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Abstract: Accurate demand forecasting is key for companies to optimize inventory 

management and satisfy customer demand efficiently. This paper aims to Investigate on the 

application of generative AI models in demand forecasting. Two models were used: Long 

Short-Term Memory (LSTM) networks and Variational Autoencoder (VAE), and results were 

compared to select the optimal model in terms of performance and forecasting accuracy. The 

difference of actual and predicted demand values also ascertain LSTM’s ability to identify 

latent features and basic trends in the data. Further, some of the research works were focused 

on computational efficiency and scalability of the proposed methods for providing the 

guidelines to the companies for the implementation of the complicated techniques in demand 

forecasting. Based on these results, LSTM networks have a promising application in enhancing 

the demand forecasting and consequently helpful for the decision-making process regarding 

inventory control and other resource allocation. 

Keywords: generative AI; demand forecasting; inventory management; Recurrent Neural 

Networks (RNN); Long Short-Term Memory (LSTM); Variational Autoencoder (VAE); 

comparative analysis 

1. Introduction 

Supply Chain Management (SCM) is a broad and complex academic discipline 

that has a task of planning, analyzing, coordinating, implementing and monitoring 

logistic activities that are manufacturers, sellers, buyers, and users of materiel, 

supplied materials, money and information through the complete spectrum of organic 

functioning from raw materials to customers, organizational performance 

enhancement and value addition (Lummus et al., 2017). This paper finds that SCM is 

relevant to all business organization because it emphasizes on efficient management 

of the supply chain network so that cost of operation is reduced, while the needs of 

the customers are well addressed hence, being able to gain a competitive edge. As 

noted above, the outcomes of the effective SCM practices are critical for the flows to 

run smoothly in the business processes and for the products to be delivered to the right 

place at the right time in the right condition. 

Over the last couple of years, Artificial Intelligence (AI) has gained much 

attention as a tool to improve SCM processes by analyzing large volumes of data, 

learning from existing patterns and making effective decisions. AI techniques have 

been increasingly incorporated into various dimensions of SCM to enhance efficiency, 

reliability and adaptability (Hangl et al., 2022). Despite intensive research on the 

application of AI in SCM, there is still a gap in understanding the comparative 
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effectiveness of different Generative AI Models in specific SCM functions, such as 

demand forecasting. The existing literature focuses on individual Generative AI 

methods without providing a comprehensive comparison of their performance in real-

world scenarios. Moreover, while various Generative AI techniques have been 

proposed and evaluated, there is a lack of empirical evidence on their applied 

implementation and impact on SCM deliverables. This gap in the literature underlines 

the need for expanded research efforts to compare the performance of different 

Generative AI models in enhancing demand forecasting accuracy within SCM. 

In this context, this paper aims to address the identified research gap by exploring 

the practical implementation of two prominent Generative AI techniques—Variational 

Autoencoders (VAEs) and Recurrent Neural Networks (RNNs)—in SCM, focusing 

on their application specially in demand forecasting. By conducting a real case study, 

this research seeks to determine which of these techniques best enhances forecasting 

accuracy. The innovative aspect of this study lies in its comparative approach, 

providing empirical evidence on the effectiveness of VAEs and RNNs in a practical 

SCM context. Through this work, we aim to contribute to the existing body of 

knowledge by offering insights into the practical implications and benefits of using 

Generative AI techniques in SCM. The main objective of this paper is to determine 

which of these techniques best enhances forecasting accuracy through a real case study.  

For that, the rest of the paper is divided as follows: Section 2 elaborates on the 

existing literature and identifies the gap. Section 3 provides the proposed methodology 

of the study followed by the case study and major findings in section 4. The 

implications and conclusion are given in section 5. 

2. Literature review 

2.1. Variational Autoencoders (VAEs) 

VAEs is a generative model that amalgamates the things found in autoencoders 

and variational inference. They were originally proposed by Kingma and Welling in 

(Kingma and Welling, 2014), but later became famous among the researchers from a 

paper one year later (Germain et al., 2015). Here’s how VAEs work: 

Encoder: Like autoencoders, VAEs have an encoder network that takes input data 

and maps in a low-dimensional representation. Nevertheless, rather than directly 

outputting the input as a single point in the latent space, the encoder decodes the 

parameters of a probability distribution (typically a Gaussian one) that describes the 

latent space. 

Decoder: VAEs, furthermore, possess a decoder network that, given a point from 

the latent space, which is sampled from the distribution that is parameterized by the 

encoder, recreates the initial input data. 

Objective Function: VAEs are trained by learning to maximize a lower bound on 

the log-likelihood of the data under the model. This objective function consists of two 

parts: an evaluation (reconstruction) term which measures how well the expert can 

recreate data and a normalization term usually equal to the Kullback-Leibler (KL) 

divergence between the distribution created by the encoder and a prior distribution, 

usually a standard Gaussian. 

The primary innovation of VAEs is the transition to probabilistic models for 
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producing random data in the latent space (Singh and Ogunfunmi, 2021). By obtaining 

the distribution over the latent space instead of merely a single point, VAEs create the 

generated data points with smoother transitions between different data points. Instead 

of the conventional autoencoders, GAN produces a more consistent and organized data 

generation. VAEs have proven to be a tool with many applications, including image 

generation, image interpolation, semi supervised learning, and so on. Various 

extensions and improvements to VAEs have been proposed to address these 

limitations, such as Conditional VAEs (CVAEs) and Adversarial Autoencoders 

(AAEs) (Baskin, 2020). 

2.2. Recurrent Neural Networks (RNNs) 

RNNs are created to deal with the vector sequences by adding the loops that allow 

the information through different elements (Almaleh et al., 2023; Salehinejad et al., 

2018). These models are not typical Neural networks as they are designed for those 

problems, where input and output data contain sequences, for example, NLP, speech 

recognition, time series predicting, etc. The Key characteristics of RNNs include 

There are various key characteristics of RNNs, which include the following; 

Recurrent Connections: The nodes of the RNNs are inter-connected and go 

through feed through the previous network information and back and forth connections. 

This method makes them able to minimize sensors by extracting features based on 

time characters. 

Hidden State: Supporting their hidden state vector, RNNs use it to represent the 

remembering part of their series of lightweight operations. The hidden state is re-

updated at each time step when the network takes input sequences into account and 

gets information about the context of the sequence. 

Variable Length Inputs/Outputs: RNNs can deal with unpredictable lengths of an 

input sequence which is what makes them ideal equivalents in situations where an 

input size can range (e.g., sentences can be of different lengths in NLP). In the same 

fashion, they can generate output sequences that are specially designed to be either 

long or short. 

Training: In the case of the BPTT algorithm, RNNs are iteratively trained using 

an extension of the backpropagation algorithm to manage sequential tasks. BPTT 

calculated forward the gradients along the recurrent connections of the network to sum 

them up and then updated network parameters based on the summation. 

Together with the vanishing gradient difficulty, which limits RNN’s ability to 

fully capture long-term sequences (Chen et al., 2023), this deep architecture addresses 

the end-of-sentence prediction task. To address this issue, several advanced RNN 

architectures have been developed, including Long Short-Term Memory (LSTM): 

LSTMs were the first neural network architecture proposed by Hochreiter and 

Schmidhuber (1997) in 1997. These networks employ memory cells and gating 

schemes that make it possible to overcome the vanishing gradients. In particular 

language models are capable of memorizing long-term dependencies and they are 

often used for sequence model learning. GRU: The authors Cho et al. (2014) propose 

in their work GRU which is similar, yet simpler, to LSTM. Furthermore, they couple 

the gating mechanisms to direct the flow of information in the network that are more 
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accurate than the LSTMs. Phyu and May introduce a Two-Tier LSTM model that 

enhances caption quality and efficiency for Image captioning by combining image and 

language processing to generate descriptive captions using CNNs for image tasks and 

RNNs, including LSTMs, for language tasks (de Castro Moraes et al., 2023). Early 

healthcare prediction using Big Data and machine learning is crucial for timely 

treatment. This study introduces an RST-RNN model that outperforms traditional 

methods in disease prediction accuracy (Talasila et al., 2020). 

Along with RNN and its various kinds, they have been implemented to many 

other things, including language modeling, machine translation, sentiment analysis, 

speech recognition, and so on. Such networks serve as the basis of deep learning and 

are useful for professions that involve data whose order is important. 

2.3. Overview of supply chain management 

SCM is the process of managing the flow of goods, services, information, and 

finances as they move from the supplier to the manufacturer, wholesaler, retailer, and 

ultimately to the end consumer (Raja Santhi and Muthuswamy, 2022). It involves the 

coordination and integration of various activities, including procurement, production, 

inventory management, logistics, and distribution, to ensure the efficient and effective 

movement of products or services from the point of origin to the point of consumption. 

Key components of SCM include (as shown in Figure 1): 

 

Figure 1. Key components of SCM. 

The constituents of SCM classical include procurement, production, stock, 

transportation, distribution, and good information flow (Trivedi and Negi, 2023). The 

procurement process includes gathering of raw materials, concluding agreements, and 

administering supplier dealings. The manufacturing activities are planned and 

executed considering demand forecasts of goods and quality control. Inventory 

management is an important instance to avoid stock shortages but always can hold 

down costs with various activities like demand forecasting and safety stock handling. 

Logistics is focused on the organizing of movements of merchandise from a supplier 

to a customer, including transportation and storage (Benmamoun et al., 2024). The 

distribution channel ensures that the product reaches the end consumers via multiple 
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associated channels, while the information flow helps in communication with the 

various stakeholders. Successful SCM minimizes costs, enhances customer service, 

achieves timely responses and handle risks effectively, by optimizing processes and 

being in synchronization with the market and disruptions (Benmamoun et al., 2024). 

2.4. Applications of VAEs supply chain management 

VAEs have gained a broad attention in SCM for their ability to generate realistic 

data samples and streamline operations in various areas such as demand forecasting, 

inventory management, and quality control. Several studies have shown the 

effectiveness of VANs in generating synthetic data for predictive training models, 

leading to an improvement of forecasting accuracy and a decrease of supply chain 

variabilities (Jackson et al., 2024; Yilmaz and Korn, 2022). 

VAEs have been used in SCM mainly for tasks such as demand forecasting, 

inventory management, and anomaly detection. Thus, VAEs enable efficient data 

compression and reconstruction, by learning latent representations of complex data, 

leading to improved forecast accuracy and inventory management (de Bruijne et al., 

2021). Moreover, VAEs can help with detecting anomalies in Supply Chain by 

identifying deviations from normal patterns and thus, help enhance risk management 

strategies. 

The use of VAEs in SCM covers multiple functions that aim to increase 

operational efficiency and value creation in a decision-making process as well. 

According to the VAEs, there are two main effects: First, forecasting based on 

historical demand distribution, which helps in generating probabilistic forecasts with 

accommodating for uncertain factors, which further leads to dynamic inventory policy 

changes based on demand distribution (Luleci and Catbas, 2023). On top of these, 

Anomaly Detection and Quality Control are also facilitated by VAEs in an extremely 

efficient way since VAEs can be used to identify deviations from the normal 

distribution of data obtained via manufacturing processes and product attributes, 

which helps in discriminating defects and ensuring that product quality is of high 

standards (Jebbor et al., 2023). AI models are evident in Supply Chain Risk 

Management as AI models in VAEs are the ones that distribute the critical risk factors 

which in turn aid in the identification and assessment of potential risks and finally 

enable scenario planning to mitigate the disruptions (Pan et al., 2023). The VAE 

technique of simulating different scenarios mimics real-life situations to evaluate an 

optimization strategy based on the distribution of perturbations of the input variable, 

particularly in driving efficiency and logistics planning (Benmamoun et al., 2023) 

where VAEs optimize transportation variables such as loading time and shipment time. 

Furthermore, VAEs help in Customer Segmentation and personalization in a way that 

they show the latent customer segments and individual preferences; thereby the 

marketing strategies and demand based SCM processes can be customized to the eye 

of the consumer. Using these applications, VAEs provide possibilities to increase and 

improve the effectiveness of SCM and make decisions quickly. 

2.5. Application of Recurrent Neural Networks (RNNs) in SCM 

RNNs are widely used in SCM for sequential data analysis, time series 
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forecasting, and NLP tasks (Schroeder and Lodemann, 2021). In SCM, RNNs have 

been applied for demand forecasting, supply chain optimization, and predictive 

maintenance. The ability of RNNs to capture temporal dependencies in sequential data 

ensures accurate predictions of future trends and patterns in supply chain processes. 

In SCM, RNNs offer a multitude of applications that enhance operational 

efficiency and risk response strategies. At first, in Demand Forecasting, RNNs excel 

by analyzing historical sales data to detect temporal patterns and trends, providing 

more accurate forecasts by integrating factors such as seasonality and promotional 

events. Their proficiency in handling sequential and time-series data enables granular 

forecasts at the SKU level, store level, or regional level (Schroeder and Lodemann, 

2021). Furthermore, RNNs play a key role in Inventory Management by predicting 

future inventory levels and optimizing replenishment policies, in the aim of 

minimizing shortages or excess inventory costs (Wang and Hong, 2023). They 

dynamically adjust safety stock levels based on real-time demand fluctuations and lead 

time variations. Moreover, in Supply Chain Risk Management, RNNs analyze 

historical data to identify patterns indicating potential disruptions, enabling proactive 

risk mitigation by monitoring factors like supplier performance and transportation 

delays. The initial analysis of the information is based on the monitoring of the risk 

which is exposed in real time and can detect inconsistencies. Furthermore, RNNs 

contribute to the Predictive Maintenance where the sensor data is used to anticipate 

the maintenance requirements and avoid the early downtime, and for determining the 

proper schedule for maintenance to reduce the impact of downtimes (Molęda et al., 

2023). Finally, in Transportation Optimization, RNNs predict the demand of transport, 

estimate the delivery time and plan the routes of the transport including traffic situation 

and possible capacity, thereby decreasing the transportation expenses. The current 

route optimization enables effectiveness because of the flexibility in satisfying the 

real-time demand and delivery shifts. In the above various usages, RNNs have a huge 

role of managing the SCM as much as possible and containing uncertainties. 

Both models, namely, VAEs and RNNs have their distinct features when it comes 

to SCM. VAEs are particularly good at learning encode-conditional distributions of 

data and generating new samples from them. Concerning their use in SCM, they can 

be employed in tasks like feature extraction, identifying anomalies within the supply 

chain, and risk evaluation –endeavors for which comprehending the structure of the 

underlying data and modeling uncertainties are crucial. Last but not the least, RNNs 

are designed specifically for sequential data and are well-suited for the type of 

problems that have dynamic characteristics such as time series analysis, decision 

making in sequences, and text analysis. In SCM the usage of RNNs can be defined in 

many applications like demand forecasting, production planning and scheduling, 

inventory control and management and logistics and material management. Therefore, 

the type of model or a combination thereof will depend on the nature of SCM 

issue/problem and the/its goals or objectives of the organization, where organizations 

embrace the strength in each of the models to improve decision making and drive 

operational excellence on their supply chain management operations. 
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2.6. Use of VAE and RNN models in demand forecasting 

VAEs are selected for demand forecasting in the context of supply chain 

management because of the capacity to identify non-linear and temporal structures in 

a dataset. VAEs are proven to be good at learning the encoded representation while on 

the other hand RNNs are good at handling the sequential data. This makes it possible 

to derive informative features from demand history data and make accurate forecasts. 

Based on the literature review, VAEs and RNNs are capable of handling different 

forms of demand data such as seasonality, trends and irregular pattern which are well 

suitable for volatile supply chain context. Utilizing these models leads to superior 

forecast errors and complex data patterns and temporal dependencies, the models’ 

resistance to noise or gaps in the data, and superior long-term forecasting. However, 

the archive stored by VAEs and the modeling by RNNs need substantial computational 

power and knowledge in deep learning approaches; moreover, interpretability of the 

models is rather intricate. Nevertheless, given the enhancement of forecast 

performance as well as the model performance and robustness, VAEs and RNNs are 

efficient tools to develop the field of demand forecasting in Supply Chain 

Management. 

3. Methodology 

In this study, we adopted an integrated model to forecast the demand using 

recurrent neural networks (RNNs). The dataset contained 1000 demands having the 

column of date, item ID, and demand as well. First, primary data was collected which 

was done by obtaining historical demand data from the records of the company. 

Encoding of the data also involved eliminating unwanted features, data cleansing and 

dealing with missing values in the data, and normalization of the data for further use 

with the aim of making the values fine-tuned and reasonable as shown in Figure 2. 

This specific characteristic of VAE model states the output shape of the model is equal 

to the input shape to yield data which can be re-inserted into the initial data set. For 

predictive modeling to be used in our work, we used RNN architecture since the latter 

is suited in the analysis of time series data. First, we employed the Long Short-Term 

Memory (LSTM) networks, RNN that is famous for the capability of long-term 

dependencies learning in sequences. The model is trained on 19,301 row of the given 

dataset and is checked on another phase checking the generality of the model. Mean 

square root error (MSRE), mean absolute percentage error (MAPE) and mean absolute 

error (MAE) were applied to assess the accuracy of the generated forecast by every 

model. By employing this particular approach, our study seeks to establish an accurate 

prognosis for demand that will improve the strategic planning and executives’ 

decision-making for the retail business industry. 



Journal of Infrastructure, Policy and Development 2024, 8(8), 6639.  

8 

 

Figure 2. Methodology illustration. 

3.1. VAE model: Architecture, training strategy and tuning 

3.1.1. Model architecture 

In the creation of AI models, the architecture of the models is central in defining 

the capacities and efficiency of the resultant models, where VAE architecture rises 

most prominently. VAEs possess the capability of mapping input data into a 

compressed latent space and can reconstruct the input data since it contains encoder 

network, decoder network, and latent space. This makes VAE models flexible for 

many fields (Zietlow et al., 2021). In SCM, VAE architectures are trained for specific 

tasks such as demand forecasting or quality control, with adjustments made to 
network architecture, layer sizes, and activation functions to capture relevant features 

of the supply chain data. Moreover, in the Variational Recurrent Autoencoder (VRAE), 

VAEs’ functions are developed to handle sequential data relevant in SCM due to 

temporal dependencies (Lin et al., 2024). In VRAE, either RNN, LSTM, or GRU is 

used in both encoder and decoder so that the dependency with time can be captured. 

This architecture is involved in functions of the supply chain management, for instance 

in the demand forecasting that largely involves temporal characteristics in data. 

Consequently, the design flexibility and complexity of the architecture of VAE and 

VRAE aids in enhancing operations for SCM as these models can also learn and 

examine primary features and concerning temporal characteristics of supply chain data 

(Cheng et al., 2019). 

3.1.2. Training strategies 

Variational Inference and Stochastic Gradient Variational Bayes (SGVB) play 
crucial roles in training VAEs efficiently and effectively, particularly in the context of 

SCM (Simian et al., 2022). Variational inference approximates posterior distributions 

in probabilistic models like VAEs by optimizing a variational objective function. 

SGVB, a variant of variational inference, utilizes stochastic optimization techniques 

such as stochastic gradient descent (SGD) to efficiently optimize the variational 

objective function. These techniques are useful in training VAEs for SCM and can 
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make the VAEs learn the posterior distribution of latent variables compiled with the 

observed data and learn rich representation of supply chain data. Additionally, 

Furthermore, Reconstruction Loss and Kullback-Leibler (KL) Divergence are used 

elements of the VAE objective function (Giannakopoulou et al., 2022). Reconstruction 

loss calculates the difference between input data and the reconstructed data produced 

through the VAE’s decoder; the KL divergence looks at the discrepancy between the 

probability distributions and is often used to control the distribution of the latent space 

in VAEs. In the context of SCM applications, reconstruction loss and KL divergence 

bear considerable importance while formulating the trade-off between reconstructing 

actual data with high accuracy and preventing entanglement of the latent space 

representation with irrelevant characteristics of the supply chain data with regards to 

original supply chain phenomena, on the one hand, and, on the other hand, providing 

VAE with meaningful and interpretable latent space representation. 

3.1.3. Hyperparameter tuning and optimization 

Hyperparameter tuning for VAEs in SCM is essential for optimizing model 
performance. This process involves fine-tuning parameters like learning rate, batch 
size, latent space dimensionality, and regularization parameters to enhance VAEs’ 

effectiveness in SCM tasks (Akkem et al., 2024). Different methods like grid search 

(El Filali et al., 2022), random search, and Bayesian optimization are used to optimize 

hyperparameters which are beneficial for VAE models that are required for SCM. Also, 

the proper choice of optimization algorithm plays an important role in effective 

training of VAEs. During training of VAEs, methods such as the stochastic gradient 

descent (SGD), Adam, RMSprop or adaptive moment estimation (Adamax) can 

typically be used to optimize the variational objective (Liao et al., 2022). Due to these 

dependencies between the optimization algorithm and its hyperparameters and the 

performance of VAEs in SCM tasks, it is suggested that: Therefore, it can be deduced 

that the selection and tuning of optimization algorithms play a crucial role for getting 

better results in SCM applications. Thus, if Appropriate VAE models and architectures 

are adopted and trained, using the above methodologies and techniques, the concepts 

and features of the supply chain data gets captured more precisely and these models 

improves the decision-making processes in SCM. 

3.2. Recurrent Neural Network (RNN) model: Architecture, training and 

tuning 

A recurrent neural network (RNN) is a type of artificial neural network 
distinguished by its ability to retain information from previous time steps. This 
feature makes RNNs particularly well suited for processing sequential data, which 
is prevalent in various scientific and practical applications, including forecasting 

demand in SCM (Abbasimehr et al., 2020). In supply chain management, accurate 
demand forecasting is essential for optimizing inventory levels, production schedules, 
and distribution strategies. RNNs have emerged as powerful tools for forecasting 
demand in this context. 

3.2.1. Model architecture  

LSTM and GRU were selected from the family of the RNN structures, which are 

often used in SCM due to their utility in modeling sequential data (Schroeder and 
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Lodemann, 2021). LSTM which is a type of Recurrent Neural Network specifically 

addressed the vanishing gradient problem in sequences and long dependencies, is 

widely used in SCM activities like demand forecasting, inventory control, and 

anomalous behavior detection. It is equally suited in applications that require it to 

memorize information over long sequences because of temporal dependencies 

involved in the application decision-making process. On the other hand, GRU which 

stands for Gated Recurrent Unit structures another subclass of LSTM but with more 

basic architecture and less parameters for training, is another middle ground between 

model complexity and the effectiveness of the model. In SCM, GRU networks are also 

applied to, for example, demand forecasting, inventory management, or predictive 

maintenance processes, in which proper modeling of sequential data is critical (Serrou 

et al., 2016). The main advantage of using GRU is that it has relatively simple structure 

than LSTM and it is computationally efficient to learn from the supply chain data 

while it is able to capture temporal patterns as well. In general, LSTM and GRU 

networks are useful in SCM, as they improve modeling and forecasting of sequential 

data, as well as enrich decision-making across multiple fields in SCM. 

Using trends of past demand, other attributes such as seasonal variations and 

promo events, as well as economic variables, RNNs thus produce accurate forecasts 

that enable organizational to better predict future demands. Figure 3 represents the 

general overview of the RNN model mainly focusing on the Recurrent connections 

that permits information to pass from one time-step to the next. 

 

Figure 3. A recurrent neural network illustration. 

where: 

X = {x1, x2, x3 ... xt} 

H = {h1, h2, h3 ... ht} 

Y = {y1, y2, y3 ... yt} 

A sequence X = {x1, x2, x3 ... xt} as input, the RNN computes both a hidden state 

sequence, 

H = {h1, h2, h3 ... ht}, and an output sequence, Y = {y1, y2, y3 ... yt}, using Equations 

(1) and (2). This mechanism allows the RNN to capture temporal dependencies within 

the data and make predictions or classifications based on the context provided by 

previous elements in the sequence. 

ℎ𝑡 = 𝑓(𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (1) 
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𝑦𝑡 = 𝑔(𝑊𝑦𝑡ℎ𝑡 + 𝑏𝑦) (2) 

In Equations (1) and (2), Whx, Whh, and Wyt represent the input-to-hidden, hidden-

to-hidden, and hidden-to-output weight matrices, respectively. The vectors bh and by 

denote the bias vectors for the hidden layer and output layer. The activation functions 

f(·) and g(·) are applied to the hidden layer and output layer, respectively. The hidden 

state of each time step is passed to the hidden state of the next time step (Nguyen, 

2019). 

Figure 4 present a visual representation of how an RNN processes sequential 

data in an unfolded manner. When applied to demand forecasting in supply chain 

management, the RNN computes both hidden state sequences and output sequences, 

leveraging temporal context to generate accurate forecasts of future demand. These 

forecasts can then be used to inform inventory management decisions, production 

planning, and other aspects of supply chain optimization, ultimately leading to 

improved operational efficiency and customer satisfaction. 

 

Figure 4. An unrolled recurrent neural network illustration. 

3.2.2. Training strategies 

In training RNNs for SCM tasks, several strategies are employed to enhance 

training efficiency and effectiveness. Backpropagation Through Time (BPTT) 

remains a significant training algorithm unrolling the network over a temporal horizon 

to compute gradients via backpropagation (Sefati et al., 2023). In SCM, BPTT is used 

to train RNNs to accomplish activities such as demand forecasting for Inventory 

management, where such vectors are crucial in delivering good results. Moreover, 

there is the constant use of such methods as Teacher Forcing and Scheduled Sampling 

to enhance training stability and convergence. Teacher Forcing is a training strategy 

that feed the model with ground truth output instead of the one generated by the model 

while the Scheduled Sampling is a training strategy in which the model gradually 

transitions from using the ground truth to its output fed to it during training. Such 

techniques are particularly helpful to SCM applications as it improves the RNN 

training’s reliability and convergence; crucial in time-sensitive features such as in 

demand forecasting and inventory management where temporal patterns are vital to 

optimize model performance (Bassiouni et al., 2023). By training the RNNs in such a 

manner, temporal features in the supply chain data can be captured hence enhancing 

the decision-making processes in Supply Chain Management the in such training 

approaches. 
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3.2.3. Hyperparameter tuning and optimization 

Among the standards, hyperparameters tuning and optimization are especially 

important for enhancing the performance of RNNs after a specific application of SCM. 

May techniques like Grid Search and Random Search, discover the hyperparameters 

in a structured and methodical manner, in a quest for a combination that produces the 

most optimal model outcome (Rimal et al., 2024). On the other hand, Bayesian 

Optimization inductively builds a model of the objective function and helps to find 

better hyperparameters in consecutive steps, using probabilistic models. These 

methods are used instrumentally in the context of SCM for tuning of hyperparameters 

of RNN models: learning rate, batch size, number of layers, and the number of hidden 

units. Moreover, learning rate scheduling and early stopping are the two considered 

methods commonly used to improve the training of RNNs. Learning rate scheduling 

enables the tuning of the learning rate over a period in training to avoid overshooting 

or stalling during the optimization process; early stopping on the other hand halts the 

training process when the model’s performance on the validation set starts to worsen 

thereby avoiding overfitting. In SCM, these techniques are mostly used for tasks 

including demand forecasting and inventory management where overfitting should be 

avoided, and the accuracy of the model should be improved. Therefore, this paper’s 

hyperparameter tuning and optimization approach can effectively improve the RNN 

model in SCM and improve the decision-making and operational performance of SCM. 

3.3. Long-Short Term Memory model 

Long-Short Term Memory (LSTM) networks are a type of recurrent neural 

network (RNN) that can learn long-term patterns. They were first introduced by 

Hochreiter and Schmidhuber (1997) in 1997 and have since been refined by many 

researchers for various applications. LSTMs are specifically designed to overcome the 

problem of losing important information over time, which is common in traditional 

RNNs.  

Compared to simple RNNs, LSTMs have a more complex structure, including 

three key components: the input gate, the forget gate, and the cell state gate. These 

gates help control the flow of information within the LSTM cell as shown in Figure 

5. 

 

Figure 5. A Long-Short Term Memory cell illustration. 
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The forget gate operates after receiving the output from the previous state, 

denoted as h(t − 1). Its purpose is to decide what information should be discarded from 

the previous state h(t − 1), retaining only the relevant information. It uses a sigmoid 

function to scale the input between 0 and 1, determining how much of the information 

should be forgotten and retained. 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 

In the input gate, we determine whether to incorporate new information from the 

current input into our current cell state. This decision is based on how much 

importance we assign to these new pieces of information. The input gate utilizes a 

sigmoid layer to decide which values should be updated and a hyperbolic tangent (tanh) 

layer to generate a vector of new candidates to be added to the current cell state. 

Equation (4) describes the process of determining which values to update, while 

Equation (5) outlines how the new candidate values are calculated using the tanh 

function. 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4) 

𝐶
∧

𝑡 = tanℎ(𝑊𝐶[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (5) 

Next, the cell state is calculated using Equation (6). 

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶𝑡
∧

 (6) 

The output gate is the final step in determining what information to output from 

the cell state. Equation (7) shows how a sigmoid function helps make this decision. 

We first use the hyperbolic tangent (tanh) function to compress the values between −1 

and 1. 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (7) 

Then, we multiply this result with the output of the sigmoid function to filter out 

only the information we want to output. Equation (8) further illustrates this process. 

ℎ𝑡 = 𝑜𝑡 tanℎ( 𝐶𝑡) (8) 

Supply Chain Management is one of the many application areas of the recurrent 

neural network model described in the text. This model can be highlighted by this 

feature as its main advantage, as the sequence of variables is typically used when 

predicting demand. As opposed to most models, RNNs can learn temporal relations in 

the data, which makes the forecasts more accurate adapted on the past behavior. Also, 

specifically, input gates, forget gates, and cell state gates in LSTM networks 

appropriately regulate information in the long term and improve the model’s 

performance in discovering the patterns at different time horizons. Altogether, the 

RNN model and LSTM networks are considered as a breakthrough achievement 

within the field of demand forecasting, as they give more accurate and effective tools 

for inventory management, production planning, and other links of the Supply Chain 

Management. 

4. Case study 

Every company must stay on top of planning activities to meet the demand for 

goods based on customer needs. An accurate demand forecast is crucial for predicting 

which products are required at each location or within the organization. This ensures 

high availability for customers while minimizing stock risk and supporting capacity 
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management, labor force planning, and other operational aspects. 

This paper utilizes Long Short-Term Memory (LSTM) networks, which are well 

suited for handling time-series data and widely employed for forecasting purposes. 

These networks will help the company predict future demand trends accurately, 

allowing for better inventory management and resource allocation to meet customer 

needs effectively. In addition, the results obtained from the LSTM forecasting model 

will be compared with that gene rated by Variational Autoencoder (VAE) models. 

This comparison will provide insights into the effectiveness and accuracy of each 

approach in predicting demand for the company’s products. By evaluating both LSTM 

and VAE models, the company can determine which method best suits its forecasting 

needs and supports informed decision-making regarding inventory management and 

resource allocation. 

4.1. Data collection 

For this study, data collection involved gathering daily statistics from a selected 
company. These statistics encompassed 1000 raw data points on demand volume. 
The data collection process aimed to capture a comprehensive overview of demand 
dynamics over time as shown in Figure 6. The dataset includes information such as 
the date, ID item, and demand quantity for each observation. Here is an example of 
the overall daily demands. 

 
Figure 6. Overall daily demands illustration. 

4.2. Data preparation 

In this data-preprocessing phase, we initially cleaned the dataset obtained from 

previous steps, ensuring its suitability for further analysis. Specifically, we 

subsampled the training set to exclusively include data from last year, a strategy aimed 

at reducing training time while retaining recent information for modelling purposes. 
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Our training dataset consisted of 913,001 entries, with columns for date, store, item 

ID, and demand. Following the sub-sampling, the dataset underwent transformation 

into a time series problem, a crucial step enabling the utilization of historical data to 

make future predictions. This transformation allows us to incorporate temporal 

dependencies and patterns into our predictive models. Furthermore, we addressed the 

issue of consistency within the dataset by dropping rows where the item/store values 

differed from the shifted columns. 

This step ensures that the dataset remains coherent and aligned, facilitating 

accurate modeling and prediction. Finally, the dataset was split into training and 

testing sets, a fundamental procedure in machine learning model development. This 

division allows for the evaluation of model performance on unseen data, enabling us 

to assess its generalization capability effectively. 

Throughout these steps, the dataset’s structure, consisting of columns such as 

date, ID item, and demand, remained integral. These attributes serve as the foundation 

for analyzing demand dynamics and developing predictive models to forecast future 

demand accurately. 

4.3. LSTM implementation 

In this study, the LSTM model comprises four hidden layers, with the parameters 

of neurons influencing the total trainable parameters. Additionally, the output layer 

consists of a neuron responsible for predicting demands numbers. The training dataset 

is split into 95% for training and 5% for testing. 

However, during training, the LSTM model may encounter overfitting issues, 

where it becomes too specialized to the training data and performs poorly on unseen 

data. To address this, the study utilizes the mean absolute error (MAE) as the loss 

function to measure in-sample error. The model optimization employs the Adam 

optimization algorithm with a learning rate set to 0.02. 

The training process spans 100 epochs, where each epoch represents training the 

model on the entire training dataset 100 times. The batch size, which refers to the 

number of samples used in each training iteration, is set to 1. Additionally, a rolling 

training method is employed, where the initial training values are discarded after each 

prediction to prevent bias in subsequent predictions. 

4.4. Discussion 

In our study, the data used specifically originates from a company operating 

within the Gulf countries. This data is collected from this company, which operates in 

the Gulf region, and they reflect the demand patterns observed in its business 

operations. We acknowledge the importance of clarifying this information to ensure 

an accurate understanding of the data’s origin and its geographical relevance. This 

clarification will be integrated into our revised text to provide appropriate 

contextualization of the data used in our analysis. 

In Figure 7, the forecasting of demands is depicted, with actual demands 

presented in Figure 7a, predicted demands using the RNN model in Figure 7b, and 

predicted demands using the VAE model in Figure 7c. Upon thorough analysis, it 

becomes evident that the RNN model outperforms the VAE model in predicting 
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demand values. The RNN model exhibits higher accuracy and demonstrates a closer 

alignment with the actual demand values, as showcased in the comparison of actual 

demand, RNN demand, and VAE demand in Figure 7d. These findings underscore 

the superior performance of the RNN model in capturing the underlying patterns and 

trends in the data, particularly in scenarios where capturing sequential dependencies 

and temporal dynamics is crucial for accurate predictions. These results provide an 

assessment of the performance of the RNN and VAE models in predicting demand 

compared to the actual values. For the RNN model, the RMSE (Root Mean Square 

Error) is 11.03 and the MAE (Mean Absolute Error) is 7.81. This means that, on 

average, the predictions of the RNN model have an error of about 11.03 units for 

RMSE and an absolute error of about 7.81 units for MAE relative to the actual demand 

values. In contrast, for the VAE model, the RMSE is 28.14 and the MAE is 21.84. 

This indicates that the predictions of the VAE model have a higher error, with higher 

RMSE and MAE compared to the RNN model. 

 

Figure 7. VAE and RNN demand forecasting. (a) represents actual demands; (b) predicted demands using RNN 

model (c) and (d) predicted demands using VAE model; (d) comparison of actual demand, RNN demand, and VAE 

demand. 

Interpreting these results, it can be concluded that the RNN model outperforms 

the VAE model in demand prediction in this scenario. The RNN model produces 

predictions that are closer to the actual demand values, with lower average errors 
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compared to the VAE model. This suggests that the RNN model better captures 

underlying patterns and trends in the demand data, making it a more reliable choice 

for demand prediction. 

Table 1 presents a comparison of actual demand values with the predicted 

demand values generated by both the Recurrent Neural Network (RNN) model and 

the Variational Autoencoder (VAE) model. Upon analysis, it’s evident that the RNN 

model generally performs better than the VAE model in predicting demand across 

most items. For instance, for Item 1, the RNN model predicted a demand of 55, closer 

to the actual demand of 62, whereas the VAE model predicted 59. Similarly, for Item 

5, the RNN model predicted a demand of 65, while the VAE model predicted 83, 

further from the actual demand of 72. 

Table 1. Comparison of results. 

ID Actual Demand Predicted demand (RNN) Predicted demand (VAE)  Best Predicted model 

1 62 55 59 RNN 

2 70 82 59 VAE 

3 55 60 90 - 

4 69 57 59 RNN 

5 72 65 83 RNN 

6 42 41 59 RNN 

7 64 81 90 - 

8 30 30 60 RNN 

9 24 26 90 - 

10 24 25 90 - 

However, there are exceptions where the VAE model outperforms the RNN 

model. For example, for Item 2, the VAE model predicted a demand of 59, which is 

closer to the actual demand of 70 compared to the RNN model’s prediction of 82. 

Additionally, for Item 3, the VAE model predicted a demand of 90, aligning more 

closely with the actual demand of 55 compared to the RNN model’s prediction of 60. 

Overall, the RNN model appears to be the better-performing model, as indicated 

by its consistently closer alignment with the actual demand values across most items. 

However, it’s essential to consider each model’s strengths and weaknesses and select 

the most suitable model based on specific forecasting requirements and constraints. 

5. Conclusion 

This paper gives a detailed understanding for the utilization of differential 

autoencoders (VAEs) and repetitive brain organizations (RNNs) popular determining 

in store network the board. By examining the gauging execution and contrasting and 

genuine limit values, we have clarified the unpretentious elements of these high-level 

brain network calculations in estimating situations. 

In the case study, we employed a comprehensive approach to forecasting demand 

using recurrent neural networks (RNNs). Our dataset consisted of 913,001 entries, 

with columns for date, store, item ID, and demand. Initially, data collection involved 

gathering historical demand data from the company’s records. Subsequently, data 



Journal of Infrastructure, Policy and Development 2024, 8(8), 6639.  

18 

preparation included steps such as data cleaning, handling missing values, and 

normalization to ensure the quality and consistency of the dataset. For predictive 

modeling, we implemented an RNN architecture, specifically utilizing Long Short-

Term Memory (LSTM) networks due to their suitability for time-series data analysis. 

The model was trained on a portion of the dataset while being validated on another 

segment to assess its generalization performance. Evaluation metrics such as Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE) were used to quantify 

the accuracy of the forecasts generated by the model. Our findings indicated that the 

RNN model achieved an RMSE of 11.03 and an MAE of 7.81, significantly 

outperforming the Variational Autoencoder (VAE) model, which had an RMSE of 

28.14 and an MAE of 21.84. Through this methodology, we aimed to develop a robust 

demand forecasting system that could effectively anticipate future demand patterns 

and aid decision-making processes within the retail industry. 

Our study reveals a microscopic situation where the RNN model tends to exhibit 

more accurate predictions compared to the VAE model. For a range of products, the 

RNN model shows consistency with actual demand values, which means it can capture 

the time-dependent complexity and nonlinear relationships of demand data. 

The rationale for adopting these sophisticated machine learning techniques lies 

in the ability to describe complex patterns in terms of demand data, thus facilitating 

accurate forecasting Using VAE and RNN capabilities, suppliers can gain deeper 

insights into demand dynamics, enabling them to make more proactive decisions. The 

advantages of our proposed method extend beyond mere prediction accuracy. 

Integrating VAEs and RNNs into supply chain management practices empowers 

organizations to optimize inventory levels, streamline production processes, and 

ultimately, enhance customer satisfaction. By harnessing the power of data-driven 

forecasting methodologies, businesses can mitigate risks, reduce costs, and gain a 

competitive edge in dynamic market environments. 

Looking ahead, further refinement of model architectures, exploration of 

ensemble forecasting techniques, and integration of additional data sources could 

contribute to improving predictive performance. Additionally, the evaluation of 

models in real-world Supply Chain settings and the investigation of uncertainty 

quantification methodologies present exciting opportunities for advancing the field of 

demand forecasting. 

In conclusion, while the RNN model emerges as the preferred choice for demand 

forecasting in our study, the journey towards effective supply chain management is 

ongoing and multifaceted. By embracing innovation, fostering collaboration, and 

continuously refining forecasting methodologies, organizations can navigate 

complexities, seize opportunities, and drive sustainable growth in today’s dynamic 

business landscape. 
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