Gradient Boosting, Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), and Naive Bayes—were evaluated 

using accuracy, precision, recall, and F1-score. The results are summarized in Table 

1. 

Table 1. The performance metrics of seven machine learning models. 

Machine learning models Accuracy Precision Recall F1-score 

Logistic Regression 0.791667 0.541667 0.541026 0.535121 

Decision Tree 0.833333 0.554779 0.582051 0.567766 

Random Forest 0.833333 0.562963 0.574359 0.566416 

Gradient Boosting 0.75 0.536111 0.515385 0.521164 

Support Vector Machine 0.75 0.521008 0.507692 0.501961 

K-Nearest Neighbors 0.75 0.521008 0.507692 0.501961 

Naive Bayes 0.625 0.634259 0.746154 0.560705 

The Decision Tree and Random Forest classifiers achieved the highest accuracy 

at 0.833, with comparable performance in precision, recall, and F1-scores. Decision 

Tree demonstrated a precision of 0.5548, recall of 0.5821, and F1-score of 0.5678, 

while Random Forest had a slightly higher precision at 0.5630, recall of 0.5744, and 

an F1-score of 0.5664. Logistic Regression showed a lower accuracy of 0.792 but 

achieved balanced values for precision (0.5417) and recall (0.5410), resulting in an 

F1-score of 0.5351. Gradient Boosting, SVM, and KNN models each recorded an 

accuracy of 0.750. Gradient Boosting yielded a precision of 0.5361, recall of 0.5154, 

and F1-score of 0.5212, slightly outperforming SVM and KNN, which shared identical 

values for precision (0.5210), recall (0.5077), and F1-score (0.5020). Notably, Naive 

Bayes achieved the lowest accuracy at 0.625, yet it excelled in recall with a value of 

0.7462, indicating its strength in identifying positive instances, although this model 

had a lower precision of 0.6343 and a modest F1-score of 0.5607. While accuracy 

provides a primary benchmark, the trade-offs between precision, recall, and F1-score 

reveal deeper insights into each model’s suitability for various scenarios. For instance, 

Naive Bayes, despite its lower accuracy, demonstrates a high recall, making it 

advantageous in contexts where capturing positive instances is critical. In contrast, the 

Decision Tree and Random Forest models balance accuracy with robust performance 

across all metrics, suggesting their effectiveness for balanced classification tasks. 

These findings suggest that Decision Tree and Random Forest classifiers provide 

optimal accuracy and balanced performance across all metrics in this context, whereas 

Naive Bayes, despite lower accuracy, may be preferred when higher recall is required. 
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3.1. Random forest classification 

A representation of a decision tree derived from a random forest model was 

presented in Figure 1. The root node is defined by the condition Class Scheduling 

Flexibility (CSF ≤ 0.5), with a Gini impurity of 0.504, encompassing 64 samples and 

yielding a distribution of class values represented as [4, 32, 57]. Upon evaluating the 

branches, the true outcome of the root condition leads to a terminal node characterized 

by a Gini impurity of 0.0, which is composed of 80 samples and displays a class 

distribution of [0, 14, 66]. This indicates a high purity in this subset. Conversely, the 

false outcome branches to another node defined by the feature Gender (GND ≤ 0.5), 

which has a Gini impurity of 0.425. This node consists of 53 samples with a class 

distribution of [4, 18, 57], suggesting moderate impurity and variability among classes. 

Subsequent nodes reveal additional features and criteria, illustrating the tree’s 

hierarchical structure. Each node provides Gini impurity values and sample 

distributions, which reflect the effectiveness of the splits in classifying the data. As 

traverse deeper into the tree, the Gini impurity values typically decrease, indicating 

improved classification as the model narrows down potential outcomes. In summary, 

this random forest decision tree serves as a crucial component of the random forest 

model, elucidating the decision-making process and the underlying structure of the 

data. The analysis demonstrates how features interact to influence predictions and the 

resulting class distributions at each node. 

The decision tree representation provides a visual interpretation of the model’s 

decision-making process, illustrating how features interact to classify data. At the top 

of the tree, the root node displays the first feature (Class Scheduling Flexibility, 

Technical Support Availability, IT Resources in the University and IT Skills) used for 

splitting the data, along with its corresponding Gini impurity and sample size. The 

Gini impurity quantifies the impurity of a node, with lower values indicating a higher 

likelihood of homogeneity among the classes. The top square in Figure 2 identifies 

the initial feature (Class Scheduling Flexibility), which serves as the primary decision 

point for splitting the dataset. This feature (Class Scheduling Flexibility) is crucial for 

determining the path taken through the tree. Accompanying the feature is the Gini 

impurity value (0.531) indicates the effectiveness of the split. A Gini value closer to 0 

suggests that the resulting groups are predominantly composed of a single class, 

enhancing classification certainty. The number of samples (117) at the root node 

provides context for the decision, indicating the amount of data contributing to the 

analysis. This is essential for understanding the representativeness of the split. As 

presented in Figure 2, move down the tree, each subsequent node represents additional 

splits based on other features, demonstrating how the model progressively narrows 

down classifications. The tree culminates in terminal nodes, or leaves, which contain 

the final predictions. These nodes indicate the predicted class label for the data points 

that reach that endpoint. The sequence of features from the root to the leaves reveals 

the hierarchy of importance. Features such as Class Scheduling Flexibility, Technical 

Support Availability, IT Resources in the University and IT Skills that appear earlier 

in the tree generally hold more significance in the decision-making process. The 

branching structure of the decision tree enhances clarity, making it easy to follow the 

decision paths and understand how different features contribute to predictions. Each 
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node is associated with a specific condition (e.g., feature value thresholds) that 

determines how data is divided, reflecting the model’s logic. The overall design 

emphasizes the model’s ability to classify data accurately by leveraging significant 

features while discarding irrelevant ones. Insights gained from the decision tree can 

inform future feature engineering efforts, suggesting which features may warrant 

further exploration. The decision tree showed that the students with better Class 

Scheduling Flexibility and more technical support and IT skills had more adaptability 

to online learning. The decision tree model segments the data based on a series of 

encoded features, creating an interpretable classification structure. The initial split is 

determined by Class Scheduling Flexibility (CSF), which divides the data into two 

primary branches at a threshold of 0.50. Subsequent splits further segment the 

branches based on features like Technical Support Availability (TSA), IT Skills (ITS), 

and Device Ownership (DVS), each guided by specific thresholds. Notably, complex 

rules that combine features such as Access to Reliable Internet (ARI), University 

Resources (ITR), and Education Level (EDU) capture detailed class distinctions, 

ultimately leading to final class assignments (0, 1, or 2) at the terminal nodes. This 

hierarchical structure reflects conditional dependencies among features, where each 

path from root to leaf forms a unique rule set that contributes to precise classification 

outcomes. 

 

Figure 1. Representation of a decision tree derived from a random forest model. 
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Figure 2. Decision tree representation. 

3.2. Permutation importance analysis 

Permutation importance is a technique used to assess the contribution of 

individual features to the predictive performance of a model. It measures the effect of 

randomly permuting the values of a feature on the model’s accuracy. If permuting a 

feature significantly decreases the model’s performance, that feature is considered 

important. This method provides an intuitive understanding of feature significance 

across various modeling approaches. In our analysis, we evaluated the permutation 

importance of features across multiple modeling techniques: logistic regression, 

decision trees, random forests, gradient boosting, support vector machines (SVM), k-

nearest neighbors (KNN), and naive Bayes. Each model presents a unique perspective 

on feature importance, reflecting the underlying mechanics and assumptions of the 

algorithm used. 

The visual representations include vertical bars indicating the permutation 

importance for each feature, plotted on a horizontal axis. Features with higher bars 

signify greater importance, while those without bars indicate minimal or negligible 

contribution to model performance. In Logistic Regression, features such as Class 

Scheduling Flexibility and Access to Reliable Internet displayed with significate 

permutation importance, suggesting a linear relationship with the target variable. 

Notably, these top features show a clear impact on model accuracy, while some 

features (such as Network Infrastructure) had negligible importance, reflecting their 

limited predictive value. Decision tree-based model illustrates a more varied 

importance distribution among features. Several features such as (Class Scheduling 

Flexibility, Access to Reliable Internet and IT Resources in the University) exhibit 

high importance, indicating their decisive role in the splits of the tree structure, while 
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others are less influential. In Random Forest, similar to decision trees but with a 

broader range of feature importance values. The ensemble approach averages the 

importance scores across multiple trees, resulting in a more robust estimate. Key 

features are prominently ranked, underscoring their predictive strength. It should be 

noted here that Class Scheduling Flexibility and IT Resources in the University again 

had a significant impact on the model. Gradient Boosting model highlights a few key 

features with significant importance, showcasing the iterative nature of boosting 

(Class Scheduling Flexibility and IT Resources in the University). Some features stand 

out dramatically, while others reveal lower importance scores, suggesting their role in 

refining model predictions. The SVM analysis presents a unique importance profile, 

with certain features (Technical Support Availability and Class Scheduling Flexibility) 

showing relatively high importance, potentially reflecting their role in defining the 

decision boundary. However, many features remain unimportant, indicating a more 

complex relationship with the target variable. Other models (K-Nearest Neighbors 

(KNN) and Naive Bayes) permutation importance was presented in Figure 3. Overall, 

the permutation importance analysis across these models provides valuable insights 

into which features are most influential in predicting outcomes. It clearly showed that 

Class Scheduling Flexibility and Technical Support Availability are among the 

significant features with high impact on student adaptability towards online learning. 

The variations in feature importance across different algorithms underscores the 

necessity of considering multiple modeling approaches to fully understand the 

underlying data structure and feature contributions. This comprehensive evaluation 

not only enhances interpretability but also guides feature selection for future modeling 

endeavors. 

 

Figure 3. Permutation importance analysis of different machine leaning models. 
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3.3. ANOVA F-Value Representation 

The ANOVA (Analysis of Variance) F-value is a statistical measure used to 

assess the significance of differences between group means. It quantifies how much 

of the variance in the dependent variable can be attributed to the independent 

variable(s). A higher F-value indicates a greater likelihood that the group means are 

significantly different from each other, suggesting that the feature has a strong 

relationship with the target variable. In the context of feature importance, ANOVA F-

values provide insight into which features contribute most to explaining the variance 

in the outcome. The representation typically displays features on the vertical axis, with 

their corresponding F-values plotted on the horizontal axis. The ANOVA F-value 

representation ranks features based on their importance, allowing for easy 

identification of the most significant predictors. Features with higher F-values are 

prioritized Figure 4. 

 

Figure 4. Representation ANOVA F-Value and classifier features frequency. 

The SHAP (SHapley Additive exPlanations) analysis revealed the following 

features as influential in the classification of online and onsite learning adaptability. 

IT Resources in the University (ITR) feature emerged as the most significant factor 

influencing adaptability, suggesting that IT resources provided by your university play 

a crucial role in students’ learning experiences. The second feature was Digital Tools 

Exposure which indicated the years of working with digital tools showed considerable 

importance, indicating impact students’ adaptability. Class Scheduling Flexibility was 

highlighted as a significant factor, suggesting that good scheduling of the online class 

can influence access to and engagement with online learning. Furthermore, the 

Psychological Readiness for Change was another important feature impacting on 

adaptability. Technical Support Availability showed impact on engaging with online 

learning platforms. Other features represented in Figure 4 with less impact on the 

random forest modeling Figure 5. 
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Figure 5. Representation of the SHAP (SHapley additive exPlanations) analysis. 

4. Discussion 

The finding of this study serves as an effective visual tool for understanding the 

model’s classification process and the interaction between various features impacting 

students’ adaptability to online learning (Chaddad et al., 2023). As indicated at the 

root of the decision tree, the initial split based on Class Scheduling Flexibility is 

significant, as it demonstrates the primary factor influencing students’ experiences in 

online environments. The accompanying Gini impurity value of 0.531 indicates a 

moderate level of impurity, suggesting that while the split provides some clarity, there 

is still room for improvement in distinguishing between classes (Fiok et al., 2022). 

As we navigate through the branches of the tree, additional features such as 

Technical Support Availability and IT Skills further refine the classification. Each 

subsequent node illustrates how these factors contribute to the overall adaptability of 

students, with the hierarchy of features revealing their relative importance (Sachan and 

Saroha, 2022; Okoro, et al., 2024). Features appearing earlier in the tree, such as Class 

Scheduling Flexibility, are paramount in determining pathways through the model, 

emphasizing the critical nature of scheduling in online education (Dutta et al., 2024). 

The Gini impurity measure at each node plays a crucial role in evaluating the 

effectiveness of these splits. Lower Gini values in later nodes indicate a more 

homogeneous grouping of classes, enhancing the model’s predictive accuracy (Chitti 

et al., 2020). The terminal nodes, or leaves, present the final predictions for 

adaptability based on the conditions set by previous nodes, allowing for 

straightforward interpretation of the results (Baigarayev et al., 2021; Sachan and 

Saroha, 2022). Moreover, the decision tree’s structured branching enhances clarity, 

making it accessible for educators and researchers alike. This transparency allows 

participants to trace the decision-making process, fostering a better understanding of 

how specific features impact student outcomes (Wangoo and Reddy, 2021). Each 

decision point reflects the model’s logic, grounded in data, enabling informed 

discussions around interventions to enhance online learning experiences (Arun Kumar 

et al., 2022). The insights garnered from the different machine learning model analysis 

underscore the importance of targeted support mechanisms (da Silva et al., 2021). 

Students with greater Class Scheduling Flexibility, along with robust Technical 

Support and IT Skills, exhibit a marked adaptability to online learning environments. 
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These findings not only validate the significance of these features but also highlight 

potential areas for improvement in educational practice. Considering these results, 

future feature engineering efforts should prioritize the exploration of Class Scheduling 

Flexibility and support systems to further enhance model performance. The insights 

gained can drive strategic initiatives aimed at fostering adaptability among students, 

ultimately leading to improved educational outcomes. This approach aligns with the 

growing emphasis on personalized learning experiences in online education (Zhang 

and Zhang, 2021), suggesting a pathway for institutions to better support their students 

in navigating digital learning landscapes. Moreover, the SHAP analysis provides a 

comprehensive understanding of the factors influencing adaptability to online learning. 

The interplay between institutional characteristics and individual traits emphasizes the 

need for a holistic approach to educational reform. By addressing these multifactorial 

elements, we can better equip students for success in increasingly digital learning 

landscapes. The decision tree model in this study reveals key insights for the education 

sector, particularly in understanding factors that influence students’ adaptability to 

online learning. By highlighting “Class Scheduling Flexibility” as the primary split, 

followed by critical features like “Technical Support Availability,” “IT Skills,” and 

“Device Ownership,” the model emphasizes the importance of flexible and supportive 

online learning environments. Additionally, features like “Access to Reliable Internet,” 

“University Resources,” and “Education Level” indicate that adaptable, well-

resourced, and technically supported settings are essential for student success in virtual 

learning. This suggests that educational institutions can improve online adaptability 

by prioritizing flexibility, robust technical support, and resource accessibility. This 

study has limitations, including a narrow focus on specific demographic groups. 

Future research should explore a broader range of populations and examine additional 

factors influencing online adaptability, such as psychological aspects and learning 

preferences. 

5. Conclusion 

In conclusion, this study highlights the critical factors influencing students’ 

adaptability to online learning, with Class Scheduling Flexibility, Technical Support 

Availability, IT Resources in the University and IT Skills emerging as the most 

significant determinants. The interplay between these variables underscores the 

necessity for tailored educational strategies that consider individual and contextual 

differences. By prioritizing resource equity and infrastructural support, educational 

institutions can enhance student engagement and success in digital learning 

environments. Educational institutions should prioritize flexible class scheduling and 

enhanced technical support to improve students’ adaptability to online learning. 

Additionally, investing in resources that ensure reliable internet access and bolster IT 

skills can significantly boost student engagement and success in online environments. 

6. Future work 

Future research should focus on longitudinal studies that track the adaptability of 

students over time, exploring how their experiences evolve as online education 

becomes more integrated into mainstream learning. Additionally, investigating the 
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specific barriers faced by marginalized groups can provide deeper insights into 

developing inclusive educational practices. Finally, examining the impact of 

technological advancements on adaptability will be crucial in refining educational 

methodologies. 

Author contributions: Conceptualization, DS and BJ; methodology, BJ; validation, 

DS, SK and CT; formal analysis, BJ; investigation, DS and BJ; resources, SC and PK; 

data curation, SK; writing—original draft preparation, BJ; writing—review and 

editing, BJ; visualization, SK, CT and BJ; supervision, BJ. All authors have read and 

agreed to the published version of the manuscript. 

Ethical approval: The Ethical Committee has granted approval for this study (Ref. 

No. COE.2-012/2024). All procedures performed in this study involving human 

participants were in accordance with the ethical standards of national research 

committee. Informed consent was obtained from all individual participants included 

in the study. 

Informed consent: Informed consent was obtained from all subjects involved in the 

study. 

Conflict of interest: The authors declare no conflict of interest. 

References 

Alhothali, A., et al., Predicting student outcomes in online courses using machine learning techniques: A review. Sustainability, 

2022. 14(10): p. 6199. 

An, T. and M. Oliver, What in the world is educational technology? Rethinking the field from the perspective of the philosophy of 

technology. Learning, Media and Technology, 2021. 46(1): p. 6-19. 

Arun Kumar, U., G. Mahendran, and S. Gobhinath, A review on artificial intelligence based E-learning system. Pervasive 

Computing and Social Networking: Proceedings of ICPCSN 2022, 2022: p. 659-671. 

Baigarayev, Y., et al. Predicting Student Performance and Motivation in Online Education-A Survey of Current Research Trends. 

in 2021 16th International Conference on Electronics Computer and Computation (ICECCO). 2021. IEEE. 

Barbosa, P.L.S., et al., Adaptive learning in computer science education: A scoping review. Education and Information 

Technologies, 2024. 29(8): p. 9139-9188. 

Belle, V. and I. Papantonis, Principles and practice of explainable machine learning. Frontiers in big Data, 2021. 4: p. 688969. 

Besser, A., G.L. Flett, and V. Zeigler-Hill, Adaptability to a sudden transition to online learning during the COVID-19 pandemic: 

Understanding the challenges for students. Scholarship of Teaching and Learning in Psychology, 2022. 8(2): p. 85. 

Chaddad, A., et al., Explainable, domain-adaptive, and federated artificial intelligence in medicine. IEEE/CAA Journal of 

Automatica Sinica, 2023. 10(4): p. 859-876. 

Chitti, M., P. Chitti, and M. Jayabalan. Need for interpretable student performance prediction. in 2020 13th International 

Conference on Developments in eSystems Engineering (DeSE). 2020. IEEE. 

da Silva, L.M., et al., A literature review on intelligent services applied to distance learning. Education Sciences, 2021. 11(11): p. 

666. 

Dutta, S., et al. Enhancing Educational Adaptability: A Review and Analysis of AI-Driven Adaptive Learning Platforms. in 2024 

4th International Conference on Innovative Practices in Technology and Management (ICIPTM). 2024. IEEE. 

Essa, S.G., T. Celik, and N.E. Human-Hendricks, Personalized adaptive learning technologies based on machine learning 

techniques to identify learning styles: A systematic literature review. IEEE Access, 2023. 11: p. 48392-48409. 

Fiok, K., et al., Explainable artificial intelligence for education and training. The Journal of Defense Modeling and Simulation, 

2022. 19(2): p. 133-144. 

Gligorea, I., et al., Adaptive learning using artificial intelligence in e-learning: a literature review. Education Sciences, 2023. 

13(12): p. 1216. 



Journal of Infrastructure, Policy and Development 2024, 8(14), 9976.  

13 

Idrisoglu, A. and S. Javadi. Perceptions of International Students in a Higher Education Institute in Sweden. in 2024 5th 

International Conference in Electronic Engineering, Information Technology & Education (EEITE). 2024. IEEE. 

Jin, D., et al., Explainable deep learning in healthcare: A methodological survey from an attribution view. WIREs Mechanisms of 

Disease, 2022. 14(3): p. e1548. 

Kaddoura, S., D.E. Popescu, and J.D. Hemanth, A systematic review on machine learning models for online learning and 

examination systems. PeerJ Computer Science, 2022. 8: p. e986. 

Kooptiwoot, S. and B. Javadi, Development of Decision Support System Platform for Daily Dietary Plan. Current Nutrition & 

Food Science, 2022. 18(7): p. 670-676. 

Kooptiwoot, S., et al., AI-driven telemedicine: Optimizing daily dietary recommendations amidst the COVID-19 pandemic. 

Journal of Infrastructure, Policy and Development, 2024. 8(11): p. 8908. 

Kooptiwoot, S., et al., Deciphering the complexity of COVID-19 transmission: Unveiling precision through robust vaccination 

policies and advanced predictive modeling with random forest regression. Journal of Infrastructure, Policy and Development, 

2024. 8(8): p. 5321. 

Kooptiwoot, S., S. Kooptiwoot, and B. Javadi, Application of regression decision tree and machine learning algorithms to 

examine students’ online learning preferences during COVID-19 pandemic. International Journal of Education and Practice, 

2024. 12(1): p. 82-94. 

López Zambrano, J., J.A. Lara Torralbo, and C. Romero Morales, Early prediction of student learning performance through data 

mining: A systematic review. Psicothema, 2021. 

Mushtaha, E., et al., The challenges and opportunities of online learning and teaching at engineering and theoretical colleges 

during the pandemic. Ain Shams Engineering Journal, 2022. 13(6): p. 101770. 

Okoro, E., et al., Towards explainable artificial intelligence: history, present scenarios, and future trends. XAI Based Intelligent 

Systems for Society 5.0, 2024: p. 29-59. 

Qiao, P., et al., The development and adoption of online learning in pre-and post-COVID-19: Combination of technological 

system evolution theory and unified theory of acceptance and use of technology. Journal of Risk and Financial Management, 

2021. 14(4): p. 162. 

Rastrollo-Guerrero, J.L., J.A. Gómez-Pulido, and A. Durán-Domínguez, Analyzing and predicting students’ performance by 

means of machine learning: A review. Applied sciences, 2020. 10(3): p. 1042. 

Sachan, D. and K. Saroha, A review of adaptive and intelligent online learning systems. ICT Analysis and Applications, 2022: p. 

251-262. 

Su, Y.-S., Y.-D. Lin, and T.-Q. Liu, Applying machine learning technologies to explore students’ learning features and 

performance prediction. Frontiers in Neuroscience, 2022. 16: p. 1018005. 

Vieira, L., A Review of Cultural Adaptability in the Online Learning Environment of Adult Higher Education in Europe. Research 

and Advances in Education, 2024. 3(2): p. 37-41. 

Wangoo, D.P. and S. Reddy, Artificial intelligence applications and techniques in interactive and adaptive smart learning 

environments. Artificial Intelligence and Speech Technology, 2021: p. 427-437. 

Zhang, X. and X. Zhang, An Overview of Data Mining Techniques for Student Performance Prediction. Artificial Intelligence in 

Education and Teaching Assessment, 2021: p. 149-159. 


