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Abstract: Agricultural land use and land cover (LULC) classification using synthetic 

aperture radar (SAR) data is a fundamental application in remote sensing and precision 

agriculture. Leveraging the abilities of SAR, which can enter over cloud cover and deliver 

detailed data about surface features, allows a robust analysis of agricultural landscapes. By 

harnessing the control of SAR data and innovative deep learning (DL) methods, this 

technique provides a complete solution for effectual and automatic agricultural land 

classification, paving the method for informed decision-making in present farming systems. 

This study introduces a new gradient based optimizer with deep learning based agricultural 

land use and land cover classification (GBODL-ALULC) technique on SAR data. The 

GBODL-ALULC technique aims to detect and classify distinct types of land cover that exist 

in the SAR data. In the GBODL-ALULC technique, the feature extraction process takes place 

by a residual network with a convolutional block attention mechanism (ResNet-CBAM) 

model. At the same time, the GBO system has been executed for the best hyperparameter 

choice of the ResNet-CBAM model which helps to improve the overall LULC classification 

results. Finally, a regularized extreme learning machine (RELM) algorithm has been for the 

detection and classification of land covers. The performance study of the GBODL-ALULC 

method is carried out on the SAR dataset. The simulation outcome depicted that the GBODL-

ALULC methodology reaches effectual LULC classification outcomes over compared 

methods. 

Keywords: land use and land cover; synthetic aperture radar; gradient based optimizer; deep 

learning; residual network 

1. Introduction 

The agriculture sector is severely impacted by climate change, since it has an 

impact on both the quantity and quality of agriculture products (Fondaj et al., 2023). 

In recent years satellite involves in environmental research widely (Stabel and 

Fischer, 2001). In Agriculture industry, the heavily exploited environment must be 

safe for any activities connected to current agricultural production. Precision 

farming, which is directly related to the digitization of agriculture, is becoming more 

and more significant in this regard (Niedbała et al., 2023; Sánchez-Crespo et al., 

2023). In recent days, the remote sensing applications can be implemented by 

explainable AI also (Höhl et al., 2024). Satellite remote sensing image (RSI) is 

utilized as a great tool to observe the surface of Earth (Allies et al., 2021), mainly in 

making land use and land cover (LULC) classification (Solórzano et al., 2021). 
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Generally, LULC classification constructs upon dual imaging methods namely 

microwave and optical remote sensing. Remote sensing images are widely used for 

analyse the wetland areas, water areas, forest areas and agriculture lands by satellite 

(Addison et al., 2018; Mitchard et al., 2013; Moran et al., 2004). In agriculture, the 

main task is trusting on an enhancement in the organization of natural resources, 

with knowledge permitting farming to function on a huge scale and delivering 

solutions that can significantly and sustainably originate a rise in farming 

manufacture (Mucsi et al., 2023). The on-time inventory is the need for assuring 

food security of agricultural regions and the local proportion of dissimilar crop 

kinds. The private sector contains insurance trades, and profit from early-period crop 

inventories as a significant element of crop manufacture estimate and farming 

statistics (Garg et al., 2022). Also, local estimations, and LULC mapping a vital 

requirement for agricultural monitoring, development, planning, digital soil 

mapping, creating informed policy, and resource management choices (Ngo et al., 

2020). And also, LCLU mapping which helps to identify the surface heat of various 

land areas (Asmaa et al., 2023; Sameh et al., 2020; Sara Sameh et al., 2023). 

However, the manufacture of reliable and appropriate farming land cover maps 

utilizing optical RSI remains challenging owing to the variety and difficulty of the 

landscape (Kraatz et al., 2021). 

Satellite RSI is suitable for land cover recognition and classification because of 

its high availability, wide regional coverage, and regular revisit intervals 

(Šćepanović et al., 2021). There are many instances of land use classification based 

on satellite image data on regional, local, and global scales. Previous systems with 

low ground resolution such as ENVISAT, SPOT, or LANDSAT were utilized for 

classification on a large scale with rough resolution as the Global Land Cover 2000 

or CORINE project (Ajadi et al., 2021). In the present scenario, novel satellite-based 

multispectral scanners permitted a greater ground resolution. The classification of 

land use developed from this satellite information permits for a superior spatial and 

large difference among diverse land use classes (Vali et al., 2020). But it is old 

practice to map and evaluate LULC change utilizing optical satellite information, 

current attention has turned to the combination of optical and radar data as a more 

effectual model for constructing reliable forest observing methods or delivering 

improved data for illustrating and precisely defining land cover (Debella-Gilo et al., 

2021). Uniting datasets from radar and optical sensors, which perceive dissimilar 

physical properties of land cover features, can deliver corresponding data across the 

electromagnetic spectrum and can equalize restrictions of utilizing either sensor only 

(Al-Dujaili, 2024). Presently, deep learning (DL) models have become another 

selection for land cover classification (LCC) due to their extraordinary feature 

removal abilities. 

This study introduces a new gradient based optimizer with deep learning based 

agricultural land use and land cover classification (GBODL-ALULC) technique on 

SAR data. In the GBODL-ALULC technique, the feature extraction process takes 

place by the residual network with a convolutional block attention mechanism 

(ResNet-CBAM) model. At the same time, the GBO system is applied for the best 

hyperparameter range of the ResNet-CBAM model which helps to improve the 

overall LULC classification results. Finally, a regularized extreme learning machine 
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(RELM) method is useful for the recognition and classification of land covers. The 

simulation analysis of the GBODL-ALULC system is carried out on the SAR 

dataset. 

2. Literature survey 

Bhatt and Thakur (Bhatt et al., 2023) aim to propose an automatic DL-based 

LCC method of RSI. The Landsat-8 and SAR images are first pre-processed utilizing 

the Gabor filter method. Lastly, the features that were extracted have been exposed 

to improved deep belief networks (DBNs), where the weight is modified by the 

optimizer logic. Due to this, a novel sunflower adopted red deer (SARD) model has 

been presented that combines the idea of a Sunflower optimizer and Red Deer 

model. In the study of Jang et al. (2023), a management system for SAR images is 

developed. Consumers can generate their classifier by using their information, and 

get the classified outcomes of afresh SAR images. The classifier is dependent upon 

the convolutional neural network (CNN) structure. In the study of Darvishnezhad et 

al., (2023), a new self-supervised ensemble learning framework (SSELF) is planned. 

This model can mechanically remove features to the classification of polarimetric 

SAR (PolSAR) images with a small amount of training samples. 

In the study of Wu et al. (2022), cross-channel reconstruction (CCR-Net) is able 

to develop more compact fusion representation of remote sensing (RS) data sources 

and share information among them efficiently. In the study of Hosseiny et al. (2022), 

uses satellite information and ensemble deep learning model to create a classification 

for mapping wetland areas. 

In the study of Hosseiny et al. (2024), proceeded with the develop of 

nonsupervised deep learning (NSDL) models for various remote sensing 

applications. Di Martino et al. (2023) develop FARMSAR: Fixing AgRicultural 

Mislabels Using Sentinel-1 Time Series and AutoencodeRs to scale and present the 

suitable crop for farmers using temporally dense Sentinel-1 data and class-specific 

convolutional autoencoders applied to synthetic aperture radar (SAR) time series. 

In the research of Huang et al. (2023), an enhanced dual-pol radar vegetation 

index built on many mechanisms (DpRVIm) and an innovative LCC model have 

been developed. At first, the scattering data and territory factors were measured to 

increase the separability. Then, the 1D-CNN model is utilized to examine the 

outcome of dissimilarity DpRV indexes on LCC. Lastly, to decrease the outcome of 

the speckle noise, a dual-stage LCC model based on 1DCNN- Markov Random Field 

(1DCNN- MRF) was projected by considering the spatial data of the ground object. 

Dahhani et al. (2022) directed to map the LULC, particularly in farming regions, 

utilizing SAR C-band Sentinel-1 (S-1) time sequence. The author measured the 

processing time and performance of 3 machine learning (ML) classifiers on dual 

inputs. Lapini et al. (2020) define a field mapping study in a settled region in 

Tuscany (Italy). The S-1 C-band, S-2 optical sensors, and Constellation of Small 

Satellites for Mediterranean basin Observation-SkyMed (COSMO-SkyMed) are 

classifiers input. 

In the study of Hosseiny et al. (2022), compared three shallow learners and two 

deep learners by different machine learning approaches using sentinel 2 satellite. 
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Explored various deep learning architectures on RS image processing and attention 

mechanism-based deep learning (At-DL) methods for improving accuracy on RS 

image processing (Ghaffarian et al., 2021). 

Chatterjee et al. (2021) developed a semi-supervised model that identifies 

paddy fields in numerous periods. The method has been separated into dual parts 

such as supervised and unsupervised. The visual geometry group 16 (VGG16) 

technique is employed to separate areas into 5 groups. Chatterjee et al. (2020) project 

an unsupervised learning model to cluster dual-polarized and hybrid polarimetric 

SAR images utilizing the deep framework. The author employs the VGG16 method 

with batch normalization that is trained by tiny covers delivered from the hybrid 

polarimetric SAR image. 

3. The proposed method 

In this research, we have developed an innovative GBODL-ALULC method for 

SAR data. The GBODL-ALULC technique aims to detect and classify distinct types 

of land cover that exist in the SAR data. The GBODL-ALULC technique 

compresses three distinct processes namely ResNet-CBAM-based feature extraction, 

GBO-based hyperparameter tuning, and RELM-based classification process. Figure 

1 illustrates the entire flow of the GBODL-ALULC technique. 

 

Figure 1. Overall flow of GBODL-ALULC technique. 

3.1. ResNet-CBAM-based feature extraction 

In the GBODL-ALULC technique, the feature extraction process takes place by 

the ResNet-CBAM model. Deep neural networks (DNN) have many layers of 
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convolutional (Conv) and pooling to remove features (Wang, 2024). A ResNet is a 

kind of traditional CNN that employs the design of residual as the foremost form to 

prevent gradient disappearance. 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥 (1) 

In Equation (1), 𝐹(𝑥) denotes the straight mapping of the input 𝑥. 

The residual block (RB) utilizes the jump connection model to remove features 

but hold a fragment of the unique input data. The learning aim of residual is 0 to 

decrease the dissimilarity between output and input. The RB structure has dual equal 

output channels of three 3 × 3 Conv layers; every Conv layer is linked with an 

activation function of rectified linear unit (ReLu) and batch normalized (BN) layer. 

The input and output forms of the dual Conv layer must be reliable so that they can 

be covered. 

In the feature extractor phase of NN, the amount of fault samples is lesser than 

regular samples. Therefore, the removal of the fault feature parameter is inadequate. 

The feature extractor phase in CBAM is inserted into NN models and can resolve 

issues like lower model accuracy and weak simplification owing to inadequate 

extractor capability for feature parameters. Enlarging the usage of restricted fault 

samples is significant in dealing with imbalanced issues. We propose an enhanced 

Conv residual network and insert the attention mechanism of Conv in every RB 

structure. Throughout the feature extractor phase, the feature plan is highlighted; 

then, with the aid of a spatial attention device, the system can focus on valuable 

feature data. Besides, this connection safeguards that the system acquires more deep 

features while preserving performance. So, the convergence of the network is 

enhanced, and classification of high accuracy is attained. 

Simultaneously, the RB structure employs the BN layer. The ReLu is employed 

to attach Conv layers, increase the training speed and generalized capability, and 

diminish the issue of over-fitting. 

3.2. Hyperparameter tuning using the GBO model 

At this stage, the GBO model is applied for the best hyperparameter range of 

the ResNet-CBAM model which helps to improve the overall LULC classification 

results. An advanced metaheuristic technique termed the GBO algorithm integrates 

gradient‐based and population‐based methods (Manderna et al., 2023). It proficiently 

discovers full search space by employing an assortment of vectors as well as dual 

operations. GBO pursues to determine the finest solutions for an assumed set of 

exploration metrics by replicating gradient‐based, population-based, and Newtonian 

techniques. 

Initialization: 

At the time of initialization, the GBO method employs probability rate (𝛽) and 

control parameters (𝛼)  to equilibrium among exploration and exploitation. The 

iterations count and extent of populace altered affording to the difficulty of 

problematic being cracked. In an algorithm of GBO, solution space is signified by 𝑁. 

The early vectors are produced arbitrarily in the search space that is given in 

Equation (2). 

𝑥𝑛 = 𝑥min + 𝑟(0,1) × (𝑥max − 𝑥min) (2) 
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whereas 𝑟(0,1) signifies a random amount within ranges of [0,1], and 𝑥min and 𝑥max 

represent lower and upper bounds of decision variable 𝑥, singly. 

Gradient search rule (GSR): 

The GBO model employs a main module to attain a stable exploration of 

significant search space areas while attaining global as well as optimum spots. The 

use of 𝜌 defined in Equations (3)–(5). 

𝜌1 = 2 × 𝑟 × 𝛼 − 𝛼 (3) 

𝛼 = |𝛽 × sin (
3π

2
) + sin (𝛽 ×

3π

2
)| (4) 

𝛽 = 𝛽min + (𝛽max − 𝛽min) × ((1 − 𝑐/𝑇)3)2 (5) 

where, 𝛽min  and 𝛽max  denote a constant value of 0.2 and 1.2, correspondingly, 𝑇 

signifies the entire number of iterations, and 𝑐 refers to current iterations. Depending 

on the function of sine, parameter 𝜌1 is responsible for balancing exploitation and 

exploration. It varies enthusiastically through optimization procedure creation with a 

great value to stimulate a huge array of solutions and gradually drop over iterations 

to accelerate convergence. The technique efficiently examines a large extent of 

substitute solution by enhancing parameter value over identified iterations within 

range. This methodology improves the GBO model’s capability to professionally 

search as well as discover optimum solutions while preserving a balance among 

exploration as well as exploitation. Global search radius (gsr) is considered by 

utilizing Equation (6). 

𝑔𝑠𝑟 = 𝑟 × 𝜌1 × 2𝛥𝑥 ×
𝑥𝑛

𝑥worst − 𝑥best + 𝜀
 (6) 

Random performance is used to generate a randomized exploration device that 

simplifies the finding of local goals. The variable 𝛥𝑥 alterations are presented by 

Equations (7) and (9). A random number (r) is presented to permit exploration. 

𝛥𝑥 = 𝑟(1: 𝑁) × |step| (7) 

Step = (𝑥best − 𝑥𝑟1
𝑐 )/2 + 𝛿/2 (8) 

𝛿 = 2 × 𝑟 × |𝑥𝑟1
𝑐 + 𝑥𝑟2

𝑐 + 𝑥𝑟3
𝑐 +

𝑥𝑟4
𝑐

4
− 𝑥𝑛

𝑐 | (9) 

whereas, 𝑟(1: 𝑁)𝑠  signifies a random vector in the range of [0 and 1] . The gsr 

computation combines these random factors to help a familiar exploration procedure 

that permits the GBO technique to successfully discover possible solutions with local 

targets in search space. 4 self-governing integers (𝑟1, 𝑟2, 𝑟3, and 𝑟4)  arbitrarily 

selected in GBO procedure so (𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠ 𝑛). The dissimilarity between 

𝑥best and 𝑥𝑟1
𝑐  attends as an amount of stage scale that step signifies as revealed in 

Equation (8). Direction movement (dm) is employed to effort vectors (x) near 

convergence through the solution field in order to get convergence. 𝑑𝑚 presented to 

move 𝑥𝑛  in the way of optimal vector (𝑥best − 𝑥𝑛)  and calculated according to 

Equation (10). 

𝑑𝑚 = 𝑟 × 𝜌2 × (𝑥best − 𝑥𝑛) (10) 

whereas, 𝜌2 denotes an arbitrary parameter that is used to alter the stage size. 𝑟 

represents evenly distributed value in ranges of [0,1]. 𝜌2 intended by Equation (11). 

𝜌2 = 2 × 𝑟 × 𝛼 − 𝛼 (11) 

Equations (12) and (13) are modified by gsr and 𝑑𝑚 since the current vector is 
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denoted as 𝑥𝑛
𝑐 . 

𝑥1𝑛
𝑐 = 𝑥𝑛

𝑐 − 𝑔𝑠𝑟 + 𝑑𝑚 (12) 

where 𝑥1𝑛
𝑐  signifies the modified vector resultant from alterations complete to 𝑥1𝑛

𝑐 . 

The transformation of 𝑥1𝑛
𝑐  is conveyed as per Equation (13). 

𝑥1𝑛
𝑐 = 𝑥𝑛

𝑐 − 𝑟 × 𝜌1 ×
2𝛥𝑥 × 𝑥𝑛

𝑐

(𝑣𝑝𝑛
𝑐 − 𝑣𝑞𝑛

𝑐 + 𝜀)
+ 𝑟 × 𝜌2 × (𝑥best − 𝑥𝑛

𝑐 ) (13) 

while, 𝑣𝑝𝑛
𝑐 , 𝑣𝑞𝑛

𝑐  resemble 𝑣𝑛 + 𝛥𝑥  and 𝑣𝑛 − 𝛥𝑥 , correspondingly. The vector 𝑣𝑛  is 

the average of dual vectors i.e., 𝑥𝑛 and 𝑍𝑛+1 in Equation (14). 

𝑍𝑛+1 = 𝑥𝑛 − 𝑟 × (2𝛥𝑥 × 𝑥𝑛)/𝑥worst − 𝑥best + 𝜀) (14) 

Equation (15) is employed to enhance local search exploitation as well as global 

search at the time of finding procedure. By replacing the present solution vector 𝑥𝑛
𝑐  

with novel solution vector 𝑥best, the current solution vector 𝑥2𝑛
𝑐  is gained: 

𝑥2𝑛
𝑐 = 𝑥best − 𝑟 × 𝜌1 ×

2𝛥𝑥 × 𝑥𝑛
𝑐

(𝑣𝑝𝑛
𝑐 − 𝑣𝑞𝑛

𝑐 + 𝜀)
+ 𝑟 × 𝜌2 × (𝑥𝑟1

𝑐 − 𝑥𝑟2
𝑐 ) (15) 

Then, a novel version of the solution 𝑥𝑛
𝑐+1 is computed by Equation (16). 

𝑥𝑛
𝑐+1 = 𝑟𝑎 × (𝑟𝑏 × 𝑥1𝑛

𝑐 + (1 − 𝑟𝑏) × 𝑥2𝑛
𝑐 ) + (1 − 𝑟𝑎) × 𝑥3𝑛

𝑐  (16) 

whereas 𝑟𝑎  and 𝑟𝑏  denote random numbers within ranges of [0 and 1] , and 𝑥3𝑛
𝑐  

defined by Equation (17). 

𝑥3𝑛
𝑐 = 𝑥𝑛

𝑐+1 − 𝜌1 × (𝑥2𝑛
𝑐 − 𝑥1𝑛

𝑐 ) (17) 

The local escaping operator (LEO) procedure is an effective model employed in 

the optimizer procedure to overwhelm local optima and improve convergence. LEO 

aids procedures in quickly transferring away from sub-optimal solutions as well as 

discovering novel areas of search space. By including LEO, the optimizer model 

attains the capability to discover superior as well as more effectual solutions. This 

operation plays a vital part in enhancing the performance and efficiency of optimizer 

models and makes them stronger for resolving difficult optimization challenges. 

The fitness function (FF) is the significant factor that influences GBO model 

performance. The hyperparameter range procedure contains the solution encode 

technique to calculate the efficiency of the candidate solution. In this study, the GBO 

model takes accuracy as the main measure to plan the FF as conveyed below. 

Fitness = max(𝑃) (18) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (19) 

here, 𝐹𝑃 and 𝑇𝑃 denote the false and true positive values in Equations (18) and (19). 

3.3. Detection using the RELM model 

At last, the RELM method is applied for the detection and classification of land 

covers. As an improved SLFN, ELM presents M training samples (Li, 2024). Figure 

2 defines the infrastructure of ELM. 

{(𝑥𝑗, 𝑡𝑗), 𝑗 = 1, ⋯ , 𝑀}, 𝑥𝑗 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑚}𝑇 , 𝑡𝑗 = {𝑡1, 𝑡2, ⋯ , 𝑡𝑛}𝑇 , 𝑥𝑗, 𝑡𝑗  indicate 

the input vector and output vectors of j-th samples, correspondingly. The activation 

function is (𝑤, 𝑏, 𝑥), and the HL node is set as 𝐿 and t, the architecture of ELM 

comprises 𝑛 output neurons, 𝑚 input neurons, and 𝐿 hidden neurons: 

𝑡𝑗 = ∑ 𝛽𝑖

𝐿

𝑖=1

𝑔𝑖(𝑤𝑖 ⋅ 𝑥𝑗 + 𝑏𝑖)𝑗 = 1, ⋯ , 𝑀 (20) 
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In Equation (20), 𝛽𝑖 = [𝛽𝑖1, 𝛽2𝑙, ⋯ , 𝛽𝑖𝐿]𝑇 shows the connecting weight vector of 

i-th hidden neurons to the output layer, 𝑊𝑖 = {𝑊𝑖1, 𝑊2𝑙, ⋯ , 𝑊𝑖𝐿}𝑇  signifies the 

connecting weight vector of i-th hidden neurons to the input layer, Xj represents 

features, and 𝑏𝑖 represents the bias of i-th hidden nodes, each of them is produced at 

random. 

𝑇 = 𝐻𝛽 (21) 

𝐻 = (

𝑔(𝜔1, 𝑏1, 𝑥1) 𝑔(𝜔2, 𝑏2, 𝑥1) … 𝑔(𝜔𝐿 , 𝑏𝐿 , 𝑥1)
𝑔(𝜔1, 𝑏1, 𝑥2) 𝑔(𝜔2, 𝑏2, 𝑥2) … 𝑔(𝜔𝐿 , 𝑏𝐿 , 𝑥2)

⋮ ⋮ ⋮ ⋮
𝑔(𝜔1, 𝑏1, 𝑥N) 𝑔(𝜔2, 𝑏2, 𝑥N) … 𝑔(𝜔𝐿 , 𝑏𝐿 , 𝑥2)

) (22) 

Equation (22) is substituted to Equation (21) and is attained Equation (23) by 

singular value and least square decomposition: 

𝛽 = (𝐻𝑇𝐻)−1𝐻𝑇𝑇  (23) 

 

Figure 2. Architecture of ELM. 

The regularization coefficient enhances the structural stability of ELM and 

produces RELM: 

𝛽 = (𝐻𝑇𝐻 + 𝐶𝐼)−1𝐻𝑇𝑇 (24) 

In Equation (24), 𝐼  shows the unit matrix and 𝐶  indicates the regularization 

factor. 

4. Performance validation 

The SAR data analysis of the GBODL-ALULC technique for LULC 

classification takes place on Sentinel-12 data from the Kaggle repository 

(https://www.kaggle.com/datasets/requiemonk/sentinel12-image-pairs-segregated-

by-terrain). The database comprises 16,000 samples with 4 classes as illustrated in 

Table 1. Figure 3 depicts the sample images. 

Table 1. Details of the dataset. 

Classes No. of instances 

Barren land 4000 

Grassland 4000 

Agricultural land 4000 

Urban areas 4000 

Total samples 16,000 
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Figure 3. Sample images: (a) barren land; (b) grassland; (c) agricultural land; (d) 

urban areas. 

Figure 4 illustrates the confusion matrices accomplished by the GBODL-

ALULC method with 80:20 and 70:30 of TRAPH/TESPH. These results represent 

the proficient recognition with four samples under every class. 

The LULC detection results of the GBODL-ALULC method with 80:20 of 

TRAPH/TESPH are given in Table 2 and Figure 5. These achieved outcomes imply 

the proficient performance of the GBODL-ALULC system under all classes. 

According to 80% of TRAPH, the GBODL-ALULC method gives an average 𝑎𝑐𝑐𝑢𝑦 

of 97.52%, 𝑝𝑟𝑒𝑐𝑛 of 95.09%, 𝑟𝑒𝑐𝑎𝑙  of 95.05%, 𝐹score of 95.05%, and 𝐺measure of 

95.06%. Meanwhile, based on 20% of TESPH, the GBODL-ALULC approach gains 

an average 𝑎𝑐𝑐𝑢𝑦 of 97.39%, 𝑝𝑟𝑒𝑐𝑛 of 94.83%, 𝑟𝑒𝑐𝑎𝑙 of 94.78%, 𝐹score of 94.79%, 

and 𝐺measure of 94.79%, respectively. 
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Figure 4. Confusion matrices of the GBODL-ALULC model under (a) and (b) 

80:20 TRAPH/TESPH; and (c) and (d) 70:30 TRAPH/TESPH. 

Table 2. LULC detection results of the GBODL-ALULC algorithm on 80:20 of 

TRAPH/TESPH. 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝐬𝐜𝐨𝐫𝐞 𝑮𝐦𝐞𝐚𝐬𝐮𝐫𝐞 

TRAPH (80%) 

Barren land 97.82 96.00 95.31 95.66 95.66 

Grassland 97.91 95.69 95.93 95.81 95.81 

Agricultural land 97.18 92.41 96.61 94.46 94.49 

Urban Areas 97.19 96.25 92.34 94.25 94.27 

Average 97.52 95.09 95.05 95.05 95.06 

TESPH (20%) 

Barren land 97.72 95.60 94.98 95.29 95.29 

Grassland 97.88 95.67 95.91 95.79 95.79 

Agricultural land 96.97 92.32 96.06 94.15 94.17 

Urban areas 97.00 95.73 92.15 93.91 93.93 

Average 97.39 94.83 94.78 94.79 94.79 
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Figure 5. Average of the GBODL-ALULC method with 80:20 of TRAPH/TESPH. 

Table 3. LULC detection outcomes of the GBODL-ALULC model at 70:30 of 

TRAPH/TESPH. 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝐬𝐜𝐨𝐫𝐞 𝑮𝐦𝐞𝐚𝐬𝐮𝐫𝐞 

TRAPH (70%) 

Barren land 96.64 93.02 93.74 93.38 93.38 

Grassland 95.42 89.48 92.69 91.06 91.07 

Agricultural land 96.71 94.59 92.00 93.28 93.29 

Urban areas 97.71 96.16 94.53 95.33 95.34 

Average 96.62 93.31 93.24 93.26 93.27 

TESPH (30%) 

Barren land 96.52 92.91 92.83 92.87 92.87 

Grassland 95.60 89.96 92.47 91.20 91.21 

Agricultural land 96.77 94.36 92.89 93.62 93.62 

Urban areas 97.90 96.36 95.34 95.85 95.85 

Average 96.70 93.40 93.38 93.38 93.39 

 

Figure 6. Average of the GBODL-ALULC algorithm with 70:30 of TRAPH/TESPH. 



Journal of Infrastructure, Policy and Development 2024, 8(8), 4488.  

12 

The LULC detection results of the GBODL-ALULC algorithm with 70:30 of 

TRAPH/TESPH can be reported in Table 3 and Figure 6. These accomplished 

findings imply the proficient performance of the GBODL-ALULC system under 

each class. According to 70% of TRAPH, the GBODL-ALULC method provides an 

average 𝑎𝑐𝑐𝑢𝑦  of 96.62%, 𝑝𝑟𝑒𝑐𝑛  of 93.31%, 𝑟𝑒𝑐𝑎𝑙  of 93.24%, 𝐹score  of 93.26%, 

and 𝐺measure of 93.27%. Additionally, with 30% of TESPH, the GBODL-ALULC 

algorithm obtained an average 𝑎𝑐𝑐𝑢𝑦  of 96.70%, 𝑝𝑟𝑒𝑐𝑛  of 93.40%, 𝑟𝑒𝑐𝑎𝑙  of 

93.38%, 𝐹score of 93.38%, and 𝐺measure of 93.39%. 

 

Figure 7. 𝐴𝑐𝑐𝑢𝑦 curve of the GBODL-ALULC model with 80:20 of 

TRAPH/TESPH. 

The 𝑎𝑐𝑐𝑢𝑦  curves for training (TRA) and validation (VL) demonstrated in 

Figure 7 for the GBODL-ALULC algorithm with 80:20 of TRAPH/TESPH provides 

valued insights into its efficiency at multiple epochs. Generally, it can be an 

incessant upgrading under the TRA and TES 𝑎𝑐𝑐𝑢𝑦 with increased epochs, proving 

the proficiencies of the model for learnable and recognizable patterns with the TRA 

and TES data. The higher trends in TES 𝑎𝑐𝑐𝑢𝑦  underscores the model’s 

adaptabilities to the TRA dataset and the ability to produce detailed predictions on 

unnoticed data, emphasizing capabilities of robust generalization. 

Figure 8 illustrates an extensive result of the TRA and TES loss values for the 

GBODL-ALULC method at 80:20 of TRAPH/TESPH in varying epochs. The TRA 

loss continually lessened as a model refines the weights for diminishing 

classification errors at both datasets. The loss curves prominently show the 

alignments with the TRA data, accentuating the ability to capture patterns 

successfully. Significant can be the persistent upgrading of parameters in the 

GBODL-ALULC technique, targeted at lessened differences between actual and 

TRA prediction labels. 
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Figure 8. Loss curve of the GBODL-ALULC technique at 80:20 of TRAPH/TESPH. 

 

Figure 9. PR curve of the GBODL-ALULC model with 80:20 of TRAPH/TESPH. 

As regards the PR curve displayed in Figure 9, the findings clearly affirm that 

the GBODL-ALULC method with 80:20 of TRAPH/TESPH continuously 

accomplishes higher PR values in every class. These outcomes underscore the 

efficient capacity of the model for discriminating between numerous classes, 

emphasizing its effectiveness in exactly recognizing class labels. 

Similarly, in Figure 10, we present ROC curves made by the GBODL-ALULC 

algorithm with 80:20 of TRAPH/TESPH, representing its proficiency in 

distinguishing between classes. These curves provide valuable insights into how the 

trade-off among FPR and TPR changes in multiple classification epochs and 

thresholds. The results underscore the model’s precise classification efficiency in 

diverse class labels, underscoring its effectiveness in addressing many classification 

challenges. 
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Figure 10. ROC curve of the GBODL-ALULC system at 80:20 of TRAPH/TESPH. 

Table 4. Comparative results of the GBODL-ALULC system with other algorithms. 

Classification 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝐬𝐜𝐨𝐫𝐞 

SVM model 81.45 72.33 78.80 77.24 

Random forest 85.44 75.85 72.30 73.22 

ANN algorithm 82.84 70.33 70.51 73.05 

LSTM Model 90.09 91.38 92.91 92.59 

PSO-mLSTM 95.00 92.00 93.98 92.91 

HGO-mLSTM 96.90 94.50 94.00 92.49 

MLULCC-ASCS DL 96.51 92.99 92.59 92.81 

GBODL-ALULC 97.52 95.09 95.05 95.05 

 

Figure 11. 𝐴𝑐𝑐𝑢𝑦 outcome of GBODL-ALULC model compared with other systems. 

To represent the superior performance of the GBODL-ALULC system, a wide 

range of comparison studies is given in Table 4 (Arrechea-Castillo, 2023; Stateczny, 

2022). Figure 11 illustrates the comparative results of the GBODL-ALULC 

technique in terms of 𝑎𝑐𝑐𝑢𝑦. Based on 𝑎𝑐𝑐𝑢𝑦, the GBODL-ALULC technique offers 
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increased 𝑎𝑐𝑐𝑢𝑦  of 97.52% whereas the SVM, RF, ANN, LSTM, PSO-mLSTM, 

HGO-mLSTM, and MLULCC-ASCS DL systems reported reduced 𝑎𝑐𝑐𝑢𝑦 values of 

81.45%, 85.44%, 82.48%, 90.09%, 95.00%, 96.90%, and 96.51%, respectively. 

 

Figure 12. 𝑃𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, and 𝐹score outcome of GBODL-ALULC technique 

compared with other algorithms. 

To display the excellent performance of the GBODL-ALULC system, an 

extensive comparison analysis can be described in Figure 12 shows the comparative 

results of the GBODL-ALULC method with respect to 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , 𝐹score . 

According to 𝑝𝑟𝑒𝑐𝑛 , the GBODL-ALULC algorithm gets an increased 𝑝𝑟𝑒𝑐𝑛  of 

95.09% whereas the SVM, RF, ANN, LSTM, PSO-mLSTM, HGO-mLSTM, and 

MLULCC-ASCS DL systems informed decreased 𝑝𝑟𝑒𝑐𝑛 values of 72.33%, 75.85%, 

70.33%, 91.38%, 92%, 94.50%, and 92.99%. Similarly, based on 𝑟𝑒𝑐𝑎𝑙 , the 

GBODL-ALULC technique gains boosted 𝑟𝑒𝑐𝑎𝑙  of 95.05% while the SVM, RF, 

ANN, LSTM, PSO-mLSTM, HGO-mLSTM, and MLULCC-ASCS DL methods 

provide minimized 𝑟𝑒𝑐𝑎𝑙  values of 78.80%, 72.30%, 70.51%, 92.91%, 93.98%, 

94%, and 92.59%. Also, with 𝐹score , the GBODL-ALULC system achieves an 

improved 𝐹score of 95.05% however, the SVM, RF, ANN, LSTM, PSO-mLSTM, 

HGO-mLSTM, and MLULCC-ASCS DL techniques offer diminished 𝐹score values 

of 77.24%, 73.22%, 73.05%, 92.59%, 92.91%, 92.49%, and 92.81%, 

correspondingly. Therefore, the GBODL-ALULC technique can be used for 

effectual LULC classification on SAR data. 

5. Conclusion 

In this study, we have presented a novel GBODL-ALULC algorithm on SAR 

data. The GBODL-ALULC technique aims to detect and classify distinct types of 

land cover that exist in the SAR data. The GBODL-ALULC technique compresses 3 

various procedures ResNet-CBAM-based feature extraction, GBO-based 

hyperparameter tuning, and RELM-based classification process. Initially, the feature 

extraction process takes place by the ResNet-CBAM approach. At the same time, the 

GBO algorithm can be performed for the best hyperparameter selection of the 

ResNet-CBAM model which helps to improve the overall LULC classification 
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results. At last, the RELM system can be executed for the detection and 

classification of land covers. The performance analysis of the GBODL-ALULC 

algorithm is carried out on the SAR dataset. The simulation results demonstrated that 

the GBODL-ALULC system reaches effectual LULC classification outcomes over 

compared methods. This approach not only helps businesses adapt to present 

challenges but also positions them proactively to tackle future complexities, ensuring 

sustained success and relevance in a dynamically evolving landscape. This 

technology continues to evolve, the agricultural sector can look forward to even 

more sophisticated solutions, ensuring food security and sustainable farming for 

future generations. 
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