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Abstract: The purpose of Vehicular Ad Hoc Network (VANET) is to provide users with 

better information services through effective communication. For this purpose, IEEE 802.11p 

proposes a protocol standard based on enhanced distributed channel access (EDCA) 

contention. In this standard, the backoff algorithm randomly adopts a lower bound of the 

contention window (CW) that is always fixed at zero. The problem that arises is that in severe 

network congestion, the backoff process will choose a smaller value to start backoff, thereby 

increasing conflicts and congestion. The objective of this paper is to solve this unbalanced 

backoff interval problem in saturation vehicles and this paper proposes a method that is a 

deep neural network Q-learning-based channel access algorithm (DQL-CSCA), which adjusts 

backoff with a deep neural network Q-learning algorithm according to vehicle density. 

Network simulation is conducted using NS3, the proposed algorithm is compared with the 

CSCA algorithm. The find is that DQL-CSCA can better reduce EDCA collisions. 

Keywords: Vehicular Ad Hoc Network; enhanced distributed channel access; packet 

collision; deep neural network Q-learning 

1. Introduction 

In recent years, the amazing advances in wireless technology and embedded 

communication systems extend their use to new dimensions so that they can be used 

anytime, anywhere. Taking advantage of the advancement of wireless 

communications and the ever-increasing needs of users, the automotive industry and 

the government have seized the opportunity to use the Vehicle Ad Hoc Network 

(VANET) to improve the transportation system. Vehicle transportation is the largest 

transportation sector; however, recently encountered traffic-related problem shave 

increased significantly, accidents and frequency have become an increasingly serious 

issue related to vehicles (Mahi et al., 2022). Intelligent Transportation Systems (ITS) 

have been an active research field for the last few years. As a core element of the 

next generation ITS, VANETs are intended to provide a low cost, reliable and 

efficient communication network for transportation systems (Fitah et al., 2018). 

Vehicle-to-vehicle (V2V) communication is promoted in VANET, which refers to 

communication between vehicles. In addition, vehicle-to-infrastructure (V2I) 

communication is used to access infrastructure networks, such as cellular networks 

or wireless local area networks (WLAN) access points, through network gateways, 

such as roadside units (RSU) and base stations (BS) (RadhaKrishna, 2021). 

IEEE 802.11p is the MAC layer protocol for VANET, which uses the EDCA 

MAC sublayer protocol to support different types of services. The IEEE 802.11p 
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standard introduced new specifications to the physical layer, as well as the MAC 

sub-layer, to improve communications in VANETs. It is especially designed for 

medium range and time-sensitive applications to adapt to vehicle mobility (Harkat et 

al., 2019). The IEEE 802.11p protocol uses the EDCA method to detect access 

channels before transmitting data to each vehicle. To resolve data conflicts, EDCA 

uses Binary Exponential Backoff (BEB) for the backoff process. BEB is the standard 

algorithm for the collision mitigation mechanism based on EDCA of IEEE 802.11p 

(Nasir and Albalt, 2009). As a standard algorithm, BEB can usually reduce data 

collisions effectively. 

However, the BEB method is not suitable for vehicular networks, as EDCA 

packet collisions will increase significantly in density vehicular networks (Gopinath 

et al., 2020). In this paper, a new method, a deep neural network Q-learning-based 

channel access algorithm (DQL-CSCA), is proposed. This algorithm adapts the 

backoff using a deep neural network Q-learning algorithm depending on the number 

of repetitions and vehicle density. This algorithm has designed a new equation and 

combined it with the three equations of CSCA algorithm as the four actions for Q-

learning. The new equation has a certain degree of flexibility to adapt to various state 

intervals or dynamically adjust in unstable states, with a certain adaptive mechanism, 

combined with existing contention windows and collision conditions to further 

reduce collision probability. The advantage of this algorithm is that the Q-learning 

algorithm in this paper is based on 7 states and 4 actions, including newly designed 

formulas, which have a certain degree of flexibility to adapt to various state intervals 

and have a certain adaptive mechanism. After multiple iterations and training, this 

algorithm will gradually select the optimal action in each state to reduce data 

collisions. 

This article is organized as follows. Section 1 introduces IEEE 802.11p MAC 

and EDAC. Section 2 discusses related works. And, section 3 performs an example 

arithmetic study. Section 4 compares the research methodology of this paper with 

that of previous literature based on NS3 simulation results. Section 5 discusses the 

simulation results. Finally, section 6 concludes the paper. 

2. Literature review 

The most important MAC protocols in the VANET are IEEE 802.11p and IEEE 

1609.4. In this article, packet collisions in IEEE 802.11p are examined by literature 

review. 

2.1. IEEE 802.11p EDCA in MAC layer protocols of VANET 

To support VANET services, the standard for wireless access in vehicle 

environments IEEE 802.11p was introduced. The IEEE 802.11p standard offers high 

data rates through Dedicated Short-range Radio Communication (DSRC) devices, 

which have a bandwidth of 6 Mbps to 27 Mbps. In VANET, there are two different 

types of nodes that have DSRC devices. These are: On Board Units (OBUs) and 

RSUs which are placed at the roadsides (Banda et al., 2012).  

In wireless local area network (WLAN), the most basic and widely used access 

method at the MAC layer is the random contention access method called Distribute 
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Coordination Function (DCF). The DCF mechanism is the core technology for the 

MAC layer protocol of IEEE 802.11e, which acts on the basic service group and the 

basic network structure. IEEE 802.11p is an extended version for IEEE 802.11e 

(Harkat et al., 2019). 

Software defined vehicular network (SDVN) is a new paradigm that enhances 

the programmability and flexibility of VANETs, but lacks a data collection 

mechanism. Researchers have proposed a data collection mechanism for this 

(Wijesekara et al., 2023). The IEEE 802.11P defined the routing capabilities of 

DSRC devices in VANETs. Routing in vehicular networks is challenging due to the 

high mobility of nodes leading to a dynamic network topology. Some researchers 

have conducted research to improve this (Wijesekara and Gunawardena, 2023). 

2.2. IEEE 802.11p EDCA channel access method 

IEEE 802.11p uses EDCA method to meet the requirements of in vehicle 

applications. In competition based protocols, each vehicle checks whether the 

channel is free before transmitting data. Once other adjacent vehicles also detect that 

they have free lanes, it can lead to collisions between them. To resolve conflicts, the 

backoff process defined in EDCA uses binary exponential backoff (BEB). 

BEB is the standard algorithm for the collision mitigation mechanism based on 

EDCA according to IEEE 802.11p. It is a binary exponential backoff algorithm used 

in the backoff process of EDCA (Wang et al., 2023). When the vehicle is ready to 

access the channel and discovers a busy channel, BEB will select a random value 

from [0, CWUB] as the backoff value. If no confirmation is received or a conflict 

occurs within the specified time, CWUB will make modifications according to 

Equation (1) (Gopinath and Nithya, 2018). 

𝐶𝑊𝑈𝐵𝑖 = {
2𝑖 × 𝐶𝑊𝑈𝐵𝑚𝑖𝑛 , 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝐶𝑊𝑈𝐵
𝑚𝑖𝑛, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

 (1) 

BEB includes six backoff stages. Every time there is a packet conflict, CWUB 

increases exponentially. After successful transmission, it will be reset to the 

minimum CW value. 

2.3. BEB algorithm with dense vehicle population 

The BEB algorithm is suitable for environments with few vehicles. If the 

vehicle density is high, the probability of multiple vehicles choosing the same 

waiting time will increase. This will lead to more data conflicts in the network (Nasir 

and Albalt, 2009). The BEB method is not applicable to high-density vehicle 

networks (Rawat et al., 2011). The number of vehicles within the communication 

range may increase or decrease due to their mobility. At each backoff stage, 

regardless of the number of vehicles and traffic conditions, the CWLB value remains 

at 0. 
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2.4. Packet collision reduction 

BEB is the standard algorithm for the collision mitigation mechanism based on 

EDCA of IEEE 802.11p. It is a binary exponential backoff algorithm used in the 

backoff process of EDCA. The standard BEB method is not suitable for vehicular 

networks because EDCA collisions increase significantly in highly dynamic 

vehicular networks (Nasir and Albalt, 2009). Researchers have proposed many 

variants of competitive solutions (Chang et al., 2012; Stanica et al., 2017; Wu and 

Xu., 2017). Chang et al. (2012) proposed an adaptive EDCA scheme for vehicle 

communication (A-EDCA). A-EDCA defines a set of CW values for each 

retransmission attempt. The range of CW values is estimated based on the number of 

vehicles and collision attempts in the network. 

A CW based data distribution protocol for improving vehicle communication 

was suggested by Arora and Patel (2017). The drawback of this scheme is that as the 

vehicle density increases, the value of CW may exceed the maximum contention 

window. Balador et al. (2017) proposed a density based CW scheme. Estimate the 

vehicle density adjustment CW by maintaining the historical records of the channel. 

However, maintaining historical records is an additional computational expense. Lei 

et al. (2021) also pointed out that 802.11p EDCA uses a fixed-size competitive 

window for secure transmission of messages, which leads to a high probability of 

collision in a dense environment. To address these shortcomings, a hybrid access 

method is proposed: the node is configured to reserve time slots for the next 

transmission round, while the unoccupied time slots are reserved for the nodes with 

urgent needs. In addition, implicit feedback is used to detect conflicts that occur in 

reserved time slots during random channel access. Therefore, a mathematical model 

has been developed to optimize the parameters of our system and minimize the cost 

caused by unused channels and conflicts. A large number of simulations show that 

this mechanism can significantly improve the performance of VANET in secure 

message transmission. Gopinath et al. (2020) proposed improvements to the 

algorithm of Chang et al. (2012). A channel state based competitive algorithm 

(CSCA) was suggested by Gopinath et al. (2020), which adjusts the backoff value 

according to the count of retransmissions attempts and vehicle density of ACK. This 

algorithm proposes an algorithm that uses equations to calculate the CWLB instead of 

EDCA, where the CWLB is fixed to 0. This algorithm has been proven effective in 

NS3 simulation validation when vehicles are dense, but its equation is too fixed and 

lacks elasticity. 

The algorithms discussed above focus on adjusting the CWUB. Moreover, the 

backoff interval is randomly chosen from the [0, CWUB] interval, so conflicts and 

repeated retransmissions are inevitable, thereby reducing the performance of the 

entire network. Although the CSCA algorithm does not start CWLB from zero, but its 

calculation method is relatively fixed and has not been adjusted according to the 

actual environmental state. Considering these shortcomings, this paper proposes 

using deep Q-learning to improve CSCA algorithm in an attempt to optimally adjust 

the lower bound. In this paper, the CSCA algorithm proposed by Gopinath et al. 

(2020) is improved. 
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3. Research methods 

Reinforcement learning can be based on the Markov decision process (Gattami 

et al., 2021). The core idea of the machine learning algorithm of MDP is to imitate 

the trial and error and exploration mechanism in bionics to seek advantages and 

avoid disadvantages, according to the interaction between agent and environment, 

use actions to perform independent training and learning, and optimize the policy 

and learn the optimal behavior through reward after interaction (Ma et al., 2021). 

Reinforcement learning aims to find the optimal value function of the value function 

for all strategies through continuous iteration, including the optimal V function and 

the optimal Q function (Ernst and Louette, 2024). The reinforcement learning 

methods are mainly divided into three types: value-based, strategy-based, value-

based and strategy-based. Value-based Q-learning is a classical value-based method 

of reinforcement learning algorithm (Ding et al., 2020). Deep Q-learning can learn 

from data sets of state-action pairs. The reason is that the neural network can learn to 

represent the Q-function as a function of state and action. In this work, the DQL 

algorithm is used to learn and find the optimal CW value to reduce data collisions in 

vehicle transmission.  

This paper aims to address these shortcomings by using deep neural network 

and Q-learning (DQL), named DQL-CSCA, to calculate CWLB to reduce collision 

based on retransmission, which corresponds to 7 states from 0 to 6. Q-learning is one 

classical value method depended on reinforcement learning algorithm. This article 

improves the CSCA algorithm proposed by Gopinath et al. (2020). 

Shown in the following Figure 1, in a neural network with 7 inputs and 4 

outputs, if input states are specified, the Q values of the 4 actions are used as the 

outputs of the neural network. Among them, state S0 to S6 correspond to 

retransmission attempts 0 and 6. The three formulas of CSCA (Gopinath et al., 2020) 

correspond to three actions, plus the default parameters of EDCA as the fourth 

action, resulting in a total of four actions. Shown as Figure 1, a1, a2, a3 and a4 

correspond to the following four actions, and VD is vehicle density and Ra is 

retransmission attempts. 

 
Figure 1. Neural network of DQL-CSCA. 

This paper’s algorithm is an improvement on CSCA of the Gopinath et al. 

(2020) algorithm. Gopinath et al. (2020) first proposed an algorithm to reduce EDCA 
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data collisions by adjusting CWLB. Gopinath et al. (2020) proposed three formulas to 

adjust CWLB. But the three equations of this algorithm are too fixed and lack 

elasticity, and theoretically they are not the optimal solution for adjusting CWLB. 

Then, to address these shortcomings, this paper presents a deep neural network Q-

learning algorithm that continuously attempts and learns to obtain the optimal 

solution through reinforcement learning. Based on theoretical calculations of the 

number of retries and the number of vehicles, the most suitable equation for the 

current conditions is calculated in real-time according to the three equations of 

Gopinath et al. (2020).  

Action 1, 2 and 3 are based on three equations of CSCA, Equations (2)–(4) 

(Gopinath et al., 2020). This algorithm designed a new equation as the fourth action 

for Q-learning. The new Equation (5) has a certain degree of flexibility to adapt to 

various state intervals. 

1 curr

LB UB

D

CW CW
V

=   (2) 

2

LB D aCW V R=   (3) 

2 min2 aR

LB UBCW CW
−

=   (4) 

1
6 6

curr curra a
LB UB UB

R R
CW CW CW

 
= −  +  
 

 (5) 

About Q-value (s, a), Q value update method is: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄 (𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (6) 

Among them, s is state, and a is action, α is learning coefficient, r is reward 

received for actions, γ is proportional coefficient, max𝑎′𝑄(𝑠′, 𝑎′) is the maximum 

Q value obtained by the action in the next state. All in all, this section proposes a 

deep Q-learning algorithm to calculate CWLB, which is a reinforcement learning 

algorithm based on neural networks. 

Showed as Table 1, the Q-Table will be a 7 × 4 matrix, where each cell 

represents the Q value of performing a certain action in a certain state. 

Table 1. Q-Table of DQL-CSCA. 

State Action 1 Action 2 Action 3 Action 4 

0 0 0 0 0 

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 0 

4 0 0 0 0 

5 0 0 0 0 

6 0 0 0 0 
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In the Q-learning algorithm, the Q-Table is a matrix that stores the Q value of 

each state and action combination to help the agent choose the best action in 

different states. Then, DQL-CSCA has 7 states (from 0 to 6, state 0 is the best state 

and state 6 is the worst state) and 4 possible actions. In the initial stage of Q-

learning, the Q value is usually set to 0, indicating that the agent has no experience 

or knowledge of the environment. After multiple iterations and training, the Q value 

in the Q-Table will gradually reflect the optimal action selection in each state. Q-

learning algorithm in this paper is based on 7 states and 4 actions, including newly 

designed formulas, which have a certain degree of flexibility to adapt to various state 

intervals and have a certain adaptive mechanism. After multiple iterations and 

training, this algorithm will gradually select the optimal action in each state to reduce 

data collisions. The reinforcement learning takes place in node and node is agent.  

The proposal model showed as Figure 2. 

 

Figure 2. The proposal model. 

CW adjustment schemes are described in Algorithm 1. 

Algorithm 1 DQL-CSCA algorithm 

1: Input: CWUBcurr—Current CWUB  

2: VD—Vehicle Density  

3: Ra—Retransmission Attempt  

4: CWUBmin—Minimum CWUB  

5: CWUBmax—Maximum CWUB  

6: NodeId—id of each node 

7: Output:  

8: CWLB—Updated Lower Bound procedure  

9: procedure DQL-CSCA(VD, Ra, CWUBmin, CWUBmax, NodeId)  

10: for each queue do  
11: Configure(CWUBmin, CWUBmax)  

12: end for 

13: for each arrived packet do 

14: Enqueue(packet)  

15: end for  
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Algorithm 1 (Continued) 

16: CWUBcurr = getCW()  

17: //get action based on Q-value in each node 

18: action = GetActionByQvalue(Ra, NodeId) 

19: //do action to update CWLB 

20: if action = 1 then 𝐶𝑊𝐿𝐵 =
1

√𝑉𝐷
× 𝐶𝑊𝑈𝐵

𝑐𝑢𝑟𝑟  

21: else if action = 2 then𝐶𝑊𝐿𝐵 = √𝑉𝐷 × 𝑅𝑎
2 

22: else if action = 3 then 𝐶𝑊𝐿𝐵 = 2𝑅𝑎−2 × 𝐶𝑊𝑈𝐵
𝑚𝑖𝑛  

23: else if action = 4 then 𝐶𝑊𝐿𝐵 = (1 −
𝑅𝑎

6
) × 𝐶𝑊𝑈𝐵

𝑐𝑢𝑟𝑟 +
𝑅𝑎

6
× 𝐶𝑊𝑈𝐵

𝑐𝑢𝑟𝑟
 

24: BOcounter = random(CWLB, CWUBmax)  

25: BackoffStartedNow(BOcounter)  

26: end procedure 

All in all, this section proposes a Q-learning neural networks to calculate CWLB. 

This algorithm is based on the advantages of Gopinath et al. (2020) algorithm and 

integrates deep neural network Q-learning algorithm to find the optimal backoff 

values of each vehicle in dense driving environments, thereby obtaining the optimal 

value to reduce packet collisions in dense vehicle environments. 

4. Result analysis 

The data analysis of this paper will refer to the default EDCA conflict 

avoidance algorithm and CSCA conflict avoidance algorithm in IEEE 802.11p. The 

simulation will compare data collision rate to evaluate the proposed DQL-CSCA 

algorithm. 

In this study, the network simulator NS-3 is selected because of its availability, 

simplicity and efficiency. The traditional simulation method usually needs to write 

program code to implement an algorithm. It may require a lot of machines to test. 

Some are responsible for making routers, some are responsible for being servers, and 

some are customers. They even need more equipment laboratories, development and 

test platforms, etc. NS-3 covers various protocols, traffic models, network types and 

other network elements. These features make the NS-3 more powerful than other 

simulators.  

The vehicle network has deployed up to 100 cars and range of 350 m. The IEEE 

802.11p PHY standard is used for physical layer configuration. Other simulation 

parameters and their values refer to the IEEE 802.11p PHY/MAC of CSCA paper by 

Gopinath et al. (2020). This section describes the simulation results of the proposed 

DQL-CSCA algorithm, default EDCA, and CSCA algorithm. The results are 

analyzed using the packet collision rate (PCR). PCR is a measure of the number of 

conflicting packets relative to the number of transmitted packets. The result shown 

as Figures 3 and 4, the proposed DQL-SCA algorithm better controls the packet 

collision rate than other algorithms. 

The proposed DQL-CSCA focuses on changing the appropriate CWLB based on 

deep neural networks and Q-learning to reduce packet collisions. Therefore, Figures 

3 and 4 witnesses that the proposed DQL-CSCA algorithm performs better message 

PCR than CSCA and default EDCA. When the density of vehicles increases, such as 

the number of vehicles ranging from 20 to 100, the proposed DQL-CSCA controls 
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PCR by 11 to 16 percent. When the vehicle density is 50 vehicles, DQL-CSCA 

reduces the collision rate by about 5 percent compared to CSCA and about 10 

percent compared to the default EDCA. When the vehicle density is 100 vehicles, 

DQL-CSCA still reduces collision rates by about 5 percent compared to CSCA, but 

by about 20 percent compared to the default EDCA. This trend indicates that the 

algorithm proposed in this article is effective in reducing data collisions in situations 

with high vehicle density. The possible reason for this is that the deep Q-learning 

algorithm proposed in this article continuously tries and learns through 

reinforcement learning to obtain the optimal solution. When there are more vehicles 

and more data transmitted, the more data used for learning is more beneficial for 

deep Q-learning. Based on more data, the calculation is based on retries and vehicles, 

The DQL algorithm will better reduce data conflicts in EDCA. In wireless networks, 

different formulas are adopted to cope with changes in surrounding environmental 

factors, which is precisely why deep Q-learning can theoretically obtain better 

solutions, and simulation results also show that this is indeed the case. 

 

Figure 3. Comparison of packet collision rate (packet size = 100). 

 

Figure 4. Comparison of packet collision rate (packet size = 200). 
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5. Discussion 

In VANET, the traditional scheme will cause serious data collision when 

vehicles are dense. Therefore, this study aims to propose a deep reinforcement 

learning algorithm for data collision, which considers network collision through deep 

reinforcement learning. The objective of this paper is to solve this unbalanced 

backoff interval problem in saturation vehicles and this paper proposes a method that 

is a deep neural network Q-learning-based channel access algorithm (DQL-CSCA), 

which adjusts backoff with a deep neural network Q-learning algorithm according to 

the number of retransmissions attempts and vehicle density. The find is that DQL-

CSCA can better reduce EDCA collisions. This paper will make a certain 

contribution to the IEEE 802.11p standard of VANET, because it applies emerging 

deep neural network algorithm of artificial intelligence to the traditional VANET 

field. 

Based on Gopinath’s algorithm, this paper uses the Q-learning algorithm to 

provide superiority and improvement significance for the backoff window selection 

strategy. The first is the enhanced adaptability. Compared with traditional 

algorithms, Q-learning can find the optimal strategy through learning in a constantly 

changing network environment. Different node densities and collision rates may 

cause drastic fluctuations in network conditions, and the Q-learning algorithm can 

adjust the strategy by updating the Q table, so that the agent can choose different 

actions (equations) to reduce the collision rate. The second is to improve the 

collision avoidance effect: Gopinath’s algorithm is a fixed equation and lacks 

flexibility. Q-learning can select the optimal formula according to the current 

collision situation, dynamically adapt to the network load, and reduce the probability 

of data collision. This makes the network resource utilization higher. Then the Q-

learning algorithm accumulates experience, so that the agent can learn the optimal 

strategy from it, thereby achieving the optimal collision control effect. With the help 

of Q-learning, the algorithm can select a suitable formula according to the current 

state, making the adjustment of the backoff window more intelligent, thereby 

reducing the number of data retransmissions and system overhead. 

All in all, this study attempts to design a throughput algorithm in MAC protocol 

by implementing Q learning of deep reinforcement learning to reduce the frame 

collision rate due to vehicle density. This paper provided a certain contribution to the 

algorithm optimization of VANET’s IEEE 802.11p EDCA standard in terms of 

performance and proposed the method DQL-CSCA can solve this problem better. 

6. Conclusion 

The NS3 simulation results of this paper indicate that the proposed DQL-CSCA 

algorithm can better reduce EDCA data collisions than the CSCA algorithm and the 

default EDCA algorithm. This indicates that the DQL-CSCA deep neural network Q-

learning algorithm proposed in this paper, based on retransmission attempts and the 

number of vehicles in saturated vehicle networks, can better reduce conflicts and 

congestion in VANET networks. 

The DQL-CSCA algorithm proposed in this paper, originating from AI, is an 

improvement on the CSCA algorithm and has been proven to achieve better results. 
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This theoretically promotes the development of algorithms in the field of IEEE 

802.11p EDCA data collision based on adjusting CWLB values, which is conducive to 

the theoretical development of VANET. It has certain theoretical reference 

significance for future scholars preparing to apply AI algorithms to the WIFI field. 

The contribution of the DQL-CSCA algorithm is that this Q-learning backoff 

window adjustment strategy is not only applicable to existing network environments, 

but can also be extended to other similar scenarios. For example, in other high-

density wireless sensor networks and IoT nodes, Q-learning can help design adaptive 

backoff mechanisms to effectively reduce interference and collisions, thereby 

improving communication efficiency. 

In short, DQL-SCA can better reduce EDCA collisions in densely populated 

environments with vehicles. This study did not consider the impact of urban 

architecture on wireless networks, which can serve as a direction for future research. 

In addition, TDMA-based MAC protocols and multipath video streaming in VANET 

will be the next research direction (Aliyu et al., 2020; Emmanuel et al., 2019). 
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