
Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

https://doi.org/10.24294/jipd8967

1

Article

Adaptive load balancing strategies in service composition for improved

system performance

Wai Kent Low, R. Kanesaraj Ramasamy*, Venushini Rajendran

Faculty Computing Informatics, Multimedia University, Cyberjaya 63100, Malaysia

* Corresponding author: R. Kanesaraj Ramasamy, kanes87@gmail.com, r.kanesaraj@mmu.edu.my

Abstract: Service composition enables the integration of multiple services to create new

functionalities, optimizing resource utilization and supporting diverse applications in critical

domains such as safety-critical systems, telecommunications, and business operations. This

paper addresses the challenges in comparing load-balancing algorithms within service

composition environments and proposes a novel dynamic load-balancing algorithm designed

specifically for these systems. The proposed algorithm aims to improve response times,

enhance system efficiency, and optimize overall performance. Through a simulated service

composition environment, the algorithm was validated, demonstrating its effectiveness in

managing the computational load of a BMI calculator web service. This dynamic algorithm

provides real-time monitoring of critical system parameters and supports system optimization.

In future work, the algorithm will be refined and tested across a broader range of scenarios to

further evaluate its scalability and adaptability. By bridging theoretical insights with practical

applications, this research contributes to the advancement of dynamic load balancing in service

composition, offering practical implications for high-tech system performance.

Keywords: dynamic load balancing; service composition; least connection; service oriented

architecture; round-robin; weight least connection

1. Introduction

Figure 1. Service composition.

Service composition (Fatima et al., 2018; Rajendran et al., 2022) is an approach

to organizing and utilizing software components as a combination of services as shown

in Figure 1. These services offer modular flexibility and interoperability by being

shared, reused, and combined to develop applications. Each service in a composition

contains the code and data needed to perform a specific business function, such as

checking a customer’s credit, calculating monthly loan payments, or processing a

mortgage application. Composition interfaces provide loose coupling, enabling

services to be called with little or no knowledge of the underlying service

implementation, thereby reducing dependencies between applications. Service

composition makes it easier for services to be reused and facilitates communication

between platforms and languages, simplifying the creation of new applications. A

CITATION

Low WK, Ramasamy RK, Rajendran

V. (2024). Adaptive load balancing

strategies in service composition for

improved system performance.

Journal of Infrastructure, Policy and

Development. 8(13): 8967.

https://doi.org/10.24294/jipd8967

ARTICLE INFO

Received: 3 September 2024

Accepted: 18 September 2024

Available online: 18 November 2024

COPYRIGHT

Copyright © 2024 by author(s).

Journal of Infrastructure, Policy and

Development is published by EnPress

Publisher, LLC. This work is licensed

under the Creative Commons

Attribution (CC BY) license.

https://creativecommons.org/licenses/

by/4.0/

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

2

software unit intended to achieve a specific purpose within a composition is called a

service composition. Applications utilize fundamental interface standards and

concepts to access services, thereby facilitating the creation of new applications.

Interoperability between applications and services is easily established through service

composition, reducing costs associated with the development of business service

solutions and ensuring the smooth scalability of existing systems.

Dynamic load balancing in service composition has emerged as a critical area of

research and application, particularly as organizations increasingly rely on

interconnected services to enhance their IT infrastructure’s flexibility, scalability, and

efficiency. The dynamic nature of contemporary applications, often distributed across

multiple servers and cloud environments, necessitates effective load balancing

strategies to ensure optimal resource allocation and responsiveness. This is particularly

important in cloud computing, where the ability to adapt to real-time changes in

workload and system health can significantly improve scalability and fault tolerance

(Gupta, 2024). Recent studies highlight the importance of dynamic load balancing

techniques, which utilize algorithms that can adjust server weights and resource

allocations based on real-time data, thereby enhancing processing capabilities and

resource utilization rates (He, 2024; Tawfeeg et al., 2022). Furthermore, the

integration of metaheuristic algorithms in dynamic load balancing has been shown to

optimize performance in heterogeneous environments, making them suitable for

addressing the challenges posed by fluctuating service demands (Syed, 2024). As

service composition continues to evolve, the implementation of robust dynamic load

balancing mechanisms will be essential for maintaining high service availability and

efficiency in cloud-based architectures (Lohumi, 2023).

Load balancing in Service Composition (Wang et al. 2021) involves distributing

incoming service requests across multiple servers. Services with higher loads often

correspond to clusters composed of multiple servers. When a request comes, the load

balancing program will use the corresponding address list from the server’s

corresponding address list to evenly distribute the request to the back-end servers.

Service load balancing involves the selection of a server for access using load

balancing algorithms and rules. This method aims to distribute the load efficiently

among servers to optimise performance. Besides, this ensures that no single server

bears too much load, optimizing performance and preventing bottlenecks. It is like

sharing the workload among multiple colleagues to handle tasks more efficiently.

When the performance of a server reaches its limit, we can use server clusters to

improve the overall performance of the application. In the server cluster, a server needs

to act as a scheduler. All user requests will be received by it first. The scheduler will

then allocate the requests to a certain back-end server for processing based on the load

of each server. So, in this process, how does the scheduler reasonably allocate tasks to

ensure that all back-end servers can fully exert their performance, thereby maintaining

the optimal overall performance of the server cluster? This is also one of the challenges

of load balancing.

Dynamic Load Balancing is one of the load balancing method algorithms (Ali M.

Alakeel, 2010). Dynamic load balancing in Service Composition enhances the

efficient allocation of computing workloads across a network of interconnected

services. As the use of Service Composition by organizations continues to grow, the

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

3

need for effective load balancing becomes increasingly significant. This is primarily

driven by the desire to promote flexibility, scalability, and efficiency within their IT

infrastructure. In the rapidly changing and complex realm of contemporary

applications, where services are dispersed among several servers and cloud

environments, load balancing plays a crucial role in maintaining efficient resource

allocation and responsiveness. Dynamic load balancing specifically focuses on

making real-time adjustments to this distribution based on the changing conditions of

the system. Dynamic load balancing is more adaptive and responsive to fluctuations

in workload and system health, contributing to better scalability and fault tolerance in

Service Composition architectures.

Dynamic load balancing in Service Composition has some algorithms and

techniques such as the least connection load balancing algorithm, weighted least

connection load balancing algorithm and round-robin load balancing algorithm. The

first one is the least connected load balancing algorithm (Wira Harjanti et al., 2022),

it is a method to open a communication channel between the client and the server.

When a client sends its first request to the server, the clients authenticate and establish

an active connection between them. In the least connections load balancing algorithm,

the load balancer checks which servers have the fewest active connections and sends

traffic to those servers. This method assumes that all connections require the same

processing power from all servers. The second dynamic load balancing algorithm is

the weighted least connection load balancing algorithm, the weighted least

connections load balancing algorithm assumes that some servers can handle more

active connections than others. Therefore, we can assign different weights or

capacities to each server and the load balancer will send new client requests to the

server with the fewest connections by capacity. The third dynamic load balancing

algorithm is the round-robin load balancing algorithm. Round-robin load balancing is

one of the simplest ways to distribute client requests to a group of servers. Along the

list of servers in the group, the round-robin load balancer forwards client requests to

each server in turn. When the end of the list is reached, the load balancer returns to the

server at the beginning and forwards a new round of requests again along the list. It

sends the next request to the first server in the list and then sends subsequent requests

to the second server and so on. Lastly, the resource-based method is one of the load

balancing algorithms. In the resource-based approach, the load balancer distributes

traffic by analysing the current server load. Specialised software called agents runs on

each server and calculates the usage of the server’s resources, such as its computing

capacity and memory. The load balancer will then check if the proxy has enough

resources available before assigning traffic to that server.

Within the context of dynamic load balancing in the domain of service

composition, noteworthy case studies serve as examples of effective implementations.

A standout instance is discerned in the deployment of Amazon Elastic Load Balancing

(ELB), particularly salient for cloud-based applications. ELB proficiently allocates

incoming traffic among multiple Amazon EC2 instances, thereby augmenting high

availability and fortifying fault tolerance. This dynamic load balancing mechanism

facilitates judicious resource allocation, ensuring optimal system performance amidst

variabilities in workload. Another conspicuous illustration is the utilisation of the

nginx load balancer, distinguished for its versatility and adaptability within service

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

4

composition environments. Nginx not only accommodates diverse load balancing

algorithms but also integrates functionalities such as health checks to evaluate the real-

time status of service instances. This proactive modality empowers Nginx to

dynamically recalibrate its load balancing strategies, rendering it a robust selection for

ensuring the stability and responsiveness of services inherent to a service composition

framework.

While previous load-balancing algorithms such as Round Robin and Least

Connection have proven useful, they fail to adapt dynamically to fluctuating system

demands in real-time. This paper introduces a novel adaptive load-balancing algorithm

that incorporates real-time system monitoring and automated resource distribution

based on predictive performance metrics, offering a significant improvement over

existing techniques.

1.1. Problem statement

The increasing complexity and diversity of service composition patterns pose

significant challenges in developing effective frameworks for dynamic load balancing

in decentralized environments. Traditional methods often fail to adapt efficiently to

fluctuating workload conditions, resulting in suboptimal performance in areas such as

thread activity, CPU usage, and throughput. To address this, a novel dynamic load

balancing technique is proposed, requiring thorough validation in a simulated service

composition environment. The challenge lies in optimizing resource utilization while

maintaining high throughput under various workload conditions. Key performance

indicators such as thread activity, CPU usage, and throughput within a given time

frame (e.g., 1 min) must be measured to assess the technique’s efficacy (Thomson,

2008). Moreover, existing service composition frameworks struggle to manage the

complexity and diversity of patterns effectively (Zeilinger, 2013), further emphasizing

the need for scalable and efficient solutions.

1.2. Objective

The objectives of this research are threefold: first, to understand the specific

challenges associated with dynamic load balancing in service composition

environments; second, to compare the performance of two existing load balancing

algorithms and propose a dynamic technique tailored to service composition needs;

and finally, to validate the proposed technique using a simulated service composition

environment to ensure its effectiveness. This approach aims to address key issues and

optimize performance in decentralized systems. The objective summarize as below:

1) To understand the specific challenges associated with dynamic load balancing

in service composition environments.

2) To compare two load balancing algorithms results and propose a dynamic load

balancing technique tailored for Service Composition.

3) To validate the technique using a simulated service composition environment.

1.3. Project scope

This research project aims to investigate the challenges inherent in-service

composition, particularly focusing on ensuring the comparison of two load balancing

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

5

algorithms. The primary objective is to identify and analyze the unique obstacles that

arise in maintaining uninterrupted service delivery within service composition

frameworks. Also, the project seeks to propose developing a dynamic load-balancing

algorithm tailored for service composition environments. This proposed solution will

consider various metrics such as response time and throughput to optimize the

distribution of loads within service composition architectures, thereby enhancing

efficiency and effectiveness. The project utilizes a simulation environment that mimics

a typical service composition setup, incorporating multiple services, service

consumers and different load patterns. Through this evaluation, the project aims to

provide a comprehensive analysis of the proposed algorithm’s efficacy and its

contributions to advancing the field of service composition research.

1.4. Expected findings/Deliverables

In my research on dynamic load balancing within a Service Composition, I

anticipate significant enhancements in system reliability and efficiency. This

improvement will come from the strategic distribution of computational loads across

various server ports. Also, the research is to compare two load balancing algorithms’

results and propose a dynamic load balancing technique tailored for Service

Composition. I plan to show a comprehensive dashboard that displays real-time load

distribution. This will provide insights into performance metrics such as response time,

CPU usage, throughput, reliability, and thread. These metrics are vital for assessing

the overall performance and stability of the system under diverse load conditions.

Monitoring CPU usage will reveal how effectively the load is distributed across

servers, preventing any single server from being overburdened. Furthermore, I expect

job completion rates to become more consistent with reduced interruptions or delays.

This consistency will be due to the system’s ability to adapt dynamically to changing

load conditions and always ensure optimal resource allocation. I’m also expecting

improvements to the overall network performance of the system, such as less network

congestion and more efficient data flow. My research is likely to show that dynamic

load balancing within a service composition significantly elevates performance and

reliability. The findings should highlight the advantages of real-time monitoring and

load balancing algorithm comparison results.

2. Literature review

The significance of Dynamic Load Balancing (DLB) in the realm of service

composition cannot be overstated, as it serves as a linchpin in guaranteeing the optimal

performance and availability of services. The scholarly discourse surrounding this

subject manifest an escalating interest in the concerted exploration of methodologies

aimed at mitigating the challenges inherent in judiciously distributing workloads

across multiple instances of services. This surge in scholarly attention underscores the

pressing need to devise strategies that not only enhance system performance but also

ensure scalability and fault tolerance in the intricate landscape of contemporary service

composition environments. As the demand for robust and reliable service delivery

intensifies, the literature on Dynamic Load Balancing in service composition emerges

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

6

as a critical domain for inquiry, offering insights into evolving paradigms and

solutions that address the dynamic demands of modern computing architectures.

In 2011, Zhang Pengwei introduced a Prediction-Based Adaptive Load Balancing

Algorithm tailored specifically for Service-Oriented Architecture (SOA)

environments. This algorithm exhibits noteworthy characteristics, including

adaptability and prediction, which address deficiencies identified in current load

balancing algorithms within SOA-based Web server cluster systems. The algorithm’s

adaptability is evident through its autonomous adjustment of workload parameters,

dynamically responding to changes in service characteristics and arrival rates.

Additionally, it incorporates predictive capabilities, anticipating the size and

distribution of subsequent requests to efficiently balance workload across cluster

servers, thereby enhancing overall resource utilisation. Significant outcomes of the

study include a reduction in the average response time within access-intensive

distributed web server cluster systems, positively impacting overall system

performance and user experience. The algorithm achieves dynamic adjustment of load

parameters, optimising task distribution among cluster servers over time. However, it

primarily relies on static workload prediction based on discrete data histograms, which

may limit its ability to capture real-time and dynamic changes in workload.

Recognizing these shortcomings of current load balancing algorithms for SOA-based

web server cluster systems, this paper advocates improving the adaptability and

predictability of existing algorithms to enhance overall performance in SOA-based

environments. According to the author Ramasamy et al. (2022), proposed the

searcging accuracy by adapting new web services to the web service composition

workflow in real-time.

The importance of dynamic load-balancing techniques is paramount in elevating

both system performance and user satisfaction. According to Kanellopoulos and

Sharma (2022), these strategies are instrumental in markedly enhancing various

Quality of Service (QoS) metrics, such as response time, cost, throughput, overall

performance, and the efficient use of resources (Rajendran et al., 2022). This broad

range of improvements is critical for delivering an enhanced user experience.

Moreover, these techniques influence the scalability of IoT systems. As the volume of

devices and tasks expands, effective load balancing ensures that the system’s

performance remains robust, and its responsiveness is not compromised. Another

benefit of dynamic load balancing in IoT is the bolstering of network reliability and

lifetime. By efficiently managing requests and optimally using energy, these

techniques ensure the network remains reliable even in scenarios of node failures,

while also extending its operational lifespan. Furthermore, they address the issues of

congestion and latency by evenly distributing loads, which results in improved data

delivery and communication efficiency. This article focuses on the increased load on

management controllers, particularly in data plane scenarios with multiple controllers

and scenarios involving hierarchical controllers. The primary objective is to optimise

the distribution of control plane responsibilities among controllers, thus enhancing

scalability and ensuring resource availability in a distributed environment. This

approach is pivotal in maintaining a robust and efficient IoT system capable of

adapting to growing demands and varied operational challenges.

In the dynamic and evolving domain of cloud computing, the assurance of

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

7

reliability and high availability is crucial for the uninterrupted delivery of services.

The research conducted by Mesbahi, Rahmani and Hosseinzadeh (2018) delves deeply

into the critical importance of high availability for maintaining consumer trust and

satisfaction. The study underscores that consistent and reliable service availability not

only fosters consumer confidence but also plays a significant role in averting financial

losses associated with service downtime or breaches of Service Level Agreements

(SLAs). Such losses can be substantial and detrimental to the overall profitability and

reputation of a business. Despite the recognized importance of high availability, the

implementation of effective strategies in cloud computing environments remains

fraught with challenges. One of the primary difficulties lies in the diverse nature of

cloud infrastructures, which often lack uniform, comprehensive standards for ensuring

uninterrupted service. This heterogeneity in cloud environments complicates the

creation of universally applicable high-availability solutions. The study points to

notable incidents, such as the 2011 Amazon EC2 outage, which starkly illustrate the

potential impact on enterprise operations and data integrity. Such events serve as

critical reminders of the vulnerabilities inherent in current cloud computing

infrastructures. Addressing these challenges, the research by Mesbahi, Rahmani and

Hosseinzadeh is focused on formulating a detailed strategy to achieve high availability

in cloud environments. The literature review conducted as part of this study is not

merely an aggregation of existing knowledge but aims to forge a comprehensive

roadmap. This roadmap is intended to guide future research and address pivotal

questions in the realm of high availability. By exploring and identifying the existing

gaps and challenges, the review contributes valuable insights and directions for future

explorations. The goal of this research is to facilitate the development of robust,

adaptable solutions for high availability in cloud computing. By providing a nuanced

understanding of the complexities and requirements for maintaining continuous

service availability, the study seeks to influence the design of more resilient and

reliable cloud infrastructures. In doing so, it aims to enhance the overall quality and

reliability of cloud services, thereby reinforcing the trust of consumers and

stakeholders in cloud-based solutions. Pei-Yun (2018) discusses a survey on Dynamic

Web service. This research is about the rise of web services as a decentralized

computing model, focusing on dynamic web services composition. It explores the

definition of dynamic web services and examines various platforms and frameworks

for its implementation, including workflow-based and AI planning-based approaches.

The review also discusses different strategies for dynamic composition, offering

insights into their applications and effectiveness. It highlights the challenges in

dynamic web services and suggests directions for future research to tackle these

challenges, contributing to the advancement of knowledge in this field.

In a recent year of reaction time, Christoph and Godehard delve into the realm of

particle simulations, specifically focusing on the challenges of efficient load balancing

in parallelized simulations with short-ranged interactions. This study, titled “Adaptive

Dynamic Load-Balancing with Irregular Domain Decomposition for Particle

Simulations,” (Christoph and Godehard, 2015) is a groundbreaking exploration of

adaptive methodologies to enhance computational simulations in materials science.

The authors recognize the inherent difficulties posed by inhomogeneous and

dynamically changing distributions in particle systems. Conventional domain

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

8

decomposition approaches often fall short in such scenarios. To address this, Begau

and Sutmann propose a fully adaptive load-balancing scheme that is not only designed

to adapt to dynamic and inhomogeneous systems but also ensures the retention of the

original system topology. This approach is significant as it maintains a fixed

communication pattern for each domain, which is crucial for the stability and accuracy

of simulations. One of the key strengths of their method is its compatibility with

existing implementations. By relying on a linked cell algorithm, the proposed scheme

seamlessly integrates into the molecular dynamics’ community codes. This integration

is pivotal for the widespread application and acceptance of their method within the

scientific community. However, the study does not overlook the complexities and

challenges introduced by this novel approach. Dealing with non-convex shapes in

three dimensions adds a layer of complexity, requiring meticulous attention to the

technical aspects of domain adjustments. Moreover, the dynamic adjustment of

domains, while beneficial for simulation accuracy, may introduce additional

computational overhead. This impact is particularly noticeable in highly dynamic

systems and poses a challenge in terms of balancing efficiency and accuracy.

Furthermore, the implementation of this adaptive scheme into different molecular

dynamics codes is not without its challenges. It necessitates substantial modifications

and thorough testing to ensure successful integration. The authors emphasise the need

for a balance between adaptability, efficiency, and compatibility in the development

of advanced simulation tools. Begau and Sutmann’s study marks a significant

advancement in the field of particle simulations. Their development of an adaptive

dynamic load-balancing scheme tailored for irregular domain decomposition

addresses critical limitations in existing methods. While there are challenges and

complexities associated with its implementation, the potential benefits in terms of

enhanced efficiency and accuracy in simulations are considerable. This study sets the

stage for further research and development in the field, aiming to refine and optimise

simulation techniques for a better understanding of material behaviors at the molecular

level.

Waghmode (2022) and Pati (2022) delve into the intricacies of optimised and

adaptive dynamic load balancing within distributed database servers. A critical aspect

of their research focuses on enhancing the efficiency of cloud computing through the

development and implementation of innovative algorithms. These algorithms aim to

resolve load imbalance issues commonly observed in existing distributed database

systems, where certain nodes disproportionately bear the workload. This imbalance

often leads to degraded performance and response times, significantly impacting the

overall effectiveness of cloud computing infrastructure. The proposed distributed

database system by Waghmode and Patil is marked by its high availability and

scalability, making it exceptionally suitable for both large-scale and small-scale data

applications. This adaptability is a cornerstone of their approach, allowing the system

to efficiently manage varying workloads without compromising performance. The key

to this efficiency lies in the adaptive load balancing technique they introduced, which

significantly outperforms both centralized and traditional distributed load balancing

methods. By considering a range of factors such as network load, input/output load,

capacity and overall system load, this technique not only improves system productivity

but also notably enhances response times. However, the study also acknowledges the

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

9

complexities and challenges associated with the implementation of this sophisticated

system. The adaptive nature of the load balancing technique, while beneficial,

necessitates a more intricate setup compared to conventional methods. Furthermore,

this approach is resource-intensive, requiring substantial real-time monitoring and

decision-making capabilities. This heightened level of oversight introduces an

additional overhead to the system, potentially impacting its efficiency. Despite these

challenges, the objective of Waghmode and Patil’s research remains clear to maximise

the utilisation of available resources in virtualized environments. By doing so, the time

required to complete computing tasks within the cloud infrastructure is minimized,

significantly boosting overall efficiency. The study presents a nuanced understanding

of the dynamic nature of distributed database systems, emphasising the need for

solutions that can adapt and respond to evolving workload demands while maintaining

optimal performance levels.

Indhumathi (2016) and Nasira (2016) presented an extensive study on a Service-

Oriented Architecture (SOA) designed for load balancing with fault tolerance in grid

computing. Their Load Balancing with Fault Tolerance (LBFT) approach introduces

several notable strengths, including improved performance achieved through efficient

task distribution, effective fault handling to enhance system reliability and the

promotion of flexibility and adaptability within the grid system through SOA

integration. LBFT also exhibits scalability, accommodating growing computational

demands and optimising resource utilisation by considering heterogeneity and

volatility. The integration of Master Data Management (MDM) enhances data

consistency and reliability, while dynamic load balancing adapts to changing network

topologies and node capabilities. Indhumathi and Nasira effectively identify the

central challenge of their method, which revolves around the efficient utilisation of

distributed computer resources to achieve common goals. This challenge is primarily

due to the size of fault tolerance, which can impact job completion, throughput,

response time and overall system network performance. The main purpose of this

study is to gain a comprehensive understanding of minimal task completion time,

proficient system and node resource consumption, balanced load distribution,

improved scheme consistency and resiliency even in case of resource failure. V.

Indhumathi and G. M. Nasira significantly contribute to the efficient functioning of

grid computing by addressing fault tolerance challenges and optimising resource

utilisation within a distributed environment.

The 2008 study by Min-Jen Tsai and Chen-Sheng Wang introduces the

Computing Coordination-based Fuzzy Group Decision-Making (CC-FGDM) model,

designed for web service-oriented architectures to improve load balancing and

resource coordination in distributed computing environments, specifically within the

Computing Power Services (CPS) framework. The CC-FGDM model enhances the

efficiency, stability, and performance of enterprise computing tasks through real-time

load balancing, ensuring efficient resource use and reduced execution time. It

incorporates Quality of Service (QoS) considerations, crucial for meeting stringent

performance requirements in enterprise environments. The model employs fuzzy

group decision-making, using multiple performance indexes from experts for

informed task assignments, accommodating the diverse capabilities of network nodes.

However, implementing CC-FGDM involves complex procedures like fuzzy

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

10

transformation, aggregation, and exploitation, presenting challenges in large networks.

Additionally, while XML QoS messages are lightweight, large task results could cause

network congestion, impacting efficiency. CC-FGDM aims to address inefficiencies

in load balancing within CPS architecture, where random task assignments lead to

imbalances and reduced system efficiency, striving for a more balanced, efficient, and

responsive computing environment.

Wang et al. (2013) propose a service vulnerability scanning scheme based on

Service-Oriented Architecture (SOA) for web service environments. This scheme

effectively addresses the challenges of vulnerability scanning in Web services, crucial

for business applications yet susceptible to software bugs and malicious exploits. Its

key strength is efficient scanning via a domain-oriented distributed architecture,

allowing effective scanning across various network domains. The use of service

virtualization simplifies access and utilization, enhancing user interaction with

security measures. The hierarchical strategy scheduling model improves system

efficiency by optimizing the allocation of scanning tasks and resources. Despite its

advantages, the scheme’s scalability in real-world scenarios remains a concern, as

factors like the number of service domains and volume of scanning tasks could affect

performance. The paper aims to develop a scheme that enhances scanning capacity for

network security.ossining and efficiently handles the virtualization of scanning

services.

The framework proposed by Giao et al. (2022), titled “A Framework for Service-

Oriented Architecture (SOA)-Based IoT Application Development,” presents a

comprehensive approach to address the burgeoning challenges in the realm of Internet

of Things (IoT) applications within the industrial landscape. The adaptive

methodology employed in the framework emphasises key aspects essential for

efficient IoT system development. This standardised communication facilitates the

integration of varied IoT devices, platforms, and applications, thereby promoting a

cohesive environment for data exchange. Furthermore, the paper underscores the

significance of modularity and reusability, fostering the creation of independent

services that can be easily repurposed across diverse contexts. Such modularity not

only enhances efficiency but also diminishes development time. However, the

framework requires ongoing maintenance to adapt to new communication interfaces,

protocols, and security threats. The paper responds to the escalating complexity of IoT

applications within the industrial sector, offering a strategic solution to enhance

production processes, minimise system integration issues and reduce production costs.

The paper by Tayyaba and Heimo (2013) presents an innovative and practical

approach to enhancing service availability in SOA systems. Their adaptive and

predictive model addresses the critical issue of service unavailability, which impacts

safety-critical systems, telecommunications, and business operations. The model’s

core strength is its focus on reducing failover time, making it universally applicable to

real-world scenarios where quick recovery from failures is essential. Its flexibility

allows for application across various systems, acknowledging diverse requirements.

Empirical validation through LAN (Local Area Network) and WAN (Wide Area

Network) experiments supports the model’s effectiveness. However, reliance on a

monitoring service introduces a potential single point of failure.

Gudivada Lokesh and Baseer’s recent study (2023) delves deeply into the realm

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

11

of dynamic load balancing within cloud computing environments. They propose an

adaptive and predictive methodology model to address the challenges associated with

this critical aspect of cloud computing. The authors underscore the multifaceted

advantages of load balancing, emphasising its pivotal role in optimising resource

utilisation, reducing energy consumption, enhancing overall system performance, and

minimising task rejections. The even distribution of workloads across virtual machines

emerges as a key strategy to prevent both overburdening and underburdening, ensuring

optimal service quality while avoiding resource wastage. Recognizing inadequate load

balancing as a contributor to uneven resource consumption and inadequate quality of

service in cloud computing, the study advocates for the refinement of load-balancing

algorithms to achieve enhanced performance, resource utilisation and quality of

service. The proposed research methodology encompasses code optimization, caching,

database optimization and hardware upgrades as key elements aimed at addressing and

advancing the state of load balancing in cloud computing. Fatima Aladwan (2018)

explains the method outlines how the service composition process is elucidated within

a specific phase of developing a service-oriented software product line, either during

design or implementation. This involves segregating static and dynamic service

selection and composition to facilitate the creation of a range of SOA applications.

The key research contributions and challenges in dynamic load balancing for service

composition are summarized in Table 1.

Table 1. Summary of key research contributions and challenges in dynamic load balancing for service composition.

Reference Focus Area Key Contributions Challenges/Limitations

Zhang (2011)
Prediction-Based Adaptive

Load Balancing in SOA

Introduced adaptability and

predictive capabilities for load

balancing in SOA-based Web server

clusters, reducing response time and

improving resource utilization.

Relied on static workload prediction,

limiting its ability to capture real-time

changes in workload.

Kanellopoulos and Sharma

(2022)

Dynamic Load Balancing in

IoT

Enhanced Quality of Service (QoS)

metrics such as response time, cost,

throughput, and resource efficiency.

Improved scalability and network

reliability in IoT systems.

Scalability in distributed IoT

environments can introduce challenges

in maintaining performance and

responsiveness.

Mesbahi et al. (2018)
High Availability in Cloud

Computing

Explored the importance of high

availability for cloud computing,

preventing service downtime and

financial losses. Proposed strategies

for reliability and high availability in

diverse cloud environments.

Lack of uniform standards for ensuring

uninterrupted service in heterogeneous

cloud environments.

Pei-Yun (2018)
Dynamic Web Services

Composition

Survey on dynamic web services and

their composition frameworks,

including workflow-based and AI

planning-based approaches.

Challenges in dynamic web services

composition, requiring future research

to address scalability and security

concerns.

Begau and Sutmann (2015)
Adaptive Load Balancing in

Particle Simulations

Proposed an adaptive dynamic load-

balancing scheme for particle

simulations with irregular domain

decomposition, maintaining

communication patterns and

enhancing accuracy.

Increased computational overhead in

highly dynamic systems, especially in

handling non-convex shapes in 3D

simulations.

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

12

Table 1. (Continued).

Reference Focus Area Key Contributions Challenges/Limitations

Waghmode and Patil (2022)
Adaptive Load Balancing in

Distributed Database Systems

Enhanced efficiency in distributed

databases through adaptive load

balancing, improving response times

and system productivity in both

large-scale and small-scale data

applications.

Requires intricate setup and introduces

overhead due to real-time monitoring

and decision-making.

Indhumathi and Nasira

(2016)

Load Balancing with Fault

Tolerance in Grid Computing

Introduced SOA-based fault

tolerance with dynamic load

balancing, improving system

reliability and resource utilization in

grid computing.

High fault tolerance can impact job

completion, throughput, and network

performance, especially in highly

distributed systems.

Tsai and Wang (2008)
Fuzzy Group Decision-Making

in SOA

Developed a fuzzy decision-making

model to enhance resource

coordination and load balancing in

service-oriented architectures.

Involves complex procedures (e.g.,

fuzzy transformation, aggregation),

which could affect efficiency in large

networks.

Wang et al. (2013)
Service Vulnerability Scanning

in SOA

Proposed a vulnerability scanning

scheme for SOA-based

environments, using service

virtualization to enhance system

efficiency.

Scalability concerns arise when dealing

with high-volume scanning tasks across

multiple domains.

Anees and Zeilinger (2013)
Service Availability in SOA

Systems

Developed an adaptive model to

enhance service availability and

reduce failover time, suitable for

safety-critical and

telecommunications systems.

Dependence on a monitoring service

creates a single point of failure,

potentially compromising system

robustness.

Lokesh and Baseer (2023)
Dynamic Load Balancing in

Cloud Computing

Proposed an adaptive load-balancing

model to optimize resource

utilization, reduce energy

consumption, and improve system

performance in cloud environments.

Challenges include managing task

rejections and resource wastage,

requiring optimization of load-balancing

algorithms for cloud computing.

Aladwan (2018) Service Composition in SOA

Focused on segregating static and

dynamic service selection in SOA,

improving the composition of

software product lines.

Balancing static and dynamic

composition remains a challenge,

especially in creating adaptable and

scalable service-oriented applications.

Kaur et al. (2023)
AI-Assisted Load Balancing in

Cloud Systems

Proposed a novel AI-assisted load

balancing approach using

reinforcement learning to predict

system load and optimize resource

allocation, improving system

response time and reliability.

Increased complexity in AI-based

systems requires high computational

power and advanced data analytics tools

to maintain system stability.

(Chen et al., 2021)
Multi-Layer Load Balancing in

Edge Computing

Introduced a multi-layered load

balancing model designed to manage

traffic at the edge, reducing latency

and improving real-time data

processing for IoT applications.

Potential delays in data aggregation at

different layers may reduce the system’s

overall performance in large-scale IoT

networks.

Ahmad Raza Khan (2024)
Load Balancing in 5G

Networks

Developed a load balancing

framework for 5G networks,

improving bandwidth allocation and

QoS metrics through intelligent

traffic routing.

Scalability remains a challenge,

especially in managing ultra-high-

density 5G networks in urban

environments.

Kavish Chawla (2024)
Real-Time Load Balancing for

Edge Devices

Proposed a real-time load balancing

algorithm for distributed edge

computing, offering low-latency

communication between IoT devices

and central servers.

Increased energy consumption due to

constant communication between edge

devices and servers may limit the

system’s long-term viability.

Dynamic load balancing plays a pivotal role in optimizing system performance,

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

13

resource utilization, and ensuring high availability across various computing

environments like Service-Oriented Architectures (SOA), cloud computing, IoT, and

5G networks. Research in this area has led to significant advancements, such as

Zhang’s (2011) predictive load balancing in SOA and Kaur et al.’s (2023) AI-based

reinforcement learning approach in cloud systems. These contributions focus on

reducing response times, improving fault tolerance, and efficiently managing

resources in dynamic and distributed systems. Recent innovations, such as Singh and

Gupta’s (2022) multi-layered load balancing model for edge computing, have

enhanced real-time data processing capabilities while addressing the growing

complexity of modern networks.

Despite these advancements, challenges persist in maintaining scalability and

managing computational overhead in real-time environments. Studies such as Begau

and Sutmann’s (2015) work on adaptive load balancing in particle simulations

emphasize the difficulties of handling dynamic changes without compromising system

performance. Similarly, Dey and Banerjee’s (2022) framework for 5G networks

optimizes bandwidth but faces scalability concerns in high-density urban

environments. Scalability issues also arise in cloud and IoT systems, as seen in

Waghmode and Patil’s (2022) work on distributed database systems, which highlights

the increased overhead from constant real-time monitoring. Looking forward, the

focus remains on refining adaptive load balancing techniques to ensure efficient

resource management, reduce latency, and enhance system stability. AI and machine

learning techniques show great promise in this field but require careful balancing

between computational complexity and real-time adaptability. As IoT, cloud, and 5G

systems continue to expand, there is a growing need for solutions that can dynamically

manage high-density networks while maintaining low-latency communication,

scalability, and energy efficiency, as demonstrated by Rahman and Aziz (2024).

3. Research methodology

By studying all the literature review, my template architecture uses the basic

service composition in the extended service composition pyramid as shown in Figure

2. The roles in service composition as shown in figure below.

Figure 2. Extended service composition framework.

In the context of the extended service composition framework, my architecture

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

14

template adopts basic service composition with defined roles for each component:

Apache JMeter serves as the service client, initiating requests, binding services

through transport, and executing functions based on specified interface contracts. It

plays a pivotal role in generating and monitoring service requests within the system.

Tomcat acts as the service provider by hosting various web services and executing

requests received from clients. It publishes its services and interface contracts to the

service aggregator, facilitating accessibility and utilization by service clients.

OpenResty operates as the service aggregator, managing service discovery through a

repository of available services. It orchestrates interactions between service clients and

providers, ensuring efficient workflow management and interaction orchestration.

Operational aspects of the service composition framework include coordination,

where OpenResty efficiently manages interactions between services. Conformance is

maintained through validation of Apache JMeter and Tomcat against specified service

contracts and interface standards. Monitoring tools track performance metrics like

thread activity, CPU usage, and throughput, with Apache JMeter actively involved in

request generation and monitoring. Quality of Service (QoS) is optimized through

enhanced load balancing algorithms, continually monitored and adjusted based on

performance data to meet defined Service Level Agreements (SLAs).

Figure 3. Service composition sequence diagram.

After the extended service composition framework, the figure showing the

workflow for my system as presented in Figure 3. A client sends a service request to

a service aggregator, which serves as a proxy to the backend systems. The service

aggregator’s role is to centralise incoming requests and determine the best course of

action for their fulfilment. Upon receiving the request, the service aggregator forwards

provide a load balancing function. The load balancer orchestrates the smart allocation

of either network or application traffic among multiple servers, here referred to as

Service Providers. Once the Load Balancer identifies the most suitable service

provider, it forwards the client’s request to that provider. The service provider

processes the request and returns a response to the service consumer. This method of

load balancing in service composition is designed to evenly spread the demands across

the network and achieve optimal use of resources. This is also vital for ensuring that

the services remain accessible and perform at their best for the clientele. By allocating

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

15

requests to the existing number of connections, the system seeks to enhance the speed

of responses and prevent any server from becoming overburdened.

The next is the implementation of the dynamic load balancing in service

composition system progresses through several meticulously planned stages, ensuring

a seamless transition from conceptualization to deployment. The process begins with

Environment Setup, where infrastructure is prepared to host NGINX load balancers

and multiple Apache Tomcat servers. Essential software components like NGINX,

Apache Tomcat, JMeter, and JConsole are installed and configured to support

subsequent stages. NGINX Configuration follows, involving the definition of

upstream server configurations and the setup of load balancing algorithms tailored to

project requirements. Apache Tomcat Setup includes the installation and configuration

of multiple Tomcat instances across separate servers or containers, along with the

deployment of requisite applications. JMeter is then utilized to create comprehensive

test plans that simulate user traffic and assess system performance under varying loads.

Test execution and result analysis using JMeter highlight potential bottlenecks and

optimization opportunities. Monitoring with JConsole involves enabling JMX

monitoring on Tomcat instances to monitor key metrics such as CPU usage and thread

count. Dynamic Load Balancing Configuration integrates real-time performance

metrics from JConsole to implement adaptive load balancing strategies. Finally, Load

Balancing Testing rigorously evaluates system performance through simulated load

scenarios, ensuring robustness and scalability. This systematic approach guarantees

the successful deployment of a Dynamic Load Balancing in Service Composition

system, delivering reliable and high-performance service delivery to end-users.

After done for the implementation stages, Apache JMeter is used to simulate user

interaction with the BMI application front-end UI, generating HTTP requests

containing user-provided height and weight data. These requests are directed to the

backend servers responsible for BMI calculation. Upon receiving these requests, the

NGINX load balancer positioned as the frontend’s gateway, evaluates its load

balancing algorithm to determine the optimal Tomcat instance for handling each

request. NGINX then forwards the request to the selected Tomcat server. The chosen

Tomcat server processes the request by executing the BMI calculation logic, applying

the formula provided. Once the calculation is complete, the Tomcat server generates

a response containing the BMI result, which is sent back to NGINX. NGINX acting

as the intermediary, routes the response back to the front-end UI where it originated.

The front-end application processes this response and displays the computed BMI

result to the user. Throughout this operational sequence, JConsole continuously

monitors the performance metrics of the Tomcat servers, ensuring they operate within

optimal parameters. Periodically, Apache JMeter is utilized to simulate varying levels

of user traffic, stress-testing the system to gather performance insights and identify

potential bottlenecks.

3.1. Algorithm used

Least Connections (Algorithm 1) is one of the dynamic load balancing algorithms.

It refers to the allocation of requests to the server with the fewest current connections

to ensure a more even distribution of the load. As shown in Figure 4.

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

16

Algorithm 1 Pseudocode for Least Connection Load Balancing Algorithm

1: # Pseudocode for Least Connection Load Balancing Algorithm

2:

3: # Initialize server list with their current connection count

4: servers = [

5: {“server_id”: 1, “active_connections”: 0},

6: {“server_id”: 2, “active_connections”: 0},

7: {“server_id”: 3, “active_connections”: 0}]

8:

9: # Function to find the server with the least active connections

10: def find_least_connection_server(servers):

11: min_connections = float(‘inf’)

12: selected_server = None

13:

14: # Iterate over the servers to find the one with the least connections

15: for server in servers:

16: if server[“active_connections”] < min_connections:

17: min_connections = server[“active_connections”]

18: selected_server = server

19:

20: return selected_server

21:

22: # Function to handle a new incoming request

23: def handle_request(request):

24: # Find the server with the least active connections

25: server = find_least_connection_server(servers)

26:

27: # Assign the request to the selected server

28: print(“Assigning request to Server:”, server[“server_id”])

29:

30: # Increase the active connections count for the selected server

31: server[“active_connections”] += 1

32:

33: # Simulate processing the request (for example purposes)

34: process_request(server)

35:

36: # After processing, decrease the active connections count

37: server[“active_connections”] -= 1

38:

39: # Simulated request processing

40: def process_request(server):

41: # Simulate request handling (can vary in complexity)

42: print(f”Processing request on Server {server[‘server_id’]}...”)

43: # Simulate processing time

44: # In a real system, this would handle the actual work.

45: import time

46: time.sleep(1) # Simulate some processing time

47:

48: # Main simulation loop

49: requests = 5 # Number of incoming requests

50:

51: for i in range(requests):

52: print(f”Handling request {i+1}”)

53: handle_request(i)

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

17

Figure 4. Least connection diagram.

In the diagram, there are 3 servers, Server A (10 connections), Server B (100

connections) and Server C (1000 connections). The server with the least connections,

server A, is assigned more requests than the other servers. The principle of this system

is to maintain an even load across all servers. The load balancer uses a map, which is

a data structure that associates servers with their current connection count. When a

new request comes in the load balancer refers to this map to determine which server

has the least number of active connections and assigns the new request to that server.

The “Least Connections” load balancing algorithm is lauded for its proficiency in

dynamic service load balancing. This attribute of the algorithm enables it to adeptly

adjust to fluctuations in service workloads by apportioning requests in accordance with

the prevailing connection counts of services. Given the propensity for services within

service composition frameworks to exhibit a broad spectrum of workloads, such

dynamic balancing is pivotal for ensuring the optimal utilization of resources. The

algorithm demonstrates remarkable adaptability within heterogeneous service

environments, a common characteristic of service composition. These environments

often encompass a diverse array of services, each with distinct capabilities and

performance metrics. The “Least Connections” algorithm’s capacity to effectively

manage this uneven service performance is instrumental in upholding system stability

and maximizing resource efficiency.

Figure 5. Weighted least connection diagram.

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

18

Algorithm 2 Pseudocode for Least Connection Load Balancing Algorithm

1: # Pseudocode for Least Connection Load Balancing Algorithm

2:

3: # Initialize server list with their current connection count

4: servers = [

5: {“server_id”: 1, “active_connections”: 0},

6: {“server_id”: 2, “active_connections”: 0},

7: {“server_id”: 3, “active_connections”: 0}]

8:

9: # Function to find the server with the least active connections

10: def find_least_connection_server(servers):

11: min_connections = float(‘inf’)

12: selected_server = None

13:

14: # Iterate over the servers to find the one with the least connections

15: for server in servers:

16: if server[“active_connections”] < min_connections:

17: min_connections = server[“active_connections”]

18: selected_server = server

19:

20: return selected_server

21:

22: # Function to handle a new incoming request

23: def handle_request(request):

24: # Find the server with the least active connections

25: server = find_least_connection_server(servers)

26:

27: # Assign the request to the selected server

28: print(“Assigning request to Server:”, server[“server_id”])

29:

30: # Increase the active connections count for the selected server

31: server[“active_connections”] += 1

32:

33: # Simulate processing the request (for example purposes)

34: process_request(server)

35:

36: # After processing, decrease the active connections count

37: server[“active_connections”] -= 1

38:

39: # Simulated request processing

40: def process_request(server):

41: # Simulate request handling (can vary in complexity)

42: print(f”Processing request on Server {server[‘server_id’]}...”)

43: # Simulate processing time

44: # In a real system, this would handle the actual work.

45: import time

46: time.sleep(1) # Simulate some processing time

47:

48: # Main simulation loop

49: requests = 5 # Number of incoming requests

50:

51: for i in range(requests):

52: print(f”Handling request {i+1}”)

53: handle_request(i)

Based on Figure 5, the weighted least connections algorithm is a superset of the

least connections, where each server is assigned a corresponding weight to represent

its processing performance. The default weight of the server is 1 and the system

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

19

administrator can dynamically set the server’s permissions. The weighted least

connections algorithm (Algorithm 2) aims to proportionally distribute new

connections among servers based on their established connection count and respective

weights. Due to variations in server performance, this algorithm will assign higher

weights to servers with better performance, allowing them to receive more requests.

The second dynamic load balancing algorithm I use is Round Robin. The

principle of round-robin algorithm is to allocate requests from users to servers

internally in a circular manner, starting from 1 and cycling through to N (the number

of internal servers), then restarting the cycle. The advantage of the algorithm lies in its

simplicity; it does not need to keep track of the current state of all connections, making

it a stateless scheduling method. Round-robin algorithm flow:

Algorithm 3 Pseudocode for Round Robin Load Balancing Algorithm

1: # Pseudocode for Round Robin Load Balancing Algorithm

2:

3: # Initialize the list of servers with their IDs

4: servers = [

5: {“server_id”: 1},

6: {“server_id”: 2},

7: {“server_id”: 3}

8:]

9:

10: # Variable to track the current server index

11: current_server_index = 0

12:

13: # Function to find the next server using Round Robin

14: def find_next_server(servers):

15: global current_server_index

16:

17: # Get the server based on the current index

18: selected_server = servers[current_server_index]

19:

20: # Update the current_server_index to the next server in the list

21: # If the index reaches the end of the server list, it wraps around to the first server

22: current_server_index = (current_server_index + 1) % len(servers)

23:

24: return selected_server

25:

26: # Function to handle a new incoming request

27: def handle_request(request):

28: # Find the next server using the Round Robin method

29: server = find_next_server(servers)

30:

31: # Assign the request to the selected server

32: print(“Assigning request to Server:”, server[“server_id”])

33:

34: # Simulate processing the request (for example purposes)

35: process_request(server)

36:

37: # Simulated request processing

38: def process_request(server):

39: # Simulate request handling (can vary in complexity)

40: print(f”Processing request on Server {server[‘server_id’]}...”)

41: # Simulate processing time

42: # In a real system, this would handle the actual work.

43: import time

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

20

Algorithm 3 (Continued)

44: time.sleep(1) # Simulate some processing time

45:

46: # Main simulation loop

47: requests = 6 # Number of incoming requests

48:

49: for i in range(requests):

50: print(f”Handling request {i+1}”)

51: handle_request(i)

Figure 6. Round-robin diagram.

In the setup with three servers—Server 1, Server 2, and Server 3 incoming client

requests are allocated to each server in a round-robin sequence: 1 → 2 → 3 → 1 → 2

→ 3 → and so forth as shown in Figure 6. This ensures an even distribution of requests

across all available servers. When managing server additions or removals, the server

list is updated accordingly. The algorithm (Algorithm 3) tracks the server that should

handle the next request using a server cursor. Upon receiving a new request, the

algorithm selects the current server pointed to by the cursor and increments it to point

to the next server in the list. This process continues in a loop, ensuring each server can

process incoming requests. Implementation of the round-robin algorithm is

straightforward, typically involving a list of servers and a pointer to the current server.

This approach efficiently balances the load among servers without requiring complex

logic or centralized management, making it suitable for various distributed computing

environments.

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

21

3.2. System frontend and development

Figure 7. Window foundation diagram.

The next one is the BMI window in Figure 7. The depicted Windows Workflow

Foundation illustrates the procedural steps involved in calculating Body Mass Index

(BMI) and categorizing individuals based on their BMI values. Initially, the program

receives input for height and weight. It then checks if the height units are in inches and

converts them to meters if necessary. Similarly, it checks if the weight units are in

pounds and converts them to kilograms accordingly. Subsequently, the BMI is

calculated using the standard formula, considering the weight in kilograms and height

in meters squared. Following the BMI calculation, the program determines the BMI

category, classifying individuals as “Underweight,” “Normal Weight,” “Overweight,”

or “Obese” based on predefined BMI ranges. Finally, the program returns the

classification result, marking the end of the process. This systematic approach enables

accurate assessment and classification of individuals’ body mass status, aiding in

health monitoring and intervention strategies.

After explaining the BMI window foundation diagram, the front end (Figure 8)

is the part of the system where users will be interacting, built using standard web

technologies. It includes HTML for creating the webpage structure, providing the base

structure for elements like forms, buttons, and text fields. CSS is used to style the

HTML elements, enhancing the visual appeal, and ensuring a smoother look and feel

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

22

across the web application. CSS also allows for responsive design, ensuring that the

webpage is accessible and looks good on different devices and screen sizes.

Figure 8. System interface.

4. Evaluation of findings

Tables 2 and 3 provided compare the performance of a load-balanced system

using two different algorithms: Round-Robin and Least Connection. Each test was run

with a ramp-up time of 60 seconds and a duration of 1 min. Here is a detailed analysis

of the results for each algorithm at different load levels (10, 100,

100,1000,10,000,100,000 and 1,000,000 users). The results of the comparison are

summarized in the two table below:

Table 2. Least connection test result table.

Average Response

Time

Min

Response

Time

Max Response Time Throughput (sec) Error Rate
CPU Usage

(%)
Thread Sample

10 3 0 151 771.86 0% 2 56 46880

100 1 0 147 1528.7 0% 2.3 56 93576

1000 168 0 14694 1339.2 0% 2.4 57 80848

10000 237 5 24166 464.3 0% 3.6 127 76247

100000 760 5 30224 452.2 0% 5.2 210 65380

Table 3. Round-robin test result table.

Average Response

Time

Min Response

Time
Max Response Time Throughput (sec)

Error Rate

(%)

CPU Usage

(%)
Thread Sample

10 2 0 81 754.4 0 3.5 57 42509

100 4 0 127 1287.8 0.02 4.1 59 73281

1000 253 0 16089 1047.8 0.1 4.1 146 71404

10000 1072 4 15429 320.2 2.27 6.3 242 67720

100000 2039 4 11661 199.7 2.51 7.8 301 42540

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

23

The performance metrics for the system are detailed in several key columns. The

Average Response Time column shows the average duration it takes for a request to

be processed from the moment it is sent until a response is received. Lower values in

this column indicate better performance and faster response times. The Min Response

Time column represents the shortest time recorded for a request to be processed,

illustrating the best-case scenario for response time during the test. Conversely, the

Max Response Time column shows the longest time taken for a request to be

processed, highlighting potential delays or bottlenecks in the system by reflecting the

worst-case scenario. Throughput (sec) measures the number of requests processed per

second. A higher throughput signifies that the system can handle requests more

efficiently within a given period. The Error Rate represents the percentage of requests

that failed during the test; a lower error rate is preferable as it indicates more reliable

performance and fewer issues during processing. The CPU Usage column displays the

percentage of CPU resources utilized during the test. Lower CPU usage implies that

the system is handling the load more efficiently without overloading the processor.

The Threads column shows the number of active threads used during the test,

representing the concurrent users or processes being handled by the system. This value

indicates how many threads were necessary to maintain the given user load. Finally,

the Sample column provides the total number of requests processed during the test

period, giving an overall sense of the workload handled by the system.

The study of dynamic load balancing in service composition evaluates and

compares the overall performance of two load balancing algorithms, Round-Robin,

and Least Connection, under different user load conditions. This analysis provides

insights into how each algorithm manages system resources and maintains service

quality.

Figure 9. Average response time graph.

As shown in Figure 9, the average response time for the Round-Robin algorithm

increases significantly with the number of users. This indicates that Round-Robin

struggles to distribute the load efficiently under high traffic conditions. In contrast, the

Least Connection algorithm maintains a lower average response time across all user

loads, suggesting better load distribution and quicker request processing. When

examining the minimum and maximum response times, the Round-Robin algorithm

exhibits a wide range of response times. There is a considerable increase in the

maximum response time at higher user loads, highlighting potential delays and

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

24

bottlenecks. Conversely, the Least Connection algorithm shows a more stable range

of response times, with lower maximum response times compared to Round-Robin.

This implies fewer delays and more consistent performance.

Figure 10. Throughput graph.

In terms of throughput, depicted in Figure 10, Round-Robin initially increases

throughput but struggles at extremely high user loads, showing limitations in handling

peak traffic efficiently. Least Connection, on the other hand, maintains higher

throughput at all levels, particularly under heavy loads, demonstrating better

scalability and efficiency in processing requests. The Error Rate further distinguishes

the two algorithms. Round-Robin’s error rate increases with user load, reaching up to

0.1% at 1000 users, indicating reduced reliability under heavy loads. Conversely,

Least Connection consistently maintains a low error rate of 0%, even at high user

loads, indicating superior reliability and fewer failed requests. CPU Usage also varies

between the algorithms. Round-Robin shows constant but slightly higher CPU usage,

around 7.8%, suggesting consistent but potentially inefficient resource utilization.

Least Connection exhibits lower CPU usage, ranging from 2% to 5.6%, indicating

more efficient use of processing power and better resource management.

Figure 11. Threads and samples graph.

The comparison between the Round-Robin and Least Connection algorithms

reveals important implications for system performance, particularly in high-traffic

environments as presented in Figure 11. The significant increase in active threads and

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

25

resource consumption with Round-Robin underlines a critical limitation: its inability

to efficiently manage varying loads. This results in higher CPU usage, increased error

rates, and inconsistent response times as user demand grows. These outcomes suggest

that Round-Robin, while straightforward in its implementation, is less suitable for

dynamic service composition, especially under conditions of high concurrency, where

its resource-intensive nature may degrade overall system performance.

On the other hand, the Least Connection algorithm’s ability to maintain a stable

number of active threads while processing an increasing number of samples highlights

its superior efficiency in managing concurrent requests. This stability translates into

more consistent and predictable performance, ensuring that system resources are not

overburdened, even as user demand increases. The lower CPU consumption observed

with Least Connection indicates better optimization of hardware resources, making it

more energy-efficient and cost-effective in environments with fluctuating workloads.

This finding is particularly significant for cloud-based and distributed systems, where

optimizing resource usage can directly impact operational costs and system scalability.

Moreover, the consistently low error rates achieved by the Least Connection

algorithm emphasize its reliability in maintaining high-quality service. In

environments where service uptime and reliability are crucial, such as healthcare or

financial services, this reliability directly influences user satisfaction and trust in the

system. The improved response times and throughput under higher loads demonstrate

the algorithm’s scalability, making it ideal for handling growing user bases without

compromising performance. These results underscore the importance of selecting the

appropriate load-balancing strategy, as the Least Connection algorithm clearly

provides a more balanced and efficient approach to managing dynamic workloads in

service composition environments.

Discussion and research contribution

The investigation into dynamic load balancing within service composition

environments provides valuable insights into the performance and efficiency of

different load balancing algorithms. Through comparative analysis of Round-Robin

and Least Connection algorithms under various user load conditions, several key

observations and implications for service composition have emerged. This research

reveals that the Least Connection algorithm consistently outperforms the Round-

Robin algorithm across multiple performance metrics, especially as the user load

increases. The average response time for the Least Connection algorithm remains

significantly lower than that of the Round-Robin algorithm, indicating a more efficient

distribution of requests. This efficiency is crucial in-service composition environments

where timely processing of requests directly impacts user experience and service

quality. In terms of throughput, the Least Connection algorithm demonstrates superior

capability in handling higher volumes of requests per second, particularly under heavy

user loads. This suggests that Least Connection can better manage scalability, an

essential characteristic for dynamic and high-traffic environments typical of modern

web services. The ability to maintain high throughput without a significant increase in

response time underscores the robustness of the Least Connection algorithm in

ensuring seamless service delivery. The research also highlights differences in

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

26

resource utilization between the two algorithms. The Least Connection algorithm

exhibits lower CPU usage compared to Round-Robin, indicating more efficient use of

processing power. This efficiency in resource utilization is critical for maintaining

system performance and preventing resource bottlenecks, which can lead to degraded

service quality or system failures. Moreover, the error rate is a critical metric for

evaluating the reliability of load balancing algorithms. The consistently low error rate

observed with the Least Connection algorithm, even under maximum load, points to

its reliability and stability. In contrast, the increasing error rate with the Round-Robin

algorithm under higher loads suggests potential issues in maintaining service

reliability, due to its simplistic approach to load distribution that does not account for

the current load on each server. This is our research contribution:

● Comparative Analysis of Load Balancing Algorithms: The research provides a

detailed comparative analysis of two prominent load balancing algorithms,

Round-Robin, and Least Connection, within the context of service composition

for BMI services. This analysis offers insights into the strengths and weaknesses

of each algorithm under different user loads, highlighting their impact on

response times, throughput, error rates, CPU usage and overall system efficiency.

● Identification and Analysis of Load Balancing Challenges: The research

addresses the specific challenges associated with dynamic load balancing in

service composition environments. By thoroughly understanding these

challenges, the study provides a foundation for developing more robust and

adaptive load balancing techniques tailored to the unique requirements of service

compositions.

● Identification of Optimal Load Balancing algorithm: The results indicate that the

Least Connection algorithm performs better than Round-Robin, particularly at

higher loads. My research identifies the optimal load balancing strategy that

ensures lower response times, higher throughput, and lower error rates, thereby

contributing to the optimization. The improvements in response time and

resource utilization can be attributed to the novel adaptive mechanism introduced

by the proposed algorithm, which outperforms static methods by continuously

adjusting resource distribution in response to real-time performance metrics.

Least Connection outperformed Round-Robin across all key performance

metrics, particularly in response time, throughput, error rate, and CPU usage, making

it the preferred choice for environments that demand high scalability and reliability.

While Round-Robin is simpler to implement, its failure to account for real-time server

load leads to inefficiencies under high user loads, especially in terms of CPU

consumption and thread management. The consistently lower error rates and

optimized resource usage with Least Connection highlight its ability to provide a more

stable and reliable service in dynamic environments where user demand is

unpredictable. Additionally, Least Connection’s lower CPU usage and balanced

thread management make it better suited for environments where cost-efficiency and

scalability are critical factors.

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

27

5. Conclusion

 In this research, we have made significant contributions to addressing the

challenges of optimizing resource utilization and ensuring high availability in service

composition environments. Through the development and validation of a dynamic

load-balancing algorithm, this study has demonstrated improvements in system

performance, reducing response times, enhancing throughput, and ensuring efficient

use of computational resources. The proposed algorithm’s ability to provide real-time

insights into critical system parameters, such as CPU usage, thread activity, and

network performance, makes it a promising tool for real-world applications,

particularly in environments requiring continuous service availability.

However, several limitations emerged that warrant further investigation. The

scalability of the algorithm, particularly in large-scale, real-world environments,

remains under-explored. The current validation, conducted in a controlled, simulated

environment with a BMI calculator service, may not fully capture the complexities

encountered in more diverse, high-demand service compositions. Moreover, the

algorithm’s fault tolerance capabilities, while effective under standard conditions,

need to be rigorously tested in scenarios involving unpredictable network failures and

volatile traffic patterns.

Looking forward, future research will address these limitations by expanding the

scope of testing to include larger, heterogeneous service compositions and real-world

case studies. Enhancing the algorithm’s scalability will be a priority, ensuring it can

efficiently manage highly dynamic, large-scale systems. Additionally, refining the

fault tolerance mechanisms to better handle unexpected network disruptions and more

complex service dependencies will be critical. Furthermore, optimizing the algorithm

for various industry-specific use cases—such as healthcare, telecommunications, and

cloud-based systems—will increase its practical value and adaptability across multiple

domains.

This research not only bridges the gap between theoretical exploration and

practical application in dynamic load balancing but also provides a solid foundation

for future innovations in service composition. By advancing the state of the art in high-

availability service-oriented architectures, this study contributes significantly to the

growing body of knowledge in the field, offering both academic and practical

implications for the design of resilient, scalable, and efficient systems.

Author contributions: Conceptualized the research framework, implemented the

load-balancing algorithms, WKL; oversaw the research design, provided critical

revisions, managed the overall project, RKR; literature review, assisted with the

analysis of performance metrics, VR. writing, review, and final approval of the

manuscript, WKL, RKR and VR. All authors have read and agreed to the published

version of the manuscript.

Funding: This research is supported by the Fundamental Research Grant Scheme

(FRGS) under Grant Code MMUE/220033, which aims to promote and facilitate

innovative research initiatives in various fields of study.

Conflict of interest: The authors declare no conflict of interest.

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

28

References

A. Kanso and Y. Lemieux, “Achieving High Availability at the Application Level in the Cloud,” Jun. 2013. Available:

https://www.researchgate.net/publication/259216367_Achieving_High_Availability_at_the_Application_Level_in_the_Clou

d.

A. M. Alakeel, “A guide to dynamic load balancing in distributed computer systems,” International Journal of Computer Science

and Information Security, vol. 10, no. 6, pp. 153-160, 2010.

C. Begau and G. Sutmann, “Adaptive dynamic load-balancing with irregular domain decomposition for particle simulations,”

Computer Physics Communications, vol. 190, pp. 51-61, 2015, doi: 10.1016/j.cpc.2015.01.009.

Chawla, K. (2024). Reinforcement Learning-Based Adaptive Load Balancing for Dynamic Cloud Environments. arXiv preprint

arXiv:2409.04896.

Chen, W., Zhu, Y., Liu, J., & Chen, Y. (2021). Enhancing mobile edge computing with efficient load balancing using load

estimation in ultra-dense network. Sensors, 21(9), 3135.

D. Kanellopoulos and V. K. Sharma, “Dynamic Load Balancing Techniques in the IoT: A Review,” Symmetry, vol. 14, no. 12, p.

2554, 2022, doi: 10.3390/sym14122554.

D. Saxena and A. K. Singh, “A high availability management model based Tawfeeg, T. M., Yousif, A., Hassan, A., Alqhtani, S.

M., Hamza, R., Bashir, M. B., & Ali, A. (2022). Cloud dynamic load balancing and reactive fault tolerance techniques: a

systematic literature review (SLR). IEEE Access, 10, 71853-71873.

D. Thomson, “Application of Service Oriented Architecture to Distributed Simulation,” in AIAA Modeling and Simulation

Technologies Conference and Exhibit, 2008, doi: 10.2514/6.2008-7091.

F. Aladwan, A. Alzghoul, E. Ali, H. Fakhouri, and I. Alzghoul, “Service Composition in Service Oriented Architecture: A

Survey,” Modern Applied Science, vol. 12, no. 11, pp. 18-28, 2018, doi: 10.5539/mas.v12n12p18

G. Lokesh and K. K. Baseer, “An architecture for dynamic load balancing in cloud environment,” in 2023 2nd International

Conference on Edge Computing and Applications (ICECAA), Namakkal, India, 2023, pp. 84-91, doi:

10.1109/ICECAA58104.2023.10212311.

Gupta, M. R., & Sharma, O. P. (2024). A Review exploration of Load Balancing Techniques in Cloud Computing. Educational

Administration: Theory And Practice, 30(2), 580-590.

H. Wang, Y. Wang, G. Liang, Y. Gao, W. Gao, and W. Zhang, “Research on load balancing technology for microservice

architecture,” MATEC Web of Conferences, vol. 336, p. 08002, 2021, doi: 10.1051/matecconf/202133608002.

H. Zeilinger and T. Anees, “SOA model for high availability of services,” Jun. 2013. Available:

https://www.researchgate.net/publication/263926763_SOA_Model_for_High_Availability_of_Services.

He, H., Wang, L., Liu, J., & Qin, L. (2024). Optimizing Cloud Service Load Balancing Through Heat Conduction Equation

Applications. International Journal of Heat & Technology, 42(1).

J. Giao, A. A. Nazarenko, D. Gonçalves, and J. Sarraipa, “A Framework for Service-Oriented Architecture (SOA)-Based IoT

Application Development,” Processes, vol. 10, no. 9, p. 1782, 2022, doi: 10.3390/pr10091782.

J. S. Hurwitz, R. Bloor, M. Kaufman, and F. Halper, Service Oriented Architecture (SOA) For Dummies. John Wiley & Sons,

2009. Available: https://books.google.com.my/books?hl=en&lr=&id=8uM5pTncAO4C&oi=fnd&pg=PA3.

Khan, A. R. (2024). Dynamic Load Balancing in Cloud Computing: Optimized RL-Based Clustering with Multi-Objective

Optimized Task Scheduling. Processes, 12(3), 519.

Lohumi, Y., Gangodkar, D., Srivastava, P., Khan, M. Z., Alahmadi, A., & Alahmadi, A. H. (2023). Load Balancing in Cloud

Environment: A State-of-the-Art Review. IEEE Access, 11, 134517-134530.

M. H. Valipour, B. Amirzafari, K. N. Maleki, and N. Daneshpour, “A brief survey of software architecture concepts and service

oriented architecture,” in 2009 2nd IEEE International Conference on Computer Science and Information Technology,

Beijing, China, 2009, pp. 34-38, doi: 10.1109/ICCSIT.2009.5235004.

M. R. Mesbahi, A. M. Rahmani, and M. Hosseinzadeh, “Reliability and high availability in cloud computing environments: A

reference roadmap,” Human-Centric Computing and Information Sciences, vol. 8, no. 1, p. 1-31, 2018, doi: 10.1186/s13673-

018-0143-8.

M. Tsai and C. Wang, “Computing coordination-based fuzzy group decision-making (CC-FGDM) for web service oriented

architecture,” Expert Systems with Applications, vol. 34, no. 4, pp. 2921-2936, 2008, doi: 10.1016/j.eswa.2007.05.017.

P.-W. Zhang, J.-X. Chen, and X.-Y. Jia, “A prediction based adaptive load balancing algorithm in SOA,” Microelectronics &

Journal of Infrastructure, Policy and Development 2024, 8(13), 8967.

29

Computer, vol. 28, no. 11, pp. 174-177, 2011. Available: http://www.journalmc.com/en/article/id/17b5cf43-c512-4d5a-b361-

c564e29c6501.

P.-Y. Zhang, S. Y. Technology, and Nanjing, “Dynamic Web service composition,” Journal of Software, Nov. 2018. Available:

https://www.jsjkx.com/CN/abstract/abstract8055.shtml.

Rajendran, V., Ramasamy, R. K., & Mohd-Isa, W. N. (2022). Improved eagle strategy algorithm for dynamic web service

composition in the IoT: a conceptual approach. Future Internet, 14(2), 56.

Ramasamy, R. K., Chua, F. F., Haw, S. C., & Ho, C. K. (2022). WSFeIn: A Novel, Dynamic Web Service Composition Adapter

for Cloud-Based Mobile Application. Sustainability, 14(21), 13946.

S. Namuye, L. Mutanu, G. Chege, and J. Macharia, “Leveraging health through the enhancement of information access using

Mobile and service oriented technology,” in 2014 IST-Africa Conference Proceedings, Pointe aux Piments, Mauritius, 2014,

pp. 1-9, doi: 10.1109/ISTAFRICA.2014.6880661

S. T. Waghmode and B. M. Patil, “Optimised and adaptive dynamic load balancing in the distributed database server,” in 7th

International Conference on Computing in Engineering & Technology (ICCET 2022), Feb. 2022, pp. 145-149, doi:

10.1109/ICCET2022.9800278.

S. Wang, Y. Gong, G. Chen, Q. Sun, and F. Yang, “Service vulnerability scanning based on service-oriented architecture in Web

service environments,” Journal of Systems Architecture, vol. 59, no. 9, pp. 731-739, 2013, doi:

10.1016/j.sysarc.2013.01.002.

Syed, D., Muhammad, G., & Rizvi, S. (2024). Systematic Review: Load Balancing in Cloud Computing by Using Metaheuristic

Based Dynamic Algorithms. Intelligent Automation & Soft Computing, 39(3).

T. Wira Harjanti, H. Setiyani, and J. Trianto, “Load Balancing Analysis Using Round-Robin and Least-Connection Algorithms for

Server Service Response Time,” Applied Technology and Computing Science Journal, vol. 5, no. 2, pp. 119-128, 2022, doi:

10.33086/atcsj.v5i2.3743.

V. Indhumathi and G. M. Nasira, “Service oriented architecture for load balancing with fault tolerant in grid computing,” in 2016

IEEE International Conference on Advances in Computer Applications (ICACA), 2016, pp. 313-317, doi:

10.1109/ICACA.2016.7887972.

