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Abstract: This research delves into the urgent requirement for innovative agricultural 

methodologies amid growing concerns over sustainable development and food security. By 

employing machine learning strategies, particularly focusing on non-parametric learning 

algorithms, we explore the assessment of soil suitability for agricultural use under conditions 

of drought stress. Through the detailed examination of varied datasets, which include 

parameters like soil toxicity, terrain characteristics, and quality scores, our study offers new 

insights into the complexities of predicting soil suitability for crops. Our findings underline the 

effectiveness of various machine learning models, with the decision tree approach standing out 

for its accuracy, despite the need for comprehensive data gathering. Moreover, the research 

emphasizes the promise of merging machine learning techniques with conventional practices 

in soil science, paving the way for novel contributions to agricultural studies and practical 

implementations. 
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1. Introduction 

The concept of machine learning revolves around the ability of systems to 

analyze data, discern patterns, and anticipate future events or make decisions based on 

that information. This learning process encompasses various methodologies, including 

supervised, unsupervised, and reinforcement learning techniques. Machine learning 

finds application across diverse domains such as medicine (for disease diagnosis and 

treatment), finance (in market forecasting and risk management), autonomous 

navigation (for unmanned vehicles), language processing (enabling automatic 

translation and text analysis), among others. 

As computing power advances and big data becomes increasingly accessible, the 

capabilities of machine learning expand, reshaping conventional perceptions of 

computational abilities. This dynamic field remains a focal point of research, offering 

vast potential for innovation and improvement across multiple sectors. 

In the contemporary economy, characterized by a pressing need for sustainable 

development, the assessment of soil suitability emerges as a pivotal component of 

strategic planning in agriculture and environmental conservation (Kieliszek, 2017). 

This task is complicated by numerous factors, including soil attributes, climatic 

conditions, technological advancements, and consumer preferences. Addressing this 

multifaceted and dynamic challenge, non-parametric learning methods, such as multi-

criteria decision analysis (MCDA), stand out as potent tools for organizing and 

analyzing data (Bashmur, 2023). 
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MCDA algorithms facilitate the formalization and classification of diverse 

agricultural aspects, empowering decision-makers to comprehend the interplay 

between different criteria and optimize processes (Kieliszek et al., 2017). They enable 

stakeholders, including farmers and policymakers, to sustainably manage production, 

ensuring the provision of safe and high-quality food. 

Agricultural soils play a pivotal role in this intricate system, serving as a nexus 

for various pressures, including climate change, population growth, and escalating 

food demand (Doran, 1994). Science-based and user-friendly tools are imperative for 

making informed decisions regarding agricultural land use and soil quality 

management (Schwilch, 2011). 

This paper explores the effective utilization of non-parametric learning methods 

in soil suitability assessment within the contemporary economic landscape. It 

elucidates how these methodologies contribute to informed decision-making in 

agriculture, pivotal for advancing sustainable development objectives and 

safeguarding food security. Furthermore, it outlines how the formulation and testing 

of hypotheses guide the development of predictive models aimed at addressing the 

complexities of soil drought suitability assessment. Subsequently, we present 

hypotheses aimed at determining a more cost-effective and accessible model for 

predicting soil drought suitability in expert systems. 

2. Review of literature 

Soil quality is defined as “the ability of the soil to function within the boundaries 

of an ecosystem, support biological productivity, maintain environmental quality, and 

contribute to plant, animal, and human health” (Karlen et al., 1997). The physical 

quality of agricultural soil primarily pertains to its suitability for cultivation, as well 

as the fluid transmission and storage characteristics of the crop root zone (Topp et al., 

1997). 

Several conceptual frameworks have been proposed in recent studies for 

monitoring soil quality (Alawi, 2022). These frameworks select soil characteristics 

from a minimum data set based on their suitability to assess specific soil functions 

(Andrews et al., 2004). However, the cost and labor intensiveness of standard 

procedures for monitoring all soil quality indicators across different areas and land 

management types remain significant challenges (Cecilion, 2009). Relevant soil 

physical indicators play a crucial role in determining soil quality status as they reflect 

the soil’s capacity to store and provide water, air, and nutrients necessary for crop 

growth (Malek et al., 2018). 

The combined influence of soil characteristics, such as nutrient content, moisture 

level, and drought tolerance, determines soil suitability for vegetation growth under 

drought conditions. New machine learning (ML) methods and algorithms are 

increasingly applied to automate soil classification processes, aiming to reduce time 

and cost expenditures (Robertson, 2016). For instance, a recent study from Turkey and 

Korea identified decision tree (CART) classification as the most successful among 

various classifiers, significantly reducing the time and cost of soil classification 

(Aydin et al., 2023). 
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Furthermore, studies discussing the suitability of soil classification and analysis 

highlight the importance of planting trees in appropriate areas. For example, research 

on the distribution of natural and anthropogenic forests in the Yanhe River Basin 

revealed mismatches between forest planting locations and environmental conditions, 

resulting in low-productivity forests (Shi et al., 2016). Other studies emphasize the 

potential of machine learning approaches in improving soil property prediction 

accuracy (Trontelj and Chambers, 2021). Additionally, the estimation of 

evapotranspiration using deep learning techniques aids in real-time irrigation 

management, enhancing water resource utilization in agriculture (Mohan and Patil, 

2018; Sokolov et al., 2023). 

In the realm of big data and ML technologies in agriculture, Hadoop and Apache 

Spark emerge as prominent tools for data processing and analysis (Cravero et al., 2022; 

Pandya et al., 2020; Sitokonstantinou et al., 2020). ML models, such as CatBoost, have 

proven accuracy and effectiveness in various applications, including predicting school 

performance and disease diagnosis (Bharati, 2022; Chen and Ding, 2023). The 

CatBoost model, introduced by Yandex engineers in 2017, utilizes gradient-boosted 

decision trees to handle noisy data and complex relationships (Prokhorenkova et al., 

2018). 

Moreover, ML-based intelligent diagnosis systems, employing classifiers like 

random forests and support vector machines, demonstrate high accuracy in diagnosing 

complex disorders such as polycystic ovary syndrome (Danaei Mehr and Polat, 2022; 

Tiwari et al., 2022). Ensemble approaches, including the BorutaShap method and 

random forest models, are effective in identifying significant clinical markers for 

disease diagnosis (Silva et al., 2022). 

Other applications of ML and data analysis techniques include the analysis of 

road accidents, determination of gas dynamic characteristics in coal mine facilities, 

and prediction of load measurements in software and hardware systems (Kukartsev et 

al., 2022; Martyushev et al., 2023; Masich et al., 2022; Shutaleva et al., 2023). 

Ensemble approaches, particularly those incorporating neural network models, are 

recognized as powerful tools for solving data analysis problems across various 

practical applications (Panfilova et al., 2022). 

Assessing soil suitability holds paramount importance from an economic 

perspective due to its direct implications on agricultural productivity, resource 

allocation, and environmental sustainability. A thorough understanding of soil quality 

and its impact on crop yield helps optimize resource utilization, minimize input costs, 

and maximize profits for farmers and stakeholders in the agricultural sector (Andrews 

et al., 2004; Karlen et al., 1997). Moreover, soil suitability assessment plays a pivotal 

role in land use planning, ensuring efficient allocation of arable land and mitigating 

risks associated with soil degradation and erosion, which can have significant 

economic repercussions (Cecilion, 2009; Malek et al., 2018). By integrating economic 

considerations into soil suitability assessment, policymakers and agricultural 

practitioners can make informed decisions regarding land management practices, 

investment strategies, and policy interventions aimed at promoting sustainable 

agricultural development and food security (Aydin et al., 2023; Robertson, 2016). 

Therefore, the literature review in this manuscript seeks to elucidate the economic 

dimensions of soil suitability assessment and identify gaps in existing research to pave 
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the way for the development of cost-effective and economically viable predictive 

models. This integration of economic factors into soil suitability assessment not only 

facilitates better resource management but also contributes to long-term agricultural 

sustainability and food security, aligning with broader socioeconomic development 

objectives (Aydin et al., 2023; Karlen et al., 1997). 

In summary, the literature review presented underscores the multifaceted nature 

of soil suitability assessment, emphasizing its economic significance. Studies such as 

those by Karlen (1997) and Aydin (2023) demonstrate the potential benefits of 

constructing predictive models for soil suitability assessment, highlighting the 

opportunities to optimize resource allocation, minimize input costs, and maximize 

agricultural productivity. These insights emphasize the urgency of developing 

advanced predictive models to address contemporary agricultural challenges 

effectively. 

By examining existing research findings and identifying areas requiring further 

investigation, this review aims to provide insights for the development of robust and 

economically viable approaches to soil suitability assessment. Such models not only 

have the potential to enhance agricultural sustainability but also contribute to the 

broader goals of ensuring food security and promoting socioeconomic development. 

With these considerations in mind, the subsequent section delves into hypotheses 

aimed at guiding the formulation and testing of predictive models for soil suitability 

assessment. 

Hypotheses: 

1) Factors related to laboratory soil tests (such as root condition, nutrient 

availability, soil toxicity) may pose the greatest challenge in data collection, yet they 

could be crucial for accurate forecasting of soil suitability for cultivation. 

2) Data concerning terrain features and landscape characteristics (e.g., slope and 

aspect of the terrain) are publicly available and collected by various organizations for 

their own purposes, making them more accessible and less resource-intensive for use 

in soil suitability assessment models. 

3) Data on land use assessment in the county (e.g., assessment of land area, crops, 

and water bodies) may be accessible through models such as PLUS, providing high 

accuracy and tools for analyzing land use evolution in regions. 

These hypotheses are proposed to determine a more cost-effective and accessible 

model for predicting soil drought suitability in expert systems. 

3. Materials and methods 

The soil classification dataset used in this study contains records derived from 

U.S. area-wide drought monitoring, manually created by experts using a wide range 

of data (Fischer et al., 2008). These data were obtained from the NASA Langley 

Research Center (LaRC) POWER Project funded through the NASA Earth 

Science/Applied Science Program. The U.S. Drought Monitor is produced through a 

partnership between the National Drought Mitigation Center at the University of 

Nebraska-Lincoln, the United States Department of Agriculture, and the National 

Oceanic and Atmospheric Administration. Training and testing of the exploratory 

analysis model were conducted using deductor studio. 
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The main objective of the study was to identify factors influencing soil suitability 

for cultivation under drought conditions. Data object classification, a data mining and 

value management technique used to group similar data together, was used to conduct 

the study and identify new factors influencing soil suitability for cultivation under 

drought conditions. 

This study uses the Deductor analytical platform, which is the basis for creating 

comprehensive application solutions (Kolenchukov et al., 2022). It is also worth 

noting that the version of the Deductor platform is a training version, which 

severalfold limits the possibility of data customization and thus leads to a high error 

rate and incorrect data display. 

A decision tree is a tree-like structure similar to a flowchart (Bukhtoyarov, 2022; 

Vlasov et al., 2022). In this algorithm there is an automatic selection of features to the 

nodes from the set of features, construction of decision rules in a form understandable 

to the expert (Priyam et al., 2013). 

The database comprises 29 indicators across 3109 FIPS counties in the USA, 

encompassing various aspects such as geographical coordinates (latitude and 

longitude), mean elevation, slope measurements (in different ranges), aspect direction 

(North, East, South, West), qualitative assessments of water bodies (WAT_LAND), 

infertile land (NVG_LAND), urbanization (URB_LAND), vegetation presence 

(GRS_LAND, FOR_LAND), cultivated land (CULTIR_LAND, CULT_LAND), and 

soil quality parameters (SQ1-SQ7). These parameters encompass factors like soil 

nutrient availability, retention capacity, root conditions, oxygen availability for roots, 

salt excess, soil toxicity, and overall suitability for plant growth. Each parameter is 

assigned a numerical value ranging from 0 to 7, reflecting its respective condition or 

suitability level. 

For instance, the SQ1 parameter represents soil nutrient availability, with values 

ranging from 0 (no nutrients) to 7 (full nutrient availability). Similarly, SQ2 indicates 

soil nutrient retention capacity, SQ3 denotes conditions required for rooting and 

vegetation growth, SQ4 signifies oxygen availability for roots, SQ5 measures salt 

excess in soil, SQ6 evaluates soil toxicity, and SQ7 assesses the suitability of soil for 

plant growth, ranging from 0 (not suitable) to 7 (highly suitable). 

These indicators collectively provide comprehensive insights into the soil 

characteristics and environmental conditions of each county, facilitating the 

assessment of soil suitability for various agricultural purposes. 

Statistical data mapping Figure 1 was generated from the raw data. 

Before starting to work with a dataset, processing is necessary to achieve the best 

sampling conditions. This process is called data normalization. At the data 

normalization stage, outliers and extreme values were edited. The method of data 

processing was chosen to fill in the average value. It was also necessary to fill in the 

missing data, filling occurred for parameters where the pass exceeded 30%. The 

method was chosen as a fill equal to the median of the values. This method allows you 

to insert the average of the input value instead of the missing data. 
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Figure 1. Displaying sample statistics for each parameter in the dataset. 

The next step was to configure the decision tree parameters separately for each 

model. The dataset was divided into 95% of the training set and 5% of the test set. 

The data processing setup steps were followed by training and visualization of 

the results. 

It is worth mentioning, before proceeding to the results, what correlation analysis 

of data is. 

Correlation analysis is a statistical method used to study the relationship between 

two or more variables. It helps to determine if there is a statistically significant 

relationship between these variables and what the strength of this relationship is. 

Correlation analysis uses a correlation coefficient that measures the degree of 

linear dependence between variables. The correlation coefficient can take values from 

−1 to 1. A value close to 1 indicates a strong positive correlation, whereas a value 

close to −1 indicates a strong negative correlation. A value close to zero means there 

is no correlation. 

4. Results 

Correlation analysis was used to determine the quality of the data set. At the stage 

of correlation analysis, the Pearson correlation coefficient was used. 

Using the Pearson correlation coefficient, it is possible to determine the strength 

and direction of the linear relationship between two processes occurring 

simultaneously and without taking into account the time lag. The value of the 

correlation parameter indicates the strength of dependence of one factor on another. 

Such values are categorized into weak (less than 0.29), moderate (0.3–0.49), medium 

(0.5–0.69) and strong (0.7 or more). From the correlation analysis, it is evident that 

the grade data for the first and second periods of training have a strong correlation 

with the output parameter. This analysis allowed us to remove attributes whose 

significance is less than 0.05, i.e., they have weak dependence. 

Correlation analysis of the data was used to identify the extent to which a factor 

was influenced by the output data (Table 1). 

Using correlation, factors that were directly dependent on the soil suitability 

index and factors that were inversely dependent on the soil suitability index were 

identified. The factors that were directly dependent were: root condition, soil toxicity, 

salt excess, oxygen availability to roots, ability to retain nutrients in the soil, indicator 
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of water bodies, and nutrient availability. 

Let us start by describing the Decision Tree method. The model is built taking 

into account the correlation analysis given in Table 1. 

Table 1. Correlation analysis, the output parameter SQ7 is suitability for growing 

plants in the soil (workability). 

NO. Attribute name Correlation, % Graph as a percentage 

1 The state of the roots 0.958  

2 Soil toxicity 0.876  

3 Excess salts 0.863  

4 Oxygen availability for roots 0.763  

5 Ability to retain nutrients in the soil 0.715  

6 Indicator of water bodies 0.672  

7 Nutrient availability 0.571  

8 Total area of cultivated land in the district −0.191  

9 Evaluation of cultures −0.178  

10 Slope 2 −0.163  

11 Slope 7 0.114  

12 Slope 8 0.101  

13 Slope 6 0.089  

14 Aspect −0.086  

15 Slope 4 −0.070  

16 Slope 1 −0.065  

17 Assessment of land cultivation −0.063  

18 Aspect −0.060  

19 Aspects −0.057  

20 Aspects −0.048  

21 Slope 5 0.039  

22 Assessment of infertility of the district 0.038  

23 Average altitude above sea level 0.035  

24 Width 0.029  

25 
Assessment of the presence of forests in 

the district 
−0.019  

26 
Assessment of the presence of vegetation 

in the district 
−0.012  

27 Assessment of urbanization in the district 0.011  

28 Longitude −0.001  

After adjustments, a model was obtained that is several times superior to the 

models built by the Kohonen Maps and Neural Network methods, as the error of our 

model was only 1.19%. The following methods were chosen to describe the results: 

conjugacy table, attribute significance table and decision tree, Figures 2 and 3, Table 

2. 
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Figure 2. Decisive rules for the distribution of attributes by the decision tree. 

 
Figure 3. Conjugacy table and description of the error of the constructed model. 

Table 2. Significance of attributes, the output parameter SQ7 is suitability for growing plants in the soil (workability). 

Attribute Significance, % 

Indicator of the state of the roots 54.066 

Indicator of the availability of nutrients in the soil 34.554 

Slope 1 3.052 

Slope 3 2.457 

Indicator of oxygen availability for roots in the soil 1.751 

Slope 4 1.238 

Aspect 1.033 

Assessment of land cultivation in the district 0.597 

Assessment of the total area of cultivated land in the district 0.531 

Slope 6 0.409 

Aspect 0.177 

Slope 8 0.134 

Indicator of excess salts in the soil 0 

Indicator of soil toxicity 0 

Indicator of the ability to retain nutrients by the soil 0 

Aspects 0 

Slope 7 0 

Assessment of crops in the district 0 

Assessment of water bodies in the district 0 

Indicator of the state of the roots  54.066 

Indicator of the availability of nutrients in the soil 34.554 

Slope 1 3.052 

Slope 3 2.457 

Indicator of oxygen availability for roots in the soil 1.751 

Slope 4 1.238 

Aspect 1.033 
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The attribute significance visualizer allows you to determine the significance of 

the output variables. Based on the table, it could be concluded that the following 

attributes are significant: root condition indicator, soil nutrient availability indicator 

and slope (2% ≤ slope ≤ 5%). Further, the obtained models can be applied to the test 

sets taking into account the possible error percentage. 

Since the factors in the constructed model vary in terms of their practical 

applicability and overall monetary value, it was decided to separate the factors 

according to their characteristics and practical applicability if such a model were to be 

applied with other datasets to predict soil suitability for cultivation under drought 

conditions. 

In Table 2, there are 19 factors that can be divided into several programmed 

groups to determine a cheaper and more accessible use of the model in expert systems. 

The missing factors were excluded in the correlation analysis step. A detailed 

explanation of each factor is given in the materials and methods section. 

Group 1 (Indicator of the state of the roots, Indicator of the availability of 

nutrients in the soil, Indicator of excess salts in the soil, Indicator of soil toxicity, 

Indicator of the ability to retain nutrients by the soil), the factors in which refer to 

laboratory tests, such data are the most difficult to collect, requiring appropriate soil 

samples in each area. 

The next group, number 2 (Slope 1, Slope 3, Slope 4, Aspect W, Slope 6, Aspect 

E, Slope 8, Slope 7), consists of data on the slopes and terrain aspects of the area where 

the soil is located, such data being publicly available and collected by various 

organizations for their own purposes. 

The final group 3 (Assessment of land cultivation in the district, Assessment of 

the total area of cultivated land in the district, Assessment of crops in the district, 

Assessment of water bodies in the district) consists of land valuation data in the county, 

such data can also be found, for example, with the PLUS model, which provides 

support for a highly accurate study of the evolution of land use areas. The PLUS model 

is a new and improved CA (cellular automata) model based on the FLUS model. It 

combines a new strategy for analyzing land use expansion and a CA model based on 

multi-class random seeded areas. You can also find such data with a narrow appeal to 

an organization in a particular area where such data is collected for crop statistics etc. 

In the first group there are such factors as indicator of root condition, indicator of 

nutrient availability in soil, indicator of oxygen availability for roots in soil, indicator 

of excess salts in soil, indicator of soil toxicity, indicator about the ability of soil to 

retain nutrients. 

The decision tree was constructed considering the correlation analysis shown in 

Table 1. Its description is presented using visualizers: decision tree, contiguity table 

and attribute significance table, Figures 4 and 5, Table 3. 
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Figure 4. Decisive rules for the distribution of attributes by the decision tree of 

group No. 1. 

 
Figure 5. Conjugacy table and description of the error of the constructed model for 

group No. 1. 

Table 3. Significance of attributes for group No. 1. 

Attribute Significance, % 

Indicator of the state of the roots 59.1 

Indicator of the availability of nutrients in the soil 37.9 

Indicator of oxygen availability for roots in the soil 2.93 

Indicator of soil toxicity 0.065 

Indicator of excess salts in the soil 0 

Indicator of the ability to retain nutrients by the soil 0 

In the first group, there are factors such as root condition indicator, soil nutrient 

availability indicator, soil oxygen availability indicator for roots in soil, soil salt excess 

indicator, soil toxicity indicator, soil nutrient retention capacity indicator. 

Based on the obtained data, the error of the constructed model was 3.02%, and 

the most significant factor in such a model is the root condition indicator. 

In the second group there are such factors as slope 1, slope 3, slope 4, aspect, 

slope 6, slope 8, slope 7, aspects. 

The decision tree is constructed considering the correlation analysis shown in 

Table 1. Its description is presented using visualizers: decision tree, conjugacy table 

and attribute significance table, Figures 6 and 7, Table 4. 
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Figure 6. Decisive rules for the distribution of attributes by the decision tree of 

group No. 2. 

 
Figure 7. Conjugacy table and description of the error of the constructed model for 

group No. 2. 

Table 4. Significance of attributes for group No. 2. 

Attribute Significance, % 

Aspect 24.015 

Slope 7 16.765 

Slope 6 15.082 

Aspects 14.263 

Slope 1 10.329 

Slope 8 9.369 

Slope 3 7.335 

Slope 4 2.843 

Based on the obtained data, the error of the constructed model was 11.77% and 

the most significant factor in such model is aspects. 

The third group includes such factors as assessment of cultivated land in the 

district, assessment of total cultivated land in the district, assessment of crops in the 

district, assessment of water bodies in the district. 

The decision tree is constructed considering the correlation analysis given in 

Table 1. Its description is presented using visualizers: decision tree, contiguity table 

and attribute significance table, Figures 8 and 9, Table 5. 



Journal of Infrastructure, Policy and Development 2024, 8(7), 4074.  

12 

 
Figure 8. Decisive rules for the distribution of attributes by the decision tree of 

group No. 3. 

 
Figure 9. Conjugacy table and description of the error of the constructed model for 

group No. 3. 

Table 5. Significance of attributes for group No. 3. 

Attribute Significance, % 

Assessment of water bodies in the district 95.817 

Assessment of land cultivation in the district 2.994 

Assessment of crops in the district 1.190 

Assessment of the total area of cultivated land in the district 0 

Based on the obtained data, the error of the constructed model was 14.15%, and 

the most significant factor in such model is the assessment of water bodies in the 

district. 

5. Discussion 

In general, our model turned out to have an error of only 1.19%, but it is a very 

expensive model and requires huge resource costs for its operation, so during the 

experiment, 3 more models were proposed, consisting not of their 29 factors, but much 

less. The models were built based on the input parameters combined according to 

different practical characteristics. The details are summarized in Table 6. 

Thus, model No. 1 has the lowest error of 3.02%. The most significant parameter 

is the root condition parameter, but it is the most expensive model as mentioned in the 

experimental part.  

Model No. 2 has an error of 11.77%, the most significant parameter is aspect C. 

This model is much cheaper than the first model because data collection for this model 

is much cheaper and less labour intensive. 

Model No. 3 has the largest error of all three models, namely 14.15%, the most 

significant parameter is the assessment of water bodies in the district, it is worth noting 

that this parameter can only be used in predicting land suitability under drought 

conditions, data collection using modern technology is quite easy. 
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Table 6. Correlation analysis. 

Attribute 
Model No. 1 Model No. 2 Model No. 3 Correlation analysis 

Significance, % Significance, % Significance, % Correlation value 

Indicator of the state of the roots 59.100 - - 0.958 

Indicator of soil toxicity 0.065 - - 0.876 

Indicator of excess salts in the soil 0 - - 0.863 

Indicator of oxygen availability for roots in the soil 2.943 - - 0.763 

Indicator of the ability to retain nutrients by the soil 0 - - 0.715 

Assessment of water bodies in the district - - 95,817 0.672 

Indicator of the availability of nutrients in the soil 37.901 - - 0.571 

Total area of cultivated land in the district - - 0 −0.191 

Assessment of crops in the district - - 1.190 −0.178 

Slope 7 - 16.765 - 0.114 

Slope 8 - 9.369 - 0.101 

Slope 6 - 15.082 - 0.089 

Aspect - - - -0.086 

Slope 3 - 7.335 -  

Slope 4 - 2.843 - −0.070 

Slope 1 - 10.329 - −0.065 

Assessment of land cultivation in the district - - 2.994 −0.063 

Aspect - 24.015 - −0.060 

Aspects - 14.263 - −0.057 

Aspects - - - −0.048 

Slope 5 - - - 0.039 

Assessment of infertility of the district - - - 0.038 

Average altitude above sea level - - - 0.035 

Width - - - 0.029 

Assessment of the presence of forests in the district - - - −0.019 

Assessment of the presence of vegetation in the 

district 
- - - −0.012 

Assessment of urbanization in the district - - - 0.011 

Longitude - - - −0.001 

However, despite some success of the developed models, it is important to 

recognize certain limitations. First, the high resource costs associated with the model 

create practical difficulties for widespread implementation. In addition, the complexity 

of collecting data on certain features, such as laboratory tests of soil properties, 

increases operating costs and feasibility problems. 

In light of these limitations, future research endeavors should focus on optimizing 

model performance while minimizing resource requirements. Strategies such as 

feature selection and data augmentation could help streamline the model development 

process and enhance cost-effectiveness. Additionally, exploring alternative modeling 

approaches and integrating advanced technologies could offer new avenues for 

improving soil suitability assessment under drought conditions. 
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6. Conclusion 

The In this study, we aimed to identify the factors influencing soil suitability for 

cultivation under drought conditions and propose more cost-effective and accessible 

models for predicting soil suitability in expert systems. Our findings shed light on the 

significance of different variables in predicting soil suitability and offer insights into 

the practical application of these models in agricultural decision-making. 

Our analysis revealed several key findings: 

1) Model selection: Our results indicate that decision tree models outperform 

other methods in forecasting land suitability under drought conditions. Furthermore, 

we observed that subsequent models built upon the initial decision tree model exhibit 

varying levels of accuracy and resource requirements. Model No. 1, albeit the most 

accurate, demands substantial resources for data collection, while Model No. 3 

presents a more practical approach with slightly higher error rates but minimal 

resource expenditure. 

2) Variable significance: Laboratory soil tests, including root condition, nutrient 

availability, and soil toxicity, emerged as critical factors influencing soil suitability. 

Despite the challenges associated with data collection for these variables, their 

inclusion is vital for accurate forecasting. 

3) Accessibility of terrain data: Terrain features and landscape characteristics, 

such as slope and aspect, proved to be readily available from existing datasets 

maintained by various organizations. Leveraging these publicly accessible data sets 

can significantly reduce the resource intensity of soil suitability assessment models. 

4) Utility of land use assessment data: Data on land use assessment, including 

land area, crops, and water bodies, offer valuable insights into soil suitability. Models 

like PLUS provide a robust framework for analyzing land use evolution and can 

enhance the accuracy of soil suitability predictions. 

In conclusion, our study underscores the importance of considering both the 

accuracy and resource requirements of soil suitability assessment models. By 

strategically selecting variables and leveraging publicly available data sets, 

researchers and policymakers can develop more cost-effective and accessible models 

for predicting soil suitability, thereby facilitating sustainable agricultural practices and 

enhancing food security. 

Furthermore, our findings contribute to the ongoing discourse on climate-resilient 

agriculture and underscore the need for comprehensive development programs to 

support the adoption of environmentally sustainable farming practices. Future research 

endeavors should focus on refining existing models, incorporating additional variables, 

and evaluating their performance across diverse geographic regions to ensure the 

scalability and applicability of soil suitability assessment frameworks. 

In article (Rahman et al., 2021) underscores the critical importance of implementing 

climate-optimized soil treatments in agricultural practices to mitigate the adverse 

effects of climate change and promote sustainable agriculture. Similarly, our study 

emphasizes the need for cost-effective and accessible models for predicting soil 

suitability under drought conditions, aligning with the broader goal of enhancing 

agricultural sustainability. 
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In light of the identified research gaps and the evolving landscape of agricultural 

sustainability, future studies should explore innovative methodologies, leverage 

emerging technologies, and foster interdisciplinary collaborations to advance our 

understanding of soil suitability dynamics and inform evidence-based policymaking 

in agriculture. By integrating insights from diverse fields such as climatology, 

agronomy, and data science, researchers can develop holistic approaches to address 

the complex challenges facing modern agriculture and promote resilient and 

sustainable food systems. 
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