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Abstract: We present an innovative enthalpy method for determining the thermal properties 

of phase change materials (PCM). The enthalpy-temperature relation in the “mushy” zone is 

modelled by means of a fifth order Obreshkov polynomial with continuous first and second 

order derivatives at the zone boundaries. The partial differential equation (PDE) for the 

conduction of heat is rewritten so that the enthalpy variable is not explicitly present, rendering 

the equation nonlinear. The thermal conductivity of the PCM is assumed to be temperature 

dependent and is modelled by a fifth order Obreshkov polynomial as well. The method has 

been applied to lauric acid, a standard prototype. The latent heat and the conductivity 

coefficient, being the model parameters, were retrieved by fitting the measurements obtained 

through a simple experimental procedure. Therefore, our proposal may be profitably used for 

the study of materials intended for heat-storage applications. 

Keywords: enthalpy; moving boundaries; phase-change materials; nonlinear optimization; 

thermal conductivity; latent heat 

1. Introduction 

Phase Change Materials (PCMs), have been widely used in several applications 

[1–5] that exploit the released (or absorbed) energy during a phase transition. PCMs 

allow for latent heat utilization and have attracted the keen interest of the heat-storage 

engineering community. Naturally, the determination of the PCM thermal properties 

is of major importance for designing effective thermal depositories. Although the heat 

transfer equation could in principle describe accurately the charging (or discharging) 

process of a PCM, the temperature activated phase change, renders the problem highly 

nonlinear and its solution non trivial. This in turn, incommodes the determination of 

the specific and latent heat as well as of the thermal conductivity, i.e., the crucial 

parameters for the design of an effective heat-storage system. Indeed, significant effort 

has been devoted in developing techniques for the reliable determination of PCMs’ 

thermal properties, the most common ones being the Differential Scanning 

Calorimetry (DSC) [6], the T-History method [7] and its variants [8–12]. Nevertheless, 

these methods suffer from several problems regarding reproducibility, accuracy and 

robustness [13], qualities that become even more important in the case of mixed PCMs 

that are widespread in practical applications. In particular, the determination of PCM’s 

thermal conductivity, in the full operational temperature range, still remains a 

challenge. 
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The aim of the present work is to provide a framework facilitating the reliable 

determination of PCM’s thermal properties, by means of simple experiments coupled 

to an analysis based on a theoretical model. 

In the following, we describe the simple experimental setup, the associated heat 

conduction equation along with the proper boundary and initial conditions, and we 

detail the employed numerical technique. 

2. Description of the approach 

The procedure we follow consists of the following steps: i) The PCM is initially 

prepared to be in liquid state at a predefined temperature. Next, it is cooled by 

immersion in a heat-bath that is maintained at a lower temperature, and standard T-

History measurements are performed to obtain the enthalpy—temperature curve 

within a temperature range where the liquid solidifies and is further cooled down to 

the heat-bath’s temperature. From this curve we determine the liquid and solid regions, 

and using simple energy considerations (described by Yinping et al. and Hong et al. 

[7,8]), we obtain the corresponding specific heats for each region, cp
l and cp

s, by fitting 

the theoretical predictions to the experimental curves, provided that the corresponding 

densities are known. ii) From the obtained temperature versus time curves in the liquid 

and solid regions, and using the determined specific heats, we deduce the 

corresponding thermal conductivities, kl and ks. iii) The latent heat is calculated using 

the proposed models that are described below. 

2.1. Thermal conductivity model, and latent heat enthalpy-based model 

We consider a system of a long glass-tube containing a Phase Change Material 

(PCM). The tube’s inner and outer radii are respectively denoted by 𝑅1  and 𝑅2  in 

Figure 1. Let 𝑇𝑙  and 𝑇𝑠 be the PCM’s liquidation and solidification temperatures. The 

system is brought initially at a temperature 𝑇0 > 𝑇𝑙 , so that the PCM is in liquid state, 

and subsequently is immersed in a heat bath maintained at a constant temperature 𝑇1 <

𝑇𝑠. 

 

Figure 1. Geometrical representation of the model system. 

The temperature “zone” 𝑇 ∈ [𝑇𝑠, 𝑇𝑙], is referred to as the “mushy” zone, where 

the material is in a “mixed” state, and it is in fact the temperature region where the 

latent heat is released upon cooling, and therefore, it will be used for its determination. 

The temperature depends on both time and position. The position is measured from 
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the tube’s axis, and is denoted by r. Due to cylindrical symmetry there is no angular 

dependence, and since the tube is long compared to its radial extent, z-dependence 

may be neglected. 

At 𝑟 = 𝑅2, the temperature is known to be 𝐽(𝑡), ∀𝑡 > 0. Let the subscripts p and 

g refer to PCM and glass quantities correspondingly. Then, the governing equations 

for heat conduction may be written as: 

( )
( )

( ) ( ) ( ) ( )
 

22

12

, , , ,1
, r 0,

p p

p p

H r t dk TT r t T r t T r t
k T R

t r r r dT r


     
= + +    

     

 (1) 

( ) ( ) ( )
 

2

1 22

, , ,1
, r ,g g g

T r t T r t T r t
c k R R

r r r r


   
= +  

   
 (2) 

where 𝐻𝑝(𝑟, 𝑡) is the enthalpy function of the PCM. Let the quantities 𝑐𝑝
𝑠, 𝑐𝑝

𝑙 , 𝐿 denote 

its specific heats in the solid and liquid phases and the latent heat per unit mass. 

As the apparatus is immersed in the heat-bath, consisting of a tank filled with 

water, the temperature on the outer glass surface of the tube is not constant for a 

considerable amount of time. Hence this temperature T(R2,t) is measured and recorded. 

Also the temperature at the tube’s axis, T(0,t) is measured and recorded as well. Since 

analytical solutions for such a system do not exist, we will resort to numerical 

approximate solutions. 

Heat conduction through PCMs is a highly nonlinear “moving boundary” 

problem. The boundary that is moving is the interface between the solid and liquid 

phase and on which special conditions must be satisfied. 

“Front-tracking” methods, monitor the motion of the solid-liquid interface and 

require the satisfaction of the associated conditions on this moving boundary. A 

discretization grid is employed, and since the interface position will not always fall on 

a grid point, either interpolation, or a variable time step, or even a time-dependent grid 

is employed to accommodate this requirement. These approaches are complicated, 

have accuracy issues, and their implementation is quite cumbersome if feasible at all. 

“Front-fixing” methods apply a variable transformation to immobilize the 

interface in the new coordinate system. However, the arising equations are even more 

complicated.  

The enthalpy method is a “fixed-domain” method based on a reformulation of the 

heat conduction equation adopting a model for the enthalpy-temperature relationship. 

In this approach the solid-liquid interface does not explicitly appear and hence the 

difficulties due to the moving boundary are avoided. Based on this idea a variety of 

similar methods have been developed. We have chosen the enthalpy approach because 

it simplifies the numerical work and provides a direct modelling interpretation. The 

purpose of this study is to explore the possibility to reliably deduce PCM’s properties 

(i.e., latent heat, thermal conductivity, specific heat, critical temperature, etc.) from 

the available measurements alone. 

The enthalpy may be modelled as: 
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( ) ( )

( )

,

,

,

s

p s

p p s l

l s

p l p s l

c T if T T

H T T if T T T

c T T c T if T T

 

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

− + +  L

H  (3) 

where 𝐻𝑝(𝑇) is a fifth order polynomial in T [14], so as to match the enthalpy and its 

first and second derivatives at the endpoints of the mushy zone: 𝑇 ∈ [𝑇𝑠, 𝑇𝑙]. 

𝐻𝑝(𝑇) = 𝑐𝑝
𝑠𝑇 + 𝐴3 (

𝑇 − 𝑇𝑠
𝑇𝑙 − 𝑇𝑠

)
3

+ 𝐴4 (
𝑇 − 𝑇𝑠
𝑇𝑙 − 𝑇𝑠

)
4

+ 𝐴5 (
𝑇 − 𝑇𝑠
𝑇𝑙 − 𝑇𝑠

)
5

 (4) 

Letting 𝛥 = 𝑇𝑙 − 𝑇𝑠, one obtains: 

𝐴3 = 10𝐿 − 𝛥(6𝑐𝑝
𝑠 + 4𝑐𝑝

𝑙 ) (5) 

𝐴4 = −15𝐿 + 𝛥(8𝑐𝑝
𝑠 + 7𝑐𝑝

𝑙 ) (6) 

𝐴5 = 6𝐿 − 3𝛥(𝑐𝑝
𝑠 + 𝑐𝑝

𝑙 ) (7) 

The derivative of the model function is given by: 

𝑄𝑝(𝑇) ≡
𝑑𝐻𝑝(𝑇)

𝑑𝑇
=

{
 
 

 
 𝑐𝑝

𝑠,                                         𝑖𝑓 𝑇 < 𝑇𝑠
𝑑ℋ𝑝(𝑇)

𝑑𝑇
,                             𝑖𝑓 𝑇𝑠 ≤ 𝑇 ≤ 𝑇𝑙

𝑐𝑝
𝑙 ,                                        𝑖𝑓 𝑇 > 𝑇𝑙

 (8) 

Note that in Equation (1) we can substitute: 
𝜕𝐻𝑝(𝑟,𝑡)

𝜕𝑡
=

𝑑𝐻𝑝(𝑇)

𝑑𝑇

𝜕𝑇(𝑟,𝑡())

𝜕𝑡
 

Therefore Equation (1) may be rewritten as: 

( ) ( ) ( ) ( )

( )

( ) ( )
 

22

12

, t , t , t , t1 1
, 0,

(T) dT

p p

p

p p

k T dk TT r T r T r T r
r R

t Q t r r Q T r


     
= + +     

     
 (9) 

Now for the conductivity as a function of the temperature we use a fifth order 

polynomial for 𝑇 ∈ (𝑇𝑠, 𝑇𝑙) that is continuous at the mushy zone endpoints along with 

its first and second derivatives. Namely: 

𝑘𝑝(𝑇) = {

𝑘𝑝
𝑠 , 𝑖𝑓𝑇 < 𝑇𝑠
𝐾𝑝(𝑇), 𝑖𝑓𝑇𝑠 ≤ 𝑇 ≤ 𝑇𝑙

𝑘𝑝
𝑙 , 𝑖𝑓𝑇 > 𝑇𝑙

 (10) 

With 

𝐾𝑝(𝑇) = 𝑘𝑝
𝑠 + (𝑘𝑝

𝑙 − 𝑘𝑝
𝑠) [10 (

𝑇 − 𝑇𝑠
𝑇𝑙 − 𝑇𝑠

)
3

− 15 (
𝑇 − 𝑇𝑠
𝑇𝑙 − 𝑇𝑠

)
4

+ 6 (
𝑇 − 𝑇𝑠
𝑇𝑙 − 𝑇𝑠

)
5

] (11) 

Adopting the following definitions: 

𝑓(𝑇) ≡
𝑘𝑝(𝑇)

𝜌𝑝𝑄𝑝(𝑇)
𝑎𝑛𝑑𝑔(𝑇) ≡

𝑑𝑘𝑝(𝑇)

𝑑𝑇

1

𝜌𝑝𝑄𝑝(𝑇)
 (12) 

Equation (9) may be rewritten as: 
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( )
( )

( ) ( )
( )

( )
 

22

12

, t , t , t , t1
, 0,

T r T r T r T r
f T g T r R

t r r r r

     
= + +     

     

 (13) 

2.2. Initial, boundary, and interface conditions 

At the origin, due to azimuthal symmetry, the following Neumann condition 

holds: 

𝜕𝑇(𝑟, 𝑡())

𝜕𝑟
|𝑟=0| (14) 

At the PCM-glass interface, continuity of temperature and heat-flux requires that: 

𝑇(𝑅1 − 𝜀, 𝑡) = 𝑇(𝑅1 + 𝜀, 𝑡) (15) 

𝑘𝑝(𝑇)
𝜕𝑇(𝑟, 𝑡())

𝜕𝑟
|𝑟=𝑅1−𝜀 𝑘𝑔(𝑇)

𝜕𝑇(𝑟, 𝑡())

𝜕𝑟
|𝑟=𝑅1+𝜀|| (16) 

At the outer tube boundary, we have: 

𝑇(𝑅2, 𝑡) = 𝐽(𝑡) (17) 

And initially, i.e., at t = 0: 

( )  0 2,0 , 0,RT r =   (18) 

2.3. Discretization 

Let 𝑛 + 1 points 𝑟𝑖, 𝑖 = 0,1,… , 𝑛 be the grid for 𝑟 ∈ [0, 𝑅1] which is the space 

filled by the PCM, and let 𝑚 + 1 points 𝑟𝑛+𝑗, 𝑗 = 0,1,… ,𝑚 be the grid over the glass 

part, i.e., for  1 2,Rr R . 

𝑟𝑖 = 𝑖ℎ ≡
𝑖

𝑛
𝑅1, ∀𝑖 = 0,1, … , 𝑛 (19) 

𝑟𝑛+𝑗 = 𝑅1 + 𝑗𝛿 ≡ 𝑅1 +
𝑗

𝑚
(𝑅2 − 𝑅1), ∀𝑗 = 0,1, … ,𝑚 (20) 

Space derivatives are estimated by central differences as: 

𝜕𝑇(𝑟, 𝑡)

𝜕𝑟
≈
𝑇(𝑟 + 𝑠, 𝑡) − 𝑇(𝑟 − 𝑠, 𝑡)

2𝑠
 (21) 

𝜕2𝑇(𝑟, 𝑡)

𝜕𝑟2
≈
𝑇(𝑟 + 𝑠, 𝑡) + 𝑇(𝑟 − 𝑠, 𝑡) − 2𝑇(𝑟, 𝑡)

𝑠2
 (22) 

And the time derivative by forward differences as: 

𝜕𝑇(𝑟, 𝑡)

𝜕𝑡
≈
𝑇(𝑟, 𝑡 + 𝜏) − 𝑇(𝑟, 𝑡)

𝜏
 (23) 

In order to solve Equations (2) and (9), we have chosen the implicit and 

unconditionally stable Crank-Nicolson scheme. We use the following notation:  
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𝑇𝑖
𝑗
= 𝑇(𝑟𝑖, 𝑗𝜏), 𝑓𝑖

𝑗
= 𝑓(𝑇𝑖

𝑗
), 𝑔𝑖

𝑗
= 𝑔(𝑇𝑖

𝑗
), and 𝑎𝑔 =

𝑘𝑔

𝜌𝑔𝑐𝑔
 

At 𝑟 → 0,
𝜕2𝑇(𝑟,𝑡)

𝜕𝑟2
+
1

𝑟

𝜕𝑇(𝑟,𝑡)

𝜕𝑟
=

4

ℎ
2 (𝑇((ℎ, 𝑡) − 𝑇(0, 𝑡))) =

4

ℎ
2 (𝑇1

𝑗
− 𝑇0

𝑗
)  for 𝑡 =

𝑗𝜏 

The Crank-Nicolson scheme yields [15,16]: 

𝑇𝑖
𝑗+1

= 𝑇𝑖
𝑗
+
𝜏

2
[𝑓(𝑇𝑖

𝑗+1
)𝛻2𝑇𝑖

𝑗+1
+ 𝑓(𝑇𝑖

𝑗
)𝛻𝑇𝑖

𝑗
]

+
𝜏

2
[𝑔(𝑇𝑖

𝑗+1
) (
𝜕𝑇𝑖

𝑗+1

𝜕𝑟
)

2

+ 𝑔(𝑇𝑖
𝑗+1
)(
𝜕𝑇𝑖

𝑗+1

𝜕𝑟
)

2

] , ∀𝑖 ∈ [0, 𝑛] 
(24) 

𝑇𝑖
𝑗+1

= 𝑇𝑖
𝑗
+
𝜏𝑎𝑔

2
[𝛻2𝑇𝑖

𝑗+1
+ 𝛻2𝑇𝑖

𝑗
], ∀𝑖 ∈ [𝑛, 𝑛 +𝑚] (25) 

For 𝑖 = 0 Equation (24) may be rewritten as: 

𝑇0
𝑗+1

−
2𝜏

ℎ
2
𝑓0
𝑗+1
(𝑇1

𝑗+1
− 𝑇0

𝑗+1
) = 𝑇0

𝑗
+
2𝜏

ℎ
2
𝑓0
𝑗
(𝑇1

𝑗
− 𝑇0

𝑗
) (26) 

For 1,2, , 1i n= −  Equation (24) takes the form: 

(1+
𝜏

ℎ
2
𝑓𝑖
𝑗+1
)𝑇𝑖

𝑗+1
−

𝜏

2ℎ
2
𝑓𝑖
𝑗+1

((1+
1

2𝑖
) 𝑇𝑖+1

𝑗+1
+ (1−

1

2𝑖
) 𝑇𝑖−1

𝑗+1
)

−
𝜏

8ℎ
2
𝑔𝑖
𝑗+1
(𝑇𝑖+1

𝑗+1
− 𝑇𝑖−1

𝑗+1
)
2

= (1−
𝜏

ℎ
2
𝑓𝑖
𝑗
)𝑇𝑖

𝑗
+

𝜏

2ℎ
2
𝑓𝑖
𝑗
((1+

1

2𝑖
) 𝑇𝑖+1

𝑗
+ (1−

1

2𝑖
) 𝑇𝑖−1

𝑗
)

+
𝜏

8ℎ
2
𝑔𝑖
𝑗
(𝑇𝑖+1

𝑗
− 𝑇𝑖−1

𝑗
)
2
 

(27) 

For i n=  using the interface conditions (15,16) we obtain the relation: 

𝑘𝑝(𝑇𝑛
𝑗+1
)
𝑇𝑛
𝑗+1

− 𝑇𝑛−1
𝑗+1

ℎ
− 𝑘𝑔

𝑇𝑛+1
𝑗+1

− 𝑇𝑛
𝑗+1

𝛿
= 0 (28) 

For 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑚 − 1 and with 𝑥𝑖 = 𝑖 − 𝑛 +
𝑅1

𝛿
  

(1+
𝜏𝑎𝑔

𝛿2
)𝑇𝑖

𝑗+1
−
𝜏𝑎𝑔

2𝛿2
((1+

1

2𝑥𝑖
)𝑇𝑖+1

𝑗+1
+ (1−

1

2𝑥𝑖
) 𝑇𝑖−1

𝑗+1
)

= (1−
𝜏𝑎𝑔

𝛿2
)𝑇𝑖

𝑗
+
𝜏𝑎𝑔

2𝛿2
((1+

1

2𝑥𝑖
) 𝑇𝑖+1

𝑗
+ (1−

1

2𝑥𝑖
)𝑇𝑖−1

𝑗
) 

(29) 

And finally for i n m= +  we have from the boundary condition Equation (17) 

𝑇𝑛+𝑚
𝑗+1

= 𝐽((𝑗 + 1)𝜏) (30) 

So at each time step, we face a system of 𝑛 +𝑚 + 1 nonlinear Equations (26)–

(30), for the 𝑛 +𝑚 + 1  unknowns, 𝑇𝑖=0,𝑛+𝑚
𝑗+1

. The solution procedure is based on 

nonlinear optimization and minimizes the sum of the squared residuals [17–21]. 
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3. Results 

Lauric acid is a well-studied PCM, and we have used it as a benchmark to test 

the proposed methodology. We have used the presented experimental setup to obtain 

the necessary measurements (Figure 2) and subsequently performed the suggested 

analysis to estimate the relevant Lauric acid properties. 

 

Figure 2. Application of the proposed method for the benchmark case of Lauric 

acid. 

As it can be seen the solution reproduces satisfactorily the experimental data. 

Once this solution is achieved, Latent Heat, specific Heats and thermal conductivities 

in the three regions (Liquid, Mushy zone and Solid) are deduced. Our results are 

summarized in Table 1, and are compared to estimates from the relevant literature. 

Table 1. Comparison of Lauric acid properties by our model, to values from the literature. 

Latent Heat Specific Heat Solid Phase Specific Heat Liquid Phase Thermal Conductivity Solid Phase Reference 

𝐿 (𝐾𝐽/𝐾𝑔) 𝑐𝑝
𝑠  (𝐾𝐽/𝐾𝑔 𝐾) 𝑐𝑝

𝑙  (𝐾𝐽/𝐾𝑔 𝐾) 𝑘𝑠 (𝑊/𝑚𝐾)  

180 ± 7 2.14 ± 0.11 2.02 ± 0.08 0.23 ± 0.02 Present work 

160 - 1.75 0.17 Ref. [7] 

186 ± 10 2.81 ± 0.60 2.14 ± 0.46 - Ref. [8] 

4. Conclusions 

We have presented a novel enthalpy-based method that provides a holistic 

description of the temperature evolution of a PCM upon cooling or heating, while the 

determination of their thermal properties can be deduced by performing two simple 

experiments. Note that as result, the thermal conductivity coefficients can be evaluated 

in the three temperature ranges of interest corresponding to liquid, solid and 

intermediate (mushy) phases. The method has been successfully applied to the Lauric 

acid prototype, estimating its thermal properties within reasonable error, and 

consequently it could be useful for the analysis and design of heat storage PCM-based 

systems. 
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Highlights 

1) PCM thermal properties via simple measurements, coupled to an enthalpy model. 

2) Non-linear heat conduction PDE, solved by optimization. 

3) Test case: Lauric acid. Determination of thermal conductivity, latent & specific 

heats. 

Author contributions: Conceptualization, GAE and IEL; methodology, IEL; 

software, IEL and DGP; validation, GAE and CP; formal analysis, IEL; investigation, 

GAE and CP; data curation, CP; writing—original draft preparation, GAE and IEL; 

writing—review and editing, GAE and IEL; supervision, GAE; project administration, 

GAE; funding acquisition, GAE. All authors have read and agreed to the published 

version of the manuscript. 

Conflict of interest: The authors declare no conflict of interest. 

Nomenclature 

PCM Phase Change Material 

DSC Differential Scanning Calorimetry 

cp
l Specific heat of liquid 

cp
s Specific heat of solid 

kl Thermal conductivity of liquid 

ks Thermal conductivity of solid 

𝑅1 Inner radius of the glass tube 

𝑅2 Outer radius of the glass tube 

𝑇𝑙 Liquidation temperature 

𝑇𝑠 Solidification temperature 

𝑇0 Initial temperature 

𝐻𝑝 The enthalpy function of the PCM 

L Latent heat per unit mass 

T(R2,t) Tube temperature at the outer surface at time t 

T(R1,t) Tube temperature at the inner surface at time t 

T(R0,t) Tube temperature at the central axis at time t 
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