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ABSTRACT

Flood risk analysis is the instrument by which floodplain and stormwater utility managers create 
strategic adaptation plans to reduce the likelihood of flood damages in their communities, but 
there is a need to develop a screening tool to analyze watersheds and identify areas that should 
be targeted and prioritized for mitigation measures. The authors developed a screening tool that 
combines readily available data on topography, groundwater, surface water, tidal information for 
coastal communities, soils, land use, and precipitation data. Using the outputs of the screening 
tool for various design storms, a means to identify and prioritize improvements to be funded with 
scarce capital funds was developed, which combines the likelihood of flooding from the screening 
tool with a consequence of flooding assessment based on land use and parcel size. This framework 
appears to be viable across cities that may be inundated with water due to sea-level rise, rainfall, 
runoff upstream, and other natural events. The framework was applied to two communities using the 
1-day 100-year storm event: one in southeast Broward County with an existing capital plan and one 
inland community with no capital plan.
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1. Introduction

Flooding can impact a community’s social, cultural, environmental, 
and economic resources, and so making sound, science-based, long-
term decisions to improve resiliency are critical for future prosperity 
and growth. To meet the longer-term goals to protect life and property, 
in 1990 the Federal Emergency Management Agency (FEMA) created 
the National Flood Insurance Program’s (NFIP) Community Rating 
System (CRS), a voluntary program for recognizing and encouraging 
community floodplain management activities. Nearly 3.6 million 
policyholders in 1,444 communities participate in the CRS program, 
but this is only 5% of the over 22,000 communities in the United States 
participating in the NFIP (FEMA, 2017).
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Under the CRS program, flood insurance premium rates are 
discounted to reward community actions that (1) reduce flood damage 
to insurable property, (2) strengthen and support the insurance aspects 
of the NFIP, and (3) encourage a comprehensive approach to floodplain 
management. The Florida Division of Emergency Management (FDEM) 
reported that in 2019, there were 1.73 million policies in Florida, which 
comprised one-third of all policies nationwide. FDEM believes that 
the development of watershed master plans would improve the safety 
of the public, reduce property losses, limit economic disruption, and 
save $60 million in annual flood insurance premiums. The savings 
were determined based on a table for discounts provided in the CRS 
Coordinator’s Manual (FEMA, 2018).

One of the key aspects of developing a watershed master plan 
involves defining flood risk due to compounding hydrographic 
influences. To evaluate risk, a spatial screening tool that addresses 
flooding is required. The concept of a screening tool relies on 
geographical information system (GIS) data, Light Detection and 
Ranging (LiDAR) data, groundwater levels, tidal and surface water 
levels, available soil storage, land cover, available stormwater 
infrastructure, and rainfall amounts. The screening software’s simulation 
runs can provide data to create risk contours that are useful for 
predicting flooded areas after heavy rains. 

The screening tool conceptually depicted in Figure 1 was built on 
prior works by Bloetscher and Wood (2016), Bloetscher and Romah 
(2015), Wood Jr. (2016), E Sciences (2014), Romah (2011), and Zhang 
et al. (2020). Romah (2011) and Wood Jr. (2016) defined flood risk 
using LiDAR and groundwater measurements on a given day, with 
the requisite high tides on that day. However, in all the references 
noted, the focus was on sea-level rise. Each demonstrated that low 
relief coastal areas may see increased flood risk due to increasing sea 
levels. The screening tool, refined here, would predict how areas with 
low elevations may be affected by inundation in three ways: 1) from 
direct surface flooding, 2) from rising groundwater levels, and 3) from 
the inability of inland areas to drain. This was an improvement over 
Overpeck and Weiss (2009), who used a bathtub model, which did not 
account for the fact that groundwater levels generally increase as the 
distance from the coast increases (Chang et al., 2011; Romah, 2011; 
Bloetscher et al., 2012). Romah (2011) found a 1:1 relationship between 
tidal rise and groundwater levels using the methodology described 
in Chang et al. (2011). This was confirmed for barrier islands in the 
E Sciences (2014) report, which also predicted flood risk profiles for 
Miami Beach, Florida, and identified the 99th percentile as the critical 
time, corresponding to four flooding events per year. 
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Catastrophic flooding should be expected during heavy rain events if there is nowhere for 
the runoff to go. The vulnerability of infrastructure will require the design of more resistant and 
adaptive infrastructure and network systems. This will, in turn, involve the development of new 
performance measures to assess the ability of infrastructure systems to withstand flood events, 
and to enhance resilience standards and guidelines for the design and construction of facilities. 
Specifically, considerations include retrofitting, material protective measures, rehabilitation and, 
in some cases, the relocation of facilities to accommodate sea-level rise impacts. As groundwater 
and sea-level rise are related, groundwater is, similarly, expected to have a significant impact on 
flooding in low-lying areas as a result of the loss of soil storage capacity. Evapotranspiration in low-
lying areas with high groundwater will become more important, which is why ecologically-based 
stormwater management that employs natural native vegetation will become more important over 
time in certain communities.

Ultimately, the goal of identifying areas that are vulnerable to flooding is to develop tools for 
increasing community resistance to flood and climate risk (resilience). However, there are a series of 
challenges that impact the implementation of solutions that involve economics, political influence, 
and critical structures. As a result, communities may pursue localized solutions across the service 
areas, as opposed to targeted solutions with broader community benefits. These solutions are often 
unequally distributed across sectors and communities (Makondo and Thomas, 2018; Matin et al., 
2018), leading to outcomes where only certain sectors benefit (Anguelovski et al., 2016). Global 
trends in urbanization suggest challenges arise in communities with higher levels of poverty, 
unemployment or lack of job prospects, or income disparity (Williams et al., 2019), whereby 
the distribution of equitable solutions is particularly skewed toward the politically powerful and 
wealthy when adaptation plans and actions are primarily assessed through the prism of economic 
and/or financial viability (Shi et al., 2016; Anguelovski et al., 2016; Rice et al., 2020; Shokry et 
al., 2020). For example, in Miami-Dade County, researchers found that adaptation had a positive 
effect on property values (Keenan et al., 2018), which increased the value of properties (and rents) 
and in turn displaced large numbers of vulnerable populations. In Australia, wealthy residents who 
prefer waterfront living pressured local governments to protect coastal zones first, as opposed to the 
protection of essential services and at-risk communities with few options to relocate (Torabi et al., 
2018). The focus of adapting only economically important assets can also divert policy attention 
away from general social equity and urban sustainability priorities (Chu, 2016; Blok, 2020). 

Scoville-Simonds, Jamali, and Hufty (2020) found that requiring only minor modifications 
of current infrastructure to meet adaptation goals perpetuates development-as-usual, since new 
developments do not incorporate resilience in their design, requiring the public sector to address 
these omissions at a later date (Granberg and Glover, 2014). Municipal adaptation plans do not 
always deliver effective outcomes, and implemented actions often diverge from adaptation plans 
as a result of the insistence to identify cost-benefits, which can work against solutions in at-risk 
communities where the community is undervalued. As a result, adaptation plans, policies, or actions 
can erode the current resiliency of at-risk communities, thereby increasing community vulnerability 
(Juhola et al., 2016; Neset et al., 2019). Instead, more targeted protection can support better long-
term transformations toward more sustainable, adaptive, and resilient societies (Adger et al., 2014; 
Hallegatte et al., 2016; Béné et al., 2018; Carter and Janzen, 2018; Shi et al., 2018). 

The goal of this paper is to take advantage of the flood risk modeling efforts undertaken by 
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Bloetscher and Wood (2016), Bloetscher and Romah (2015), Wood Jr. (2016), E Sciences (2014), 
Romah (2011), and Zhang et al. (2020) to identify 1) the potential options for improvements to 
reduce flooding, and 2) the prioritization of where these improvements should be undertaken, while 
addressing the potential for inequities caused by the political process.

2. Methodology

For the purpose of identifying potential areas where flood risk is present concurrently with 
critical facilities, two areas were selected. The first was Broward County, Florida, which is a 
relatively flat, densely developed coastal community of nearly two million people that includes the 
City of Fort Lauderdale. The area experiences king tides, coastal flooding, tropical weather, and 
rainfall-driven flooding. The incidence of flooding events appears to be increasing with time. The 
second community was the City of Clewiston, which is an inland municipality of 7,000 people 
located on the south side of the Herbert Hoover Dike that surrounds Lake Okeechobee in Hendry 
County, a sparsely populated area of mainly agricultural enterprises. Like Broward County, the area 
is relatively flat but is over 70 miles from either coast. Both communities provide critical services 
to residents, rely on state roadways for commerce, and contain commercial development, as well as 
vulnerable communities. Data for screening the communities for flood risk were also available from 
a variety of databases (refer to Zhang et al. (2020) for more details).

To inform an effective framework for creating or updating watershed master plans, pertinent 
information and technical data were gathered from appropriate sources. For example, groundwater 
table elevations and surface water gages were obtained from the regional water management 
districts, tidal information for coastal areas was obtained from the National Oceanic and 
Atmospheric Administration (NOAA), soil maps were obtained from the USDA, and topographic 
LiDAR data was obtained from various sources. The design storms for calculation purposes were 
the 3-day 25-year storm, which is the standard used by the South Florida Water Management 
District (SFWMD), and the 1-day 100-year storm used by FEMA and other water management 
districts. Figure 1 outlines the data used in the screening tool and how they were combined to 
analyze risk and vulnerability, which is needed for Community Rating System (CRS) crediting. 

Note that scaling is relevant. Localized infrastructure improvements in small subwatersheds will 
have more impact on the results than in larger watersheds. Hence, there is some degree of economy 
of scale—larger infrastructures will exert more influence on the screening model’s result compared 
with a single catch basin when analyzed at watershed scale. At the same time, at the neighborhood 
level, under-designed piping, which will not impact regional flood models, will be identified as 
failing to meet the level of service standard for the subwatershed and causing major flood concerns. 

After careful consideration, the researchers chose to use CASCADE 2001, which is a macroscale, 
multi-basin, spatial hydrologic/hydraulic routing model developed by SFWMD but is more widely 
applicable. For the model to work accurately, the basin boundaries must be chosen carefully. The 
model computes stormwater runoff from user-provided rainfall amounts, durations, and land use 
information and then routes the runoff through basins connected in series or parallel to outfalls. The 
program can compute simultaneous flows through more than one discharge control structures in a 
basin. The screening tool described here began with CASCADE 2001 as the flood response model 
to develop flood risk/hazard maps at 10m resolution, utilizing pertinent information and technical 
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data to create the input file. Specifically, groundwater table elevations and surface water levels 
were downloaded from the applicable water management district databases for the time period of 
2000 to 2018; tidal information for coastal areas was obtained from the NOAA Tides & Currents 
website (https://tidesandcurrents.noaa.gov); soil maps were obtained from the USDA database 
(FY2019 USDA Soil SSURGO gSSURGO, https://sdmdataaccess.nrcs.usda.gov); topographic data 
was obtained from the USGS (2016 South Florida flight); land cover was obtained from the 2009 
FLUCCS Level 1 land use (SFWMD - Florida Land Use Cover Classification System (FLUCCS), 
which is digitized by photo-interpretation on county-based aerial photography with varying 
resolution in the range of 0.3–2ft pixel; and stormwater infrastructure locations (gravity, pump, and 
gated spillways) were inputs (note that only regional infrastructures, such as dams and structures, 
were included in the watershed level modeling). The software required identifying the offsite 
receiving body and creates a glass box control volume where water rises to a certain level and then 
discharges. The simulation required defining the basin boundaries (HUC or sub-HUC), elevation 
data, initial groundwater table elevations taken as the 99th percentile (Zhang et al., 2020), longest 
travel time for runoff to reach the most distant point of discharge, and available water storage for 
a soil layer 0–150cm thick. The output dataset defined the flood level elevation for the basin in the 
GIS. In areas that flooded in the simulation, the same procedure was undertaken to re-run the model 
at a smaller scale to better resolve vulnerable areas. 

The headwater height output surface from the model was used to predict flood risk, defined as the 
probability of inundation based on ground elevation. Root mean square error (RMSE) computation 
was used as a means to assess the probability of flooding, which took into consideration the vertical 
accuracy error in the elevation datasets, which may vary depending on the available data spatial 
resolution (the 3m horizontal tiles provided +/- 4 inches of vertical accuracy) (Romah, 2011). The 
uncertainties associated with the digital elevation model’s (DEM) vertical accuracy, the estimated 
depths to the groundwater table, and the modeling approach itself were used to determine Z-scores 

Figure 1. Databases that contributed information layers in GIS and were integrated through modeling software to 
create the flood risk screening tool used in this paper.
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per the NOAA method (NOAA, 2010) as follows:

Probability of Inundation = Standard_Normal_CDF(Z-Score)

= (Headwater Height – LiDAR DEM Elevation) / 0.46

The value suggested by NOAA for coastal vulnerability assessments is 0.46 (NOAA, 2010). The 
Z-score for each location was then mapped directly in the GIS. For example, the value of Z for the 
75th percentile was 0.675. Thus, the value must be 0.675 standard deviations above the mean to be in 
the 75th percentile. The GIS layers were then classified into one of six bins with the cutoff Z-scores, 
as shown in Table 1. 

Once the probability of flooding was depicted on a map, the next step was to establish the 
consequence of risk factors associated with the potential loss of properties or assets. To help with 
defining areas that represented higher exposure, the following were suggested to represent the risk 
factors that relate to the consequence of flooding:

1. Critical facilities (water stations, sewers, public safety facilities, hospitals, schools, 
power plants): These essential service facilities are required to respond to emergencies and 
protect public health, safety, and welfare. Areas that include these facilities should be rated 
the highest.

2. Tier 2 critical facilities (groceries, pharmacies, roadways): These facilities are needed 
to sustain people by providing food, medications, and mobility access. These received the 
second-highest priority. Most are located along major roadways that act as access routes to a 
given community. Most roads are state-owned or county-owned.

3. Economic centers: These facilities were rated high in order to protect jobs, so that the 
community can keep the local economy flowing, while minimizing disruption to daily life. 

4. At-risk communities: The highest-rated residential communities involved at-risk people 
who have limited ability, financially or otherwise, to escape the impacts of flooding. These 
may include high-density developments, and so flooding will impact a larger number of 
people that may have health, food, age, and other limitations to adapt to flood conditions.

5. Other urban/suburban properties: Note that for residential properties, identifying at-
risk communities (income, age, disability, health) required a further drilldown to the 
neighborhood level (i.e., wealthy neighborhoods with few older, poor-health individuals 

Table 1. Z-score for GIS layers

Risk of Flooding Description Range of Corresponding Z-Scores
Below 10% Unlikely to be flooded < –1.282
10% ~ 25% Low risk From –1.282 to –0.675
25% ~ 50% Low-moderate risk From –0.675 to 0
50% ~ 75% Moderate-high risk From 0 to 0.675
75% ~ 90% High risk From 0.675 to 1.282
Above 90% Highest risk > 1.282
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would have a lower priority than at-risk communities, which generally have lower-value and 
denser housing developments).

6. Agriculture/public and vacant/undeveloped properties: These properties do not affect 
people. 

Most states have a standardized system for coding land uses, which is used for property appraisal 
and taxing purposes. These same codes can easily be used to assign properties to the priority 
tiers. However, identifying at-risk communities (income, age, disability, health) required a further 
drilldown to the neighborhood level, i.e., wealthy neighborhoods with few older individuals in poor 
health would have a lower priority than at-risk communities, which generally have lower-value and 
denser housing developments. In the latter case, more people are impacted, and those people have 
less ability to mitigate risks. The same is true for public properties (parks would be a lower priority 
than water treatment plants, etc.). 

Based on these priorities, the relative risk priority of the land use codes was evaluated based on 
a scale of 1 to 6, where 1 is most vulnerable and 6 is the least vulnerable. After assigning the land 
use priority tier to a property, it was converted to its inverse scale to obtain the consequence of risk 
factor by the following equation:

Consequence of risk factor = 7 – Department of Revenue Land Use Code Priority Tier

To evaluate flood vulnerability at the subwatershed scale or at the parcel (or local) level, the 
analysis started by converting the flood risk map to a binary flooding surface (0 = below 50% 
chance of flooding; 1 = 50% or higher chance of flooding on any part of a given parcel) based on 
the output from the screening tool for a specified design storm. All parcels in Tiers 1–4 that have 
greater than 50% chance of flooding during a particular design storm would have the percent of the 
parcel that would flood during that event, calculated to develop a priority risk score (see Table 2). 
Once all field data were included, the table was exported as a CSV file, which was converted into an 
Excel format. Then the percent of the parcel that is flooded during the specified design storm was 
calculated, and the rows were sorted to show the higher-priority tiers and higher percent-flooded 
values first. To reduce the number of critical facilities that might be on the priority list, a filter was 
created to show only critical facilities with 10% or more flooded areas in the parcel during the 
specified storm event (e.g., 3-day 25-year, 1-day 100-year storm, or 1-day 10-year events). 

The next step was to establish a scoring system, which consisted of Consequence of risk factor 
and Flood Risk factor for each project. Flood Risk factor relates to how frequently or likely the 
event that would put the community at risk will occur. For flood risk factor, we chose the percent 

Table 2. Flood percentages and risk factors used for determining capital project priority

Percent of Parcel Flooded Flood Risk Factor

90%–100% 6

80%–89% 5

70%–79% 4

60%–69% 3

50%–59% 2

<50% 1
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chance of flooding as derived from the Z-score described earlier, and for consequence of risk factor 
we chose the percent of the area flooded (Table 2). Although weighting is not necessary, decision-
makers may place a higher priority on one of the selection criteria. Thus, a weighting factor related 
to the level of importance assigned to each criterion can be applied: 75% of the importance is 
assigned to the consequence of flooding and 25% importance to flood risk to yield a composite 
score as follows:

Composite Score = Flood Risk Factor × 25% + Consequence of Risk Factor × 75%

For example, for a property in Tier 1 (consequence of risk = 6) with 15% of the parcel flooded 
during the design storm (flood risk factor = 1), the composite score would be:

1 × 25% + 6 × 75% = 4.75

The goal is to have the highest composite risk score. After this analysis, if the conclusion of the 
stakeholder group is that none of the identified vulnerable areas met the minimum threshold score, 
then none of the parcels will be added to the prioritized project list. If, however, some of them 
do meet the requirements established by the stakeholder group, then each parcel that does should 
qualify to be placed on the prioritized project list for capital improvements. The exact decision 
of the various implementation projects will vary from watershed to watershed, but this process 
should help to narrow down or identify those projects that should be prioritized for maximum effect 
with limited funds. This process is systematic and objective rather than subjective. However, it is 
ultimately up to the stakeholder group to assign the weights of the flood’s probability factor and the 

Figure 2. Menu of green and grey infrastructure technology options.
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consequence of risk factor, as well as the tie-breaker procedure and regional priorities, so that the 
process best meets the needs of the community and both upstream and downstream partners. 

To help develop solutions for the identified priority areas, a toolbox was developed that described 
a variety of strategies (n = 36) to improve potential flood management conditions. These include 
natural and nature-based features (NNBF) (Bridges et al., 2015). This menu of green and grey 
infrastructure technologies is shown in Figure 2 and was organized to address various flooding 
types, from pluvial (rainfall and runoff mitigation in upland areas), fluvial (runoff, high groundwater, 
and surface water management in low-lying flood-prone areas), tidal (flooding associated with storm 
surge and high groundwater and is tidally influenced), and all (applies across the spectrum). Each is 
site-specific, and most require significant engineering and planning to determine the most efficient 
configuration to achieve the community’s goals. Details for these elements, including their benefits 
and limitations, can be used by local officials to develop solutions to the areas identified as being at 
risk. Note that the elements in Figure 2 include whether the strategy is green (natural-system-based) 
infrastructures, gray (concrete/piping/urban) infrastructures, or policy-oriented. Policy decisions on 
implementation rest with cost-benefit analyses. 

3. Results

The method used to prioritize infrastructure solutions was applied to a subwatershed basin in 
southeastern Broward County, Florida. Figure 3 shows the flood risk assessment, utilizing the 
data and methods outlined in Figure 1. The right side of Figure 3 shows the critical-facility tiers 
superimposed on the flood risk map where critical infrastructure might be vulnerable, and therefore 
where the solutions from Figure 2 might be applied. 

The challenge at this scale was that so many needs and solutions were required. A drilldown 
is preferable, as more information would become visible and Tier 1 facilities can be readily 
identified (e.g., schools, water and wastewater plants, fire stations, hospitals, EMS facilities, police 
departments). However, if a series of projects that were proposed in the area were evaluated using 
the protocol to prioritize projects, Table 3 results. 

A similar strategy was applied to the community of Clewiston, Florida, which is located in 

Figure 3. Beach subwatershed flood risk map for 1-day 100-year storm event and critical infrastructure map. 
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eastern Hendry County. The eastern and northern portions of the city were identified by the 
screening tool as flood-prone (Figure 4). The darker shaded areas correspond to those properties 
that are flooded during the design storm evaluated, which in this case was a 1-day 100-year storm 
event (note that the large flooded areas on the northwest are farm fields that are not developed). 
Figure 5 highlights the locations of the Department of Revenue land use code Tier 1–4 facilities. 
Note that many of the commercial areas and portions of multi-family housing developments 
are located in the flood risk areas along US 27, a federal roadway connecting the Miami area 
to Orlando. Figure 5 suggests that certain critical infrastructures along this route (including the 
roadway itself) are vulnerable during the 1-day 100-year storm event. A closer look identifies Tier 2 
and 3 areas as areas with major commercial activities (groceries, Walmart, etc.) and Tier 1 areas as 
areas that include City Hall and the utility, police, and fire departments. Tier 4 areas at the east end 
of US27 comprised primarily restaurants and automotive repair businesses. 

Figure 4. City of Clewiston’s flood risk and critical infrastructure for 1-day 100-year storm event.

Figure 5. Proposed layout of flood control pump station for eastern Clewiston, Florida.
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The city has few structures and no planned capital projects. Therefore, determining where 
projects should be focused would involve a series of test projects to see what works. One idea is 
that the data from Figure 4 suggests that the solution of a pump station might reduce flooding in the 
eastern portion of the City. This solution is depicted in Figure 5, showing the pump station and the 
piping associated with conveying the stormwater away from critical areas in the northeastern section 
to an open area in the southwest corner of the city. 

A simulation of the impact of installing the pumping station shows a substantial difference in 
the expected flooding (see Figure 6), and that the Tier 1 facilities are less impacted than shown in 
Figure 4. The darker shaded areas correspond to those properties that are flooded during the 1-day 
100-year storm event with the proposed infrastructure improvements. 

 Comparing Figures 4 and 6, the improvement made by the proposed piping shows that flooding 
is reduced by 80 percent in the eastern portion of the city. Because of the lesser percent of areas that 
are flooded, and the fewer critical infrastructures affected, this project would likely score highly 
against other projects in the community. 

4. Conclusion

A scalable screening tool methodology was developed to model flooding throughout the state 
of Florida. As part of the process, a protocol to prioritize land uses to compare with flooding was 
also developed. At the larger watershed scale, the implementation of solutions has many variables. 
However, drilling down to the subwatershed scale permitted more specific results to be determined 
that are more applicable to local solutions to mitigate flooding, such as those outlined in Figure 2.

In communities where there are already projects that have been proposed, the prioritization 
process using flooded areas and critical infrastructures can help identify which projects will lessen 

Figure 6. City of Clewiston’s flood risk and critical infrastructure for 1-day 100-year storm event with infrastructures 
installed.
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the risk to the community, as was done in the Davie/Dania Beach subwatershed. As projects are 
added, the same process can be undertaken (there were another 20–30 projects that scored lower for 
this watershed, which were not included in Table 2) because priority against one another is not the 
means to create the scores—impact and flooded areas are. 

In communities with few infrastructures and less funding and needs, projects can be developed 
to target specifically those areas where flooding and critical infrastructure overlaps, as was done for 
Clewiston. In both cases, the ability to prioritize infrastructure spending permits the coordination 
between financial, budget, and administrative units to allow managers to properly allocate costs 
to those benefiting most from the service and provide policies that can be clearly explained to the 
public. As projects are identified, they can be prioritized for inclusion in operating and capital 
programs that create the most benefits and can be maintained. 
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