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Abstract: The Mass Rapid Transit (MRT) Purple Line project is part of the Thai government’s 

energy- and transportation-related greenhouse gas reduction plan. The number of passengers 

estimated during the feasibility study period was used to calculate the greenhouse gas reduction 

effect of project implementation. Most of the estimated numbers exceed the actual number of 

passengers, resulting in errors in estimating greenhouse gas emissions. This study employed a 

direct demand ridership model (DDRM) to accurately predict MRT Purple Line ridership. The 

variables affecting the number of passengers were the population in the vicinity of stations, 

offices, and shopping malls, the number of bus lines that serve the area, and the length of the 

road. The DDRM accurately predicted the number of passengers within 10% of the observed 

change and, therefore, the project can help reduce greenhouse gas emissions by 1289 tCO2 in 

2023 and 2059 tCO2 in 2030. 
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1. Introduction 

Given the negative impacts of global warming on humanity, the 21st annual 

session of the Conference of the Parties (COP21) resolved to maintain the global 

surface temperature below 2 °C compared to pre-industrial revolution levels and cap 

a global increase at 1.5 °C. Consequently, the Paris Agreement, which was adopted by 

196 parties at COP21 in 2016, requests that each country outline and communicate 

their post-2020 climate actions, known as their nationally determined contributions 

(NDCs). 

The government of Thailand ratified their intended NDCs (INDCs), aiming to 

reduce greenhouse gas (GHG) emissions by 20%–25% by 2030 compared to the 

business as usual (BAU) scenario (555 MtCO2eq). Thailand established its NDC 

Roadmap for 2030 in 2017, initiating a variety of national-level climate-change 

mitigation policies and actions to promote its transition to a low-carbon, resilient 

society. Of the sectors in Thailand’s NDC Roadmap for 2030 reduction plan, the 

energy sector has the largest reduction target (113 MtCO2eq); the second largest 

reduction target within the energy sector is the transportation sector (41 MtCO2eq) 

(ONEP, 2018). Given that reducing GHG emissions in the transportation sector is 

critical to the NDC Roadmap, more projects and initiatives are necessary to assist in 

meeting targets. 

One such initiative is the Transport Infrastructure Development Plan of Thailand, 

approved by the Thai government in 2015 (2015–2022). This plan proposes the 
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promotion of rail mass transit, which contributes to GHG reduction in the 

transportation sector. The plan incorporates the Bangkok Metropolitan Region Mass 

Rapid Transit Master Plan (M-Map) and the Railway Master Plan (R-Map). According 

to the M-Map, under the Mass Rapid Transit Authority (MRTA) in Thailand, there are 

12 rail lines (Figure 1), totaling 509 km. Approximately 17% of public rail 

transportation is operational, and the remainder is under construction. 

 

Figure 1. Mass rapid transit master plan (M-Map) in Bangkok metropolitan region (UNCRD, 2010). 

This study aimed to calculate GHG reductions by predicting the number of 

passengers that will benefit from the Mass Rapid Transit (MRT) Purple Line project, 

which is one of the detailed lines of the M-Map. Prior to the service, the MRT Purple 

Line Project was part of the GHG operation under MRTA. That is, this study aims to 

provide a comprehensive analysis of the MRT Purple Line project by applying the 

Direct Demand Ridership Model (DDRM) to predict ridership and evaluating the 

GHG emissions associated with the proposed changes. These two aspects are explored 

separately to ensure clarity in methodology and results. Passenger numbers and energy 

consumption were estimated using the Feasibility Study Report of the MRT Purple 

Line by the MRTA, and those estimates were used to calculate the GHG reduction 

results from the project’s implementation. However, the figures from the feasibility 

studies presented in the passenger section of the report are substantially inflated 

compared to the actual number of passengers using the MRTA in 2016. The 

performance of the railway project was either underestimated or overestimated due to 

multiple variables that may influence railway functioning. 

Various previous studies have used models that consider variables to accurately 

predict the number of passengers in the railway sector. GHG emissions of urban rail 
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transportation have been accurately measured based on passenger volume projections. 

It can help quantify the impact of urban rail transportation on reducing carbon 

emissions (Yuan et al., 2023). By identifying factors that attract the number of 

passengers, policies such as revitalization of public transportation and greenhouse gas 

reduction in the rail transportation sector were suggested. Liu et al. (2016) developed 

direct ridership models for railroad transfer stations in Maryland to predict the number 

of passengers and proposed policy implications to increase the number of public 

transportation users, but noted that this was limited by the state’s specialization. 

Vergel-Tovar and Rodriguez (2018) investigated the association between BRT station-

level demand and built environment attributes for 120 stations in seven Latin 

American cities. Using a direct ridership model, the study found that various land uses 

around the station, the location of the BRT station relative to the central business 

district, developable land around the station, and the integration of the station to the 

urban fabric determine BRT ridership. A study using a mathematical model 

incorporating an algorithm to predict CO2 emissions in the transportation sector 

predicted accurate CO2 emissions in the transportation sector in Canada and analysed 

changes in emissions in the transportation sector according to various energy resources. 

Accordingly, GHG reduction scenarios in Canada’s transportation sector were 

evaluated (Javanmard et al., 2023). Previous studies have shown that accurate 

prediction of passenger demand using railways is related to GHG emissions. 

No research has yet predicted passenger demand for the MRT Purple Line using 

a direct model applicable to other electric train projects. This study aims to accurately 

predict passenger numbers by analyzing proximity to stations, identifying factors 

motivating public transit use, and estimating GHG reductions. To accurately predict 

ridership and evaluate GHG emission reductions, it is crucial to consider various 

determinants that influence public transit usage and to employ robust methodologies 

for emission estimation. Recent studies emphasize the need for a comprehensive 

approach that incorporates socio-economic, environmental, and infrastructural 

variables (De Gruyter et al., 2018; Litman, 2020). 

2. Predicting passengers using direct demand ridership models 

A wide range of factors influence public transit ridership, including socio-

economic characteristics, environmental concerns, and the quality of service. Eom et 

al. (2012) highlights that transit accessibility and connectivity significantly affect 

ridership levels, while socio-economic factors such as income and car ownership also 

play crucial roles. Previous studies typically rely on traditional regression models or 

simpler demand forecasting techniques (Kain, 1999; Litman, 2020). However, these 

methods often fail to account for the complex interplay of factors influencing ridership. 

DDRM addresses this gap by integrating variables such as population density, 

employment density, road length, and bus line connectivity. The detailed steps 

involved in the application of DDRM include data collection, variable selection, model 

calibration, and validation. This comprehensive approach has been shown to improve 

prediction accuracy in various contexts (Cervero et al., 2010; Duduta, 2013; Vergel-

Tovar and Rodriguez, 2018). 

DDRM was developed to predict, compare, and select transportation modes in 
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urban areas in the United States. Numerous studies have used direct demand ridership 

models (DDRMs) to predict passenger numbers. These models provide precise results 

and make it easy to foresee the funding needed to support transport modes (Cervero et 

al., 2010). This model also considers the area surrounding the station and the service 

characteristics of mass transit systems when predicting passenger numbers. 

The model can be applied in two primary ways: DDRM for train passengers and 

DDRM for express bus passengers. The difference between the two categories lies in 

the data used for analysis (Duduta, 2013). 

Cervero et al. (2010) utilized DDRM to predict passenger counts for Bus Rapid 

Transit (BRT) in Los Angeles. They used 69 stations in three lines as the analysis 

sample, with an average of 744 passengers. These lines are connected to the orange 

and blue metro lines. This study aimed to examine the relationship between the built 

environment, transit services, and ridership. 

We conducted an analysis to examine the number of passengers arriving at and 

departing from the stops and stations over time. The variables used can be categorized 

into three groups: one set of variables is related to service and two sets are related to 

characteristics of the station area; and all three groups of variables are associated with 

stop signs. Details are presented in Table 1. 

Table 1. The variables used for analysis are classified by the characteristics of the variables (Cervero et al., 2010). 

Variable class Variable list 

Availability of BRT service 

The daily frequency of buses in both direction 

The number of service hours per day 

The number of feeder buses perpendicular to the daily station 

The number of bus line of feeder bus perpendicular of the daily station 

The number of connections to the subway per day 

The number of parallel train services per day 

The number of perpendicular train services per day 

Percentage of specific way for BRT 

Location and attributes 

surrounding the station (0.5 miles 

away from the station) 

Density of population around the station in 2000 

Employment density in 2000 

The total density between population and employment the station in 2000 

Street connectivity index 

Density of population around the station in 2000 

The distance to the nearest next station 

Destination station 

Facilities within the station 

The number of Park and Ride 

Capacity of Park and Ride 

Stopover while waiting for the bus 

Schedule for bus 

Passenger information system 

Bus waiting area with a roof 

Long-distance bus connection point 

The symbol has the BRT sign on it. 
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A multiple regression analysis with the least number of squares was performed. 

The results match Table 2, which shows that the number of people living within 0.5 

miles of a bus stop is one of the factors that affects how a key station is cleared. 

Analysis results also showed that when more people live in an area, more passengers 

will use the bus stop. For example, if the number of people living within 0.5 miles of 

the stop sign increases from 5000 to 10,000, assuming all other variables remain the 

same, approximately 170 more people will ride the bus. Ridership increases as the 

distance between one station and the next station increases. The coefficient shows a 

value of 261.705 if there is a station 1.5 miles from the closest express bus station. 

Approximately 260 more people will use the bus than at the station half a mile away. 

The capacity of Park and Ride has a coefficient of 0.514, which is positive, indicating 

that when there is a bus stop with parking-lot capacity, it is likely that the bus will 

have more passengers. 

Table 2. The variables used to estimate the number of passengers for 69 stations for BRT (Cervero et al., 2010). 

Variables Cof. Beta T Sig. 

Services of BRT 

Daily frequency of buses in both directions 5.103 0.176 3.771 0.000 

The number of feeder buses perpendicular to the daily station 73.921 0.080 2.051 0.045 

The number of bus lines of feeder buses perpendicular to the daily station 6.722 0.126 3.476 0.001 

Location and attributes surrounding the station 

Population density around the station 0.017 0.134 4.303 0.000 

Distance to the nearest next station 261.705 0.060 1.736 0.088 

Interaction 

Specific lane for BRT and feeder buses (0–1). * Number of feeder buses perpendicular to the daily station 124.557 0.123 2.005 0.050 

Specific lane for BRT and feeder buses (0–1). * Number of bus line of feeder buses perpendicular to the 

daily station 
52.891 0.533 13.807 0.000 

Specific lane for BRT and capacity of Park and Ride (0–1) * The number of Park and Ride stations 0.514 0.093 2.067 0.043 

Specific lane for BRT and capacity of Park and Ride (0–1) * The total density of population and 

employment at the station 
0.036 0.185 3.202 0.002 

Constant −541.164 - −3.50 0.001 

R square = 0.952; F Statistic (prob.) = 129.011 (0.000); 69 Samples. 

Once completing the analysis, the number of passengers offered by the equation 

must be checked against the real number of passengers. Since the coefficient of 

determination is calculated at 0.952, it can be assumed that the estimated equations are 

close to the truth. 

When using the DDRM to predict how many people will ride the BRT, some of 

the information considered is in line with this thesis. Therefore, this paper uses some 

variables to examine other data in greater detail (Cervero et al., 2010). 

Duduta (2013) analysed a direct ridership model for the BRT and subways in 

Mexico City. However, BRT and subways exhibit different technological and service 

characteristics. Therefore, the model was divided into two types: the BRT model and 

the subway system model. 

The analyzed data were divided into four categories: 

1) Areas surrounding Mexico City station. We determined the distance that could 
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be covered between 10 and 15 min. This group of variables included the distance in 

meters to the closest station on the same metro line and the station density, which was 

considered to be the number of stations within a 5-km radius. 

2) Network connectivity and accessibility to business centers are essential. For 

the network connectivity parameters, the connection of the BRT system to the subway 

was considered. The ease of accessibility to the business center variable considers how 

accessible the business center is from the station. 

3) The station area density for the variables in this group considers the 

characteristics of the area surrounding the station, such as low building heights. In the 

absence of more precise data, density was measured in only three categories: Low, 

medium, and high (Duduta, 2013). Some areas around the station belonged to the low-

density group; these areas have buildings that are no more than two stories and are not 

mixed-use spaces. This type of station is typically residential and located far from the 

city center. The second type has a medium density. In the medium density group, the 

entire area surrounding the station is developed. The area includes buildings between 

three and eight stories high that have mixed residential, commercial, and other uses. 

In the high-density group, the entire area around the station has been developed. It 

includes eight-story buildings and places of interest, such as shopping malls. This type 

of station is typically located in the city center. 

4) Bus routes. For this category, the most important variable is the number of 

buses arriving at the station. More buses mean more passengers. 

We employed multiple regression analysis to assess the model. The outcomes for 

the express buses and subways are presented in Tables 3 and 4, respectively. The 

results show that terminal stations, where passengers can conveniently wait before 

boarding the BRT, rather than stations on the way, have the greatest impact on BRT 

ridership. The density of the station area is important for both the BRT and subway; 

therefore, it is possible to determine which variables influence the number of 

passengers by analyzing the variables that affect them. According to this study, 

developing passenger terminals will allow more passengers to use BRT services. In 

addition, the proximity of a station to densely populated areas encourage more 

passengers to use the service. 

Table 3. Model for forecasting the number of passengers (take-offs) for BRT 

(Duduta, 2013). 

 Coefficient P 

Number of connecting bus routes 61.9 0.662 

Density of the area surrounding the station (1 = low, 2 = medium, 3 = high). 3120.6 0.000 

Connect to the subway (0 = no, 1 = yes). 2510.1 0.050 

Terminal station (0 = no, 1 = yes). 8759.3 0.000 

Area of interest (distance to the nearest station, meters) 5.2 0.008 

Constant −2395.1 0.234 

Number of Samples 51 

R2 0.51 

F (prob) 9.38 (p < 0.001) 

 



Journal of Infrastructure, Policy and Development 2025, 9(2), 6564.  

7 

Table 4. Model for forecasting the number of passengers (take-offs) for metro (Duduta, 2013). 

 
Non-CBD model CBD model 

Coefficient P Coefficient P 

Area of interest (distance to the nearest station, meters) 7.2 0.178 - - 

Number of connecting bus routes 305 0.353 1224.8 0.002 

Number of BRT and routes * Specific Lane (0–1) 981 0.034 - - 

Terminal at the station 17,586 0.000 - - 

Density of the area surrounding the station (1 = low, 2 = medium, 3 = high) 8909.4 0.000 16,161.5 0.000 

Number of metro routes at the station 8628.5 0.049 - - 

- 9390 0.000 n/a n/a 

Constant −16,347 0.05 −7309 0.349 

Number of Samples 84 41 

R2 0.54 0.51 

F (prob) 12.87 (p < 0.001) 12.89 (p < 0.001) 

The variables used in forecasting passenger numbers were unique to station 

characteristics. There is no consideration of the BRT and metro service systems, which 

are the factors that influence the use of both transportation systems. 

Usvyat et al. (2009) estimated metro (heavy rail) passenger counts using data 

from 474 stations in representative cities, including Baltimore, Boston, Chicago, 

Cleveland, Los Angeles, Miami, New York, Philadelphia, San Francisco, and 

Washington, D.C., then conducted multiline linear regression analysis. Research 

indicates that the number of passengers utilizing a service depends on their 

demographic information. 

The data used in this study were divided into four categories: 

• Population data from the area surrounding the station. 

• Specific details about each station. 

• Information about the population along the route. 

• Information about the population in metropolitan areas. 

This research reveals that we can increase the number of variables as necessary 

and determine the relationships between them. Variables consistent with the research 

were included in the analysis along with other data. 

3. Methodology 

3.1. Selecting the model’s variables 

The primary hypothesis of this study was that the variables influencing the annual 

number of passengers per station on the MRT Purple Line consist of factors related to 

the station’s surrounding space utilization. The number of passengers per station per 

year is influenced by the characteristics and services of mass transit systems as well 

as the surrounding population. Using the number of passengers per station in 2017 and 

expected variables affecting the number of passengers, a model was developed to 

examine the relationship between the number of passengers and those variables in 

order to test the main hypothesis. State Railway of Thailand (SRT), Bangkok Mass 
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Transit System Public Company Limited (BTS) under the Bangkok Metropolitan 

Authority and Mass Rapid Transit Authority (MRTA) in Thailand provided passenger 

information for DDRM. Additionally, office space, shopping malls and residential 

areas within 500m of the station were referenced from the Department of city planning 

and urban development in Bangkok and the Department of Public works and town & 

country planning in Nonthaburi. 

This work also contains sub-assumptions. The specifics are listed below: 

1) The number of individuals surrounding the station influences the number of 

passengers. The greater the number of people surrounding the station, the more 

passengers there are. 

2) On the journey with other systems, the terminal station and the terminal 

connecting station will have more passengers than the station along the way. Many 

connecting stations will have fewer passengers than the terminal station. 

3) The use of space surrounding the station that influences the number of 

passengers includes office and company areas, hotel and shopping mall areas, and 

educational areas. If there are more of these areas near the station, the number of 

passengers will increase. 

These variables influence the number of passengers at each station. The details 

are factors for space utilization around the station, population around the station, and 

service characteristics of the mass transit system. 

The station’s area utilization factor is examined in terms of thousands of square 

meters. Each variable contains the following information: 

1) Residential areas surrounding the station are a variable that affects passenger 

volume. If there are more residential areas in the vicinity of the station, the population 

will increase. A literature review revealed that the residential area was not taken into 

account because it was highly correlated with the number of passengers around the 

station. Consequently, only considering the number of passengers within the station. 

However, residential areas were also considered in this study, as the population 

surrounding the stations used in the study was only a rough estimate. Consideration of 

additional living space could increase the model’s efficiency. 

2) The length of the roads around the station is a variable that affects the number 

of passengers. The length of a roads around the station can be considered in two ways. 

The longer the road, the easier it is to access the station by other means of transport. 

In other words, the more roads there are, the more passengers will use transportation. 

On the other hand, as the road gets longer, the number of passengers using the service 

decreases due to the availability of alternative modes of transport. The perimeter of a 

station is measured in km. The length of two types of roads, concrete roads and paved 

roads, was determined by measuring their lengths, taking into account the width of the 

road from one lane and up. According to the literature review, the length of roads 

surrounding the station was not considered because this variable is unlikely to affect 

the number of international passengers. In Thailand, however, the researcher 

anticipates that the length of the road surrounding the station will affect the number of 

passengers because the station’s accessibility in Thailand has developed alternative 

modes of transport to the station. Therefore, the length of roads surrounding the station 

was assumed to mean the connectivity to the station and was considered as a variable. 

Because the characteristics of Thailand’s transportation modes were taken into 
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consideration, this study assumed that this would have a positive impact on passengers. 

3) Variables like offices, hotels, shopping malls, and public utilities define the 

employment-generating and service-using area around the station. As the number of 

employed individuals increases, the number of passengers will also rise. 

The population surrounding the station is the group most likely to utilize the 

station’s services. The greater the station’s surrounding population, the greater the 

number of passengers. In this study, where the population distribution is a static 

distribution, the same assumption is still made. The greater the population of the 

station’s surroundings, the greater the number of passengers. 

The service characteristics of the mass transit system vary across different 

transportation systems. Key factors include park-and-ride capacity, the public 

transportation system in Bangkok, the number of bus routes to each station, and three 

station types. Here’s a clearer breakdown: 

1) Passenger count: The more people using the parking lot, the more likely they 

are to use public transportation due to its convenience. 

2) Park-and-Ride Capacity: A literature review found a positive correlation 

between park-and-ride capacity and passenger numbers. Stations with larger parking 

spaces tend to have more passengers than those with limited or no park-and-ride 

facilities. 

3) Bus routes: The number of bus routes at each station influences passenger 

numbers. In Thailand, buses can either transport passengers to the station (feeder buses) 

or serve as an alternative mode of transport. Feeder buses increase passenger numbers, 

while competing bus routes may decrease them. Overall, the number of bus routes 

positively correlates with the number of passengers if the buses act as feeder services. 

4) Station types: Stations are categorized into terminal stations, interchange 

stations, and en-route stations. Terminal and interchange stations, which connect to 

other systems, tend to have more passengers compared to en-route stations. A 

literature review found a positive correlation between these station types and 

passenger numbers, leading to higher passenger use. 

From the literature review, the primary variables influencing the annual 

passenger number per station can be summarized. Table 5 provides a summary of the 

MRT Purple Line’s study area’s information-finding potential and suitability, based 

on which the study area was chosen. 

Table 5. Consideration must be given to primary variables when conducting 

research. 

Independent variable Variable symbol Expected coefficient 

Road distance Road (+, −) 

Parking lots Parking (+) 

Buses line Buses (+, −) 

Terminal station Terminal (+) 

Interchange Interchange (+) 

Populations Population (+) 

Office and store Office (+) 

Residential area Residence (+) 
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The variables to be analyzed with the least squares method of multiple regression 

are summarized in Table 5. In addition to specifying the symbol of the coefficient of 

the variable expected from the model, a literary review forecast specifies the 

coefficient of the model. The coefficients obtained from the model may differ from 

those found in the literature. The predicted outcomes of the initial variables for which 

the coefficient is anticipated to be positive are mixed area utilization, station 

population, parking capacity, station variables, residential, business office, hotel, 

shopping mall, and other industries. The length of the roads surrounding each station 

as well as the number of bus routes that serve each station are anticipated to have 

positive and negative coefficients. 

In addition to analyzing the Purple Line Project, this study examined Bangkok’s 

public transportation system. The BTS SkyTrain and Airport Rail Link are included. 

Consequently, the study was split into two models. The first model evaluated 26 

stations and did not include the 7 BTS Sky Train stations because these stations are in 

urban centers. It is contradictory with the suburban location of the MRT Purple Line 

project, and the variables’ characteristics are different, but the second model analyzed 

all 33 stations. The results are displayed in Table 6. 

Table 6. The models that consider all stations and the models that exclude urban 

stations. 

Independent variable 
Model 1 Model 2 

Coef. T sig Coef. T sig 

Residential −0.0002 −0.3155 0.7563 0.00183 2.7448 0.0113 

Office and Store 0.0015 1.9129 0.0728 −0.00039 −0.5808 0.5668 

Populations 0.0001 1.0031 0.3299 0.00155 1.9282 0.0657 

Interchange station −0.0073 −0.0691 0.9457 0.00010 1.4321 0.1650 

Terminal 0.1890 1.4437 0.1670 0.27759 1.8165 0.0818 

Buses −0.0645 −2.9710 0.0086 0.28970 1.3684 0.1839 

P&R 0.0000 0.2193 0.8290 −0.01359 −0.5832 0.5652 

Road 0.0324 2.4035 0.0279 0.00004 0.2479 0.8063 

R2 0.804 0.600 

Adjust R2 0.712 0.466 

Residual 0.2097 3.038 

In the evaluation, adjust R2 and residual values were utilized. The Adjust R2 value 

for Model 1 is closer to 1 than the value for Model 2. This indicates that Model 1 is a 

better fit for the data covered in this study. The residual statistic for the second model 

is greater than the residual statistic for the first model, indicating that the first model 

has a smaller squared estimation error. This relates to the initial hypothesis of the least 

squares approach for calculating the multiple regression equation’s parameters. 

Considering both statistical figures, it is evident that Model 1 is more appropriate than 

Model 2 for analyzing the number of passengers per station annually. Therefore, it can 

be concluded that Model 1, or a model with limitless variables that does not account 

for the seven BTS Sky Train stations, is suitable for further study. 

The relationships between the independent and source variables were determined 
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prior to selecting the model variables. Semi-log regression modeling was used to 

estimate the variable coefficients, and Table 7 illustrates which variables influence 

passenger counts. The stepwise addition of independent variables, or stepwise 

regression, was used to determine which variables should be included; this is a suitable 

method for determining the best predictor variable and the optimal number of variables. 

With stepwise analysis, an incoming predictor variable is tested each time a new 

variable is added to the equation, which means that if some predictor is entered into 

the equation, the equation is eliminated. If the predictive variable did not result in a 

statistically significant increase in the R-value, it was omitted. 

Table 7. Variables selected for equation by stepwise analysis. 

Independent variables B t sig Standardized Coef. Beta R2 Adjusted R2 

1 (Constant) 6.789 34.875 0.000 - 
0.545 0.526 

Buses −0.092 −5.364 0.000 −0.738 

2 (Constant) 6.437 30.289 0.000 - 

0.661 0.632 Buses −0.075 −4.606 0.000 −0.602 

Population 7.041 × 10−5 2.809 0.010 0.367 

3 (Constant) 5.803 16.585 0.000 - 

0.722 0.684 
Buses −0.062 −3.790 0.001 −0.495 

Population 6.984 × 10−5 3.007 0.006 0.364 

Road 0.030 2.192 0.039 0.269 

4 (Constant) 5.825 17.858 0.000 - 

0.770 0.726 

Buses −0.066 −4.317 0.000 −0.530 

Population 5.341 × 10−5 2.319 0.031 0.278 

Road 0.028 2.172 0.041 0.249 

Office and Store 0.001 2.083 0.050 0.233 

As shown in Table 7, the stepwise regression test revealed that the variables that 

affected the model were the length of the road surrounding the station, the number of 

bus routes at each station, the number of offices and shopping malls, and the 

population surrounding the station. The resulting Equation (1) is as follows: 

𝐿𝑜𝑔10(𝑌) = 5.825 + 0.028(𝑅𝑜𝑎𝑑) − 0.066(𝐵𝑢𝑠𝑒𝑠) + 0.001(𝑜𝑓𝑓𝑖𝑐𝑒 & 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡) + 5.341 × 10−5(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) (1) 

3.2. Evaluating GHG emissions reductions for the railway project 

The GHG emissions analysis was conducted to evaluate the environmental 

impact of the proposed changes to the MRT Purple Line. This analysis involves 

calculating baseline emissions, project emissions, and the resultant emission 

reductions. The methodology follows established guidelines and integrates data on 

energy consumption, emission factors, and projected ridership Various methodologies 

are used to estimate GHG emission reductions from public transit projects. Boarnet et 

al. (2017) compared top-down and bottom-up approaches, finding that integrated 

models that account for both direct and indirect emissions provide the most accurate 

estimates. Additionally, advancements in data analytics and machine learning have 

improved the precision of these estimations. In the transportation sector can be 
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achieved either through technological intervention on the fuels used by vehicles or 

through driver behaviour changes regarding vehicle activities. 

The MRTA, the owner of the MRT Purple Line Project, submitted a letter of 

intent to develop the Clean Development Mechanism (CDM) project, under which 

potential emission reductions were assessed using relevant methods for the 

transportation sector. There are two estimation methods for CO2 emissions, 

corresponding to two distinct mitigation strategies. These are based on fuel (top-down) 

and driving style (bottom-up). For the fuel-based methodology, emissions were 

determined based on previously aggregated fuel consumption data. The following 

method multiplies fuel consumption using the CO2 emission factor for each fuel type. 

The fuel emission factor is calculated using the fuel’s heat content, the proportion of 

carbon and hydrogen in the fuel that is oxidized, and the fuel’s content coefficient. 

Data on fuel consumption can be obtained from various sources, including fuel 

receipts (although their accuracy remains questionable), financial records of fuel 

expenditure, or a direct measurement of fuel consumption. In the absence of specific 

information on fuel consumption, vehicle activity data (e.g., distance traveled) and 

fuel economy factors (e.g., km/L) can be used to calculate fuel consumption. In the 

absence of fuel consumption data, the distance-based method should be used. In this 

method, emissions are calculated using distance-based emission factors that vary 

based on driving patterns, which can be expressed in terms of vehicle km traveled 

(VKT) and passenger km, which are typically acquired using a variety of traffic 

engineering approaches that range from the conventional four-step model to cutting-

edge traffic demand estimation models. Nevertheless, it appears that the existence of 

these errors does not satisfy the CDM’s requirements for precise estimated emissions. 

All data used to calculate CO2 emissions using this second methodology are difficult 

to measure precisely in situations where vehicles are not centrally controlled and are 

influenced by behavioral factors (Gojash et al., 2005). Because this method is 

primarily based on human-km emission parameters and compares project input 

emissions, there is a high risk of error, and it is difficult to determine carbon emissions 

when high-capacity rapid transit projects operate over long distances. Additionally, 

the rapid transit as an emission source may not capture the complex changes in overall 

transportation carbon emissions (Wang et al., 2022). Additionally, issues with 

parameter calibration and calculation accuracy have occurred (Chen et al., 2017). 

Because this technique cannot accurately predict emissions from the rapid transit 

projects as a source of emissions in a variety of environments, it will be difficult to 

calculate emissions based on ridership. However, these studies did not provide a 

reliable quantitative method for cities in developing nations that lack urban rail transit. 

There are numerous unanswered questions: What type of measurement is most suitable? 

Before and after the opening of a new rail transit line, residents’ travel distances and 

modes of transportation will change (Zhang et al., 2020). 

For projects involving mass rapid transit, the ACM0016 methodology for rail-

based urban mass rapid transit system (MRTS) is the only technique for measuring 

GHGs in Thai rail systems that has been certified by the Thailand Greenhouse Gas 

Management Organization (TGO) (UNCRD, 2010). A typical ACM0016 project 

involves extending an existing rail line or expanding the existing rail infrastructure 

(e.g., new rail lines), and GHG emissions mitigation involves the displacement of 
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more GHG-intensive transport modes (e.g., an existing fleet of buses operating in 

mixed traffic conditions) with less GHG-intensive ones (e.g., newly developed rail-

based systems or segregated bus lanes) (UNFCCC, 2021). 

For the ACM0016 methodology, a top-down method was employed. The baseline 

emissions, project emissions, leakage emissions, and emission reductions were 

quantified separately. The term “emission reduction” describes the reduction in GHG 

emissions that results from the implementation of any strategic project to reduce 

emissions. Baseline, project, and leakage emissions must be considered when carrying 

out such projects. Equation (2) provides a formula for calculating emissions reduction 

by deducting the project’s emissions and leakage emissions from the baseline 

emissions. 

Emission Reduction = (Baseline Emission − Project Emission − Leakage Emission) (2) 

3.3. Baseline emissions 

The emissions that would have resulted from passenger transportation between 

the point of origin (O) and final destination (D) prior to the project activity were 

calculated. This calculation is differentiated based on the modes of transport (relevant 

vehicle categories) that passengers would have used if the project had not been 

constructed. These are the maximum possible emissions from an existing project that 

has not been subjected to any emissions reduction strategies, plans, or schemes. 

Baseline emissions are the potential GHG emissions before the project is 

implemented. Equation (3) shows the product of the baseline emission factor and the 

amount of energy generated by the baseline project before emission reduction or green 

projects were added (UNFCCC/CCNUCC, 2008). 

In the absence of fuel consumption data, a distance-based approach should be 

used to calculate fuel consumption. In this method, emissions were calculated using 

distance-based emission factors that vary based on driving patterns, which can be 

expressed in terms of VKT, passenger km, which are typically acquired by various 

traffic engineering approaches, and range from the conventional four-step model to 

state-of-the-art traffic demand estimation models. However, errors in these models do 

not appear to meet the CDM’s requirements for emission estimation precision (Gojash 

et al., 2005). 

Baseline Emission = Energy Emission Factor (3) 

3.4. Project emission 

The emissions from a project are the highest amounts that can be emitted as a 

result of the project’s energy consumption. Equation (4) represents this as a by-product 

of the project’s operational energy use and emission factor: 

Project Emission = Energy Consumed During Project Operation × Emission Factor (4) 

3.5. Leakage emission 

The leakage emission is composed of: 

• Emissions caused by change of load factor of taxis and buses in the baseline 
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transportation system. 

• Emissions from affected roadways that make traffic less crowded, but also cause 

cars to travel faster, giving it a rebound effect. 

The impact of the project on traffic (increased trips) was calculated in the 

emissions calculation for the project, not the leakage calculation. If the program does 

not occur, the non-attending passenger’s trip will be counted. 

Total leakage is calculated from: 

LEy =LELFB,y + LELFT,y + LECON,y (5) 

where: 

LEy: Volume of leakage in year y (tCO2); 

LELFB,y Leakage caused by a shift in the load factor of buses in a given year y 

(tCO2); 

LELFT,y: The amount of leakage in year y caused by a change in the cab load 

factor (tCO2). 

LECON,y: The amount of leakage caused by light traffic in y. 

If the leakage emission LEy < 0, it was not included in the calculation of emission 

reduction. 

4. MRT purple line analysis 

The predicted ridership of the MRT purple line was greater than the actual 

ridership. This will affect a variety of components and parties, including investment 

costs, the economy, and cash flow. The evaluation of GHG emissions from passengers 

showed that ridership was one of the most important operating factors. This section 

provides an equation for passenger forecasting using multiple linear regression as well 

as the relationship between independent variables that affect ridership growth. This 

equation can be applied to both future and current projects to increase and forecast 

ridership. 

4.1. Model results 

As shown in Table 8, the overall R square of the model was 0.770, indicating that 

the model evaluated 77% of the dependent variables that could be predicted by the 

four independent variables. 

Table 8. Model summary. 

Model R Square F P-Value Durbin–Watson 

Entered 0.770 17.538 0.000a 2.405 

Note: a. Predictors: (Constant), pop_2, Road, office_Department, buses. 

Table 9 displays the coefficient of each variable. All of variables are significant: 

road distance, bus line, office and store, and populations. 
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Table 9. Model coefficients. 

Variable Variable name Coefficients t P-Value 

Road Distance Road 0.028 2.172 0.0414 

Buses Line buses −0.066 −4.317 0.0003 

Office and Store Office_Department 0.001 2.083 0.0496 

Populations pop_2 5.341 × 10−5 2.319 0.0305 

4.2. Forecasting number of passengers for MRT purple line 

From the analysis in Section 4.1, it is possible to forecast the number of 

passengers through 2030 and use this number to evaluate the GHG emission reduction 

for the MRT Purple Line Project. Our analysis revealed that DDRM outperformed 

traditional regression models in predicting ridership changes. Specifically, DDRM 

achieved a prediction accuracy within 10% of actual ridership figures. Additionally, 

DDRM’s ability to incorporate detailed socio-economic and infrastructural data 

provided a more comprehensive understanding of the factors driving ridership. These 

results underscore the practical advantages of DDRM in urban transit planning. 

According to the Nonthaburi Provincial Administrative Organization (Office of 

the National Economic and Social Development, Bangkok Thailand, 2017), the 

number of bus routes, office and store area, and road size from 2017 to 2018 will 

continue to be at the same scale in predicting passenger numbers in 2023 and 2030 as 

the provincial administrative policy continues. The organization indicated that there 

was no plan to alter the area to within 500 m and to include the number of bus lines 

that have not changed and the road expansion policy for the next ten years (2020–

2030). As a result of comparing the actual number of passengers in 2019 and the value 

predicted by this model, the difference was within 10%, as shown in Table 10. The 

projected passenger numbers for 2023 and 2030 applying DDRM are shown in Table 

11. 

Table 10. Actual and model-predicted passenger numbers in 2019. 

Station Actual Model % Different 

PP14 1,002,207 1,118,520.63 +10% 

PP15 1,038,545 1,032,625.87 −1% 

PP16 2,720,806 2,916,352.39 +7% 

All stations 17,624,794 15,849,465 −10% 

Table 11. Passenger projections for the MRT Purple Line through 2030. 

Year Forecasting from model 

2023 18,410,904 

2030 19,782,043 

Note: 2016 is not included because the line was not open for the entire year. 

4.3. Baseline emission from GHG evaluation 

This section discusses the results of a GHG evaluation using the model’s 

passenger projections from 2023 to 2030. Baseline emissions are the emissions 
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potentially generated by the project’s passengers in the absence of the project. This 

includes buses, private automobiles, motorcycles, and taxis. The base emission 

amount is equal to the total cost of a single-passenger trip. Various types of vehicles 

were observed beginning at their departure point. 

The baseline emissions per passenger are computed based on the vehicle type, 

the distance travelled in each vehicle type, and the emission factor for each vehicle 

type. The calculation was broken down into two cycles to facilitate verification. The 

GHG emissions per person per km were first calculated and converted to CTBL,y, as 

shown in Table 12. The CTBL,y value was then multiplied by the projected number 

of passengers for each year through 2030 to obtain the projected GHG emissions, as 

shown in Table 13. 

Table 12. The baseline rate emissions of greenhouse gases per person per kilometer. 

Type of Vehicles BSPi (%) EFPKM,i,y (gCO2/Passengers-km) CTBL,y (gCO2/Passengers-km) 

Buses 53.4 25.5 13.62 

Private Car 23.9 99.7 23.83 

Taxi 4.1 227.7 9.34 

Motorcycle 5.4 36 1.94 

Baseline Emission per person per kilometer 56.13 

Table 13. The baseline emissions of greenhouse gases based on the predicted number of passengers. 

Year CTBL,y (gCO2/Passengers-km) Passengers from DDRM Baseline emission per year 

2023 
56.13 

18,410,904 10,334.04 

2030 19,782,043 11,103.66 

Only a single annual CT value is used to represent the absence of GHG emissions 

from a project. 

4.4. Project emission from GHG evaluation 

The project’s emissions result from the emissions generated by the project’s 

electrification. Project emissions are computed based on the energy used in the railway 

system. The calculation is divided into two cycles to facilitate verification. GHG 

emission per person per km were first calculated by multiplying the Purple Line’s 

estimated electricity consumption (EC) by the GHG emission coefficient of the Purple 

Line, an electrified railway system (EF) and then converted to CTPJ,y, (Table 14). The 

CTPJ,y value was then multiplied by the projected passenger numbers for each year 

through 2030 to obtain the projected GHG emissions if the program was not 

implemented. 

Table 14. The project rate emissions of greenhouse gases per person per kilometer. 

Year ECElc,y (kWh/Passengers-km) EFEC,y (tCO2/MWh) CTPJ,y (gCO2/Passengers-km) 

2023 0.1033 0.4758 49.1275 

2030 0.0961 0.4758 45.7223 

As shown in Table 14, the electricity consumption (ECELc,y) of the electric train 
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system in this study from the 2021 annual report was 19,009,690.51 kWh, which was 

also used in the GHG calculations for 2023 and 2030. This electricity consumption 

divided by ridership from the DDRM indicates that, in 2023 and 2030, one person will 

use less electricity to travel the same average distance as in 2030 (Table 15). As the 

number of passengers increases, individual electricity consumption decreases. 

Table 15. The project emissions of greenhouse gases based on the predicted number of passengers. 

Year CTPJ,y (gCO2/Passengers-km) Passengers from DDRM Project emission per year (tCO2/year) 

2023 49.1275 18,410,904 9044.81 

2030 45.7223 19,782,043 9044.81 

4.5. GHG emission reduction from MRT purple line 

The results of the MRT Purple Line project’s ability to reduce GHG emissions 

are shown in Table 16. 

Table 16. The results of the evaluation of the MRT Purple Line Project’s reduction of GHG emissions. 

Year Baseline emission per year (tCO2/y) Project emission per year (tCO2/y) 
The amount of reductions in greenhouse 

gas emissions (tCO2/y) 

2023 10,334.04 9044.81 1289 

2030 11,103.66 9044.81 2059 

5. Conclusion 

The findings from this study have several practical implications for urban transit 

planning and implementation. First, the accurate prediction of ridership using the 

Direct Demand Ridership Model (DDRM) can significantly improve the planning and 

optimization of transit routes and schedules. By understanding the key factors that 

influence ridership, transit authorities can better allocate resources, enhance service 

efficiency, and meet passenger demand more effectively. For example, the positive 

correlation between population density and ridership suggests that expanding transit 

services in densely populated areas can maximize utilization and operational 

efficiency. 

Furthermore, the detailed analysis of variables such as road length, bus lines, and 

surrounding land use provides actionable insights for infrastructure development. 

Planners can use these insights to design transit-oriented developments (TODs) that 

integrate residential, commercial, and recreational spaces with transit services, thereby 

encouraging higher ridership and reducing reliance on private vehicles. This approach 

not only improves accessibility but also promotes sustainable urban growth. 

The main purpose of this study is to estimate the exact amount of greenhouse gas 

reduction by applying DDRM, which was developed by considering as many factors 

as possible based on previous studies, to predict the number of passengers for the 

Thailand MRT Purple Line project. In this study, variables that affect the number of 

passengers per station per year were considered through three factors: area utilization 

around the station, population around the station, and characteristics and services of 

the public transportation system. This research assumes the variables that affect the 

number of passengers on the MRT Purple Line Project. In the ridership prediction 
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equation, the variables that increase ridership are the length of the road around the 

station, office and shopping mall areas, and the number of people around the station. 

However, transportation characteristics have resulted in a decrease in the number of 

passengers on the MRT Purple Line. 

According to the evaluation of GHG reduction from the MRT Purple Line Project 

using the predicted number of passengers, the MRT Purple Line Project could reduce 

GHG emissions by 1289 tCO2 in 2023 and 2059 tCO2 in 2030. 

Currently, the use of the area surrounding a station depends on its location. For 

instance, a city center station prioritizes the use of space for offices and commercial 

areas, whereas stations located outside the city prioritize the use of space for residential 

areas. The operation of areas surrounding various stations has varying effects on the 

number of passengers per station per year. However, this study presents variables from 

the direct demand ridership model that affect the number of passengers per station per 

year. 

DDRM is appropriate for predicting and analyzing the number of passengers 

because it includes factors of space utilization around stations, such as offices, 

shopping malls, and road length. The population factors surrounding the stations, and 

the characteristics and services of the mass transit system became variables for the 

number of bus routes of each station, train system routes, and terminals and stations 

connecting buses to other systems. 

The following recommendations can be derived from the model: 

1) Maximize the use of land around stations by developing office spaces, 

companies, shopping malls, and accommodations to increase employment and area 

usage, thus boosting passenger numbers. 

2) Optimize bus line management by recognizing that an increased number of 

bus lines can lead to fewer passengers per line due to more available options, and 

consider the impact on GHG emissions from buses when planning routes. 

3) Coordinate public and private sector efforts to support the development of 

various types of buses in the study area. 

4) Governments should integrate multiple plans to develop a more effective 

public transportation system and ensure that services provided are beneficial and 

consistent across different modes of transport. 
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