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Abstract: This investigation derives formulas to predict the mixed convective surface
conductance of a flat isotropic surface roughness having a convex perimeter in a
Newtonian fluid with a steady forced flow in the plane of that roughness. Heat transfer
measurements of a 30.5 cm square rough plate with forced air velocities between 0.1m/s
and 2.5 m/s were made by the present apparatus in two inclined and all five orthogonal
orientations. The present work’s formulas are compared with 104 measurements in
twelve data-sets. The twelve data-sets have root-mean-square relative error (RMSRE)
values between 1.3% and 4% relative to the present theory. The present work’s formulas
are also compared with 78 measurements in 28 data-sets on five vertical rough surfaces
in horizontal flow from prior work. The five stucco data-sets have RMSRE values
between 2.5% and 6.5%; the other data-sets have RMSRE values between 0.2% and
5%.

Keywords: heat transfer; surface roughness; natural convection; forced flow

1. Introduction
Natural convection is the flow caused by nonuniform density in a fluid under the influence

of gravity. Forced convection is the heat or solute transfer to or from a surface induced by forced
fluid flow parallel to that surface. Mixed convection is the heat or solute transfer when both
processes are operating simultaneously.

Modeling mixed convection from the exterior faces of walls and roofs is essential to
predicting the thermal performance of buildings and determining their heating and cooling
requirements. This investigation derives and tests mixed convection formulas for a rough, flat
exterior face at any inclination, subjected to forced flow in the plane of the surface.

Three modes of forced flow of a Newtonian fluid along a (flat) surface are laminar flow,
turbulent flow, and rough flow. Flow along flat, smooth plates gradually transitions from
laminar to turbulent in a continuous boundary-layer1 [1].

Surface roughness repeatedly disrupts the boundary-layer in rough flow, which occurs
along rough surfaces [2].

Forced convection fluid flow is parallel to the surface. In natural convection the
temperature difference between the fluid and surface creates an upward or downward fluid flow,
which is not necessarily parallel to the surface. Along a vertical plate, “aiding” has natural and
forced flows in the same direction; “opposing” flows are in opposite directions.

Natural convection is sensitive to plate inclination, while forced convection is not. Forced
convection has different formulas for laminar, turbulent, and rough flows, while a single formula
governs both laminar and turbulent natural convection [3–5].

There is a symmetry in external natural convection; a cooled plate induces downward
flow instead of upward flow. Flow from a cooled upper face is the mirror image of flow from
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a heated lower face. Flow from a cooled lower face is the mirror image of flow from a heated
upper face.

The rest of this investigation assumes a surface warmer than the fluid.

1.1. Fluid mechanics
In engineering, heat transfer rates for both natural and forced convection are expressed

using the average surface conductance h with units W/(m2 · K).
In fluid mechanics, the convective heat transfer rate is represented by the dimensionless

average Nusselt number (Nu ≡ hL/k), where k is the fluid’s thermal conductivity with units
W/(m · K), and L is the system’s characteristic length (m).

The Reynolds number Re is dimensionless and proportional to fluid velocity. The
Rayleigh number Ra is the impetus for fluid flow due to temperature difference and gravity.
A fluid’s Prandtl number Pr is its momentum diffusivity per thermal diffusivity ratio. The
system’s characteristic length L scales bothNu and Re; Ra is scaled by L3; both h and Pr are
independent of L.

1.2. Combining transfer processes
Equation (1) is an unnamed form for combining functions which appears frequently in

heat transfer formulas:
F p = F p

1 + F p
2 (1)

Churchill and Usagi [6] stated that such formulas are “remarkably successful in correlating
rates of transfer for processes which vary uniformly between these limiting cases.” Convection
transfers heat (or solute) between the plate and fluid.

1.3. The ℓp-norm
When F1 ≥ 0 and F2 ≥ 0, taking the pth root of both sides of Equation (1) yields a

vector-space functional form known as the ℓp-norm, which is notated ∥F1 , F2∥p :

∥F1 , F2∥p ≡ [ |F1|p + |F2|p]1/p (2)

Norms generalize the notion of distance. Formally, a vector-space norm obeys the triangle
inequality: ∥F1, F2∥p ≤ |F1|+|F2|, which holds only for p ≥ 1. However, p < 1 is also useful.
• When p > 1, the processes modeled by F1 and F2 compete and ∥F1, F2∥p ≥

max(|F1|, |F2|); the most competitive case is ∥F1, F2∥+∞ ≡ max(|F1|, |F2|).
– Equation (25) uses the ℓ3-norm.
– Equation (26) uses the ℓ

√
3-norm.

• The ℓ2-norm is equivalent to root-sum-squared; it models perpendicular competitive
processes.
– Equations (21) and (23) use the ℓ2-norm.

• The ℓ1-norm models independent processes; ∥F1, F2∥1 ≡ |F1|+ |F2|.
• When 0 < p < 1, the processes cooperate and ∥F1, F2∥p ≥ |F1|+ |F2|.

– Cooperation between conduction and flow-induced heat transfer manifests as the
ℓ1/2-norm in natural convection Equation (7).

• When p < 0, ∥F1, F2∥p ≤ min(|F1|, |F2|), with the transition sharpness controlled by p;
the extreme case is ∥F1, F2∥−∞ ≡ min(|F1|, |F2|). Negative p can model a single flow
through serial processes; the most restrictive process limits the flow.
– Equation (18) uses the ℓ−4-norm.
– Equation (A4) uses the ℓ−

√
1/3-norm.
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1.4. Roughness
The present theory treats surface roughness as an elevation function z(x, y) defined on an

areaA having a convex perimeter. Function z(x, y) has only one value at each (x, y) coordinate;
thus surfaces with tunnels and overhangs are disqualified, as are porous surfaces. The mean
elevation z and root-mean-squared (RMS) height-of-roughness ε≪ L are:

z =

∫
A

z dA
/∫

A

dA (3)

ε =

√∫
A

|z − z|2 dA
/∫

A

dA (4)

1.5. Prior work
Nearly all of the experimental prior works [7–13] concern smooth plates. The exception

is Rowley et al. [14], the 1930 result of cooperative research between the University of
Minnesota and the American Society of Heating and Ventilation Engineers. They measured
mixed convection of 0.305 m square vertical plates in horizontal flow in a wind tunnel. They
tested common rough exterior surfaces, specifically concrete, brick, stucco, and rough and
smooth plaster.

Mixed convection measurements from the graphs in Rowley et al. [14] were captured by
measuring the distance from each point to its graph’s axes, then scaling to the graph’s units
using the “Engauge” software (version 12.1). Table 1 lists the data-sets to be compared with
the present theory, where θ is the angle of the plate from vertical and ψ is the angle of the forced
flow from the zenith; ψ = 90◦ is horizontal.

1.6. Approaches
Rowley et al. [14] provided graphs for engineering use which cover both laminar and

turbulent flows. It applies only to forced horizontal flow in the plane of a vertical plate. It lacked
a roughness metric which would have allowed application to other types of rough surfaces.
Unfortunately, forced convection from rough plates does not scale simply, being inversely
proportional to log2(L/ε).

The present work is primarily theoretical, combining the system-wide heat transfer
derivations of natural and forced convections from Jaffer [5] and Jaffer [2], respectively. It
applies to convex flat surfaces at any inclination having isotropic roughness with 0 < ε ≪ L

and forced flow parallel to the surface.

1.7. Not empirical
Empirical theories derive their coefficients from measurements, inheriting the

uncertainties from those measurements. Theories developed from first principles derive
their coefficients mathematically. For example, Incropera et al. [15] (p. 210) gives the thermal
conductance of one face of a diameter D disk into a stationary, uniform medium having
thermal conductivity k as exactly 8 k/[πD] (units W/(m2 · K)). The present theory derives
from first principles; it is not empirical. Each formula is tied to aspects of the plate geometry
and orientation, fluid, and flow.
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Table 1. Rowley et al. mixed convection data-sets.

Surface θ ψ Ra ≥ Ra ≤ Re ≥ Re ≤ Count

smooth-plaster 0.0◦ 90.0◦ 2.8× 106 1.1× 107 7.9× 104 8.3× 104 2
smooth-plaster 0.0◦ 90.0◦ 3.1× 106 1.1× 107 6.7× 104 7.1× 104 2
smooth-plaster 0.0◦ 90.0◦ 3.2× 106 1.1× 107 5.6× 104 5.9× 104 2
smooth-plaster 0.0◦ 90.0◦ 3.7× 106 1.1× 107 4.5× 104 4.7× 104 2
smooth-plaster 0.0◦ 90.0◦ 4.1× 106 1.2× 107 3.4× 104 3.5× 104 2
smooth-plaster 0.0◦ 90.0◦ 5.0× 106 1.2× 107 2.2× 104 2.3× 104 2
concrete 0.0◦ 90.0◦ 1.1× 107 1.1× 107 7.9× 104 7.9× 104 1
concrete 0.0◦ 90.0◦ 7.9× 106 1.1× 107 6.7× 104 6.9× 104 3
concrete 0.0◦ 90.0◦ 2.9× 106 1.1× 107 5.6× 104 5.9× 104 7
concrete 0.0◦ 90.0◦ 3.1× 106 1.1× 107 4.5× 104 4.7× 104 2
concrete 0.0◦ 90.0◦ 3.9× 106 1.1× 107 3.4× 104 3.5× 104 2
concrete 0.0◦ 90.0◦ 4.3× 106 1.2× 107 2.2× 104 2.4× 104 2
brick 0.0◦ 90.0◦ 2.0× 106 1.1× 107 6.4× 104 6.7× 104 6
brick 0.0◦ 90.0◦ 3.4× 106 1.1× 107 5.5× 104 5.8× 104 4
brick 0.0◦ 90.0◦ 2.7× 106 1.1× 107 4.5× 104 4.7× 104 3
brick 0.0◦ 90.0◦ 3.1× 106 1.1× 107 4.0× 104 4.2× 104 5
brick 0.0◦ 90.0◦ 4.3× 106 1.1× 107 3.0× 104 3.2× 104 4
brick 0.0◦ 90.0◦ 5.3× 106 1.1× 107 1.7× 104 1.8× 104 4
rough-plaster 0.0◦ 90.0◦ 1.1× 107 1.1× 107 6.7× 104 6.7× 104 1
rough-plaster 0.0◦ 90.0◦ 3.6× 106 1.1× 107 5.6× 104 5.9× 104 2
rough-plaster 0.0◦ 90.0◦ 3.7× 106 1.1× 107 4.5× 104 4.7× 104 2
rough-plaster 0.0◦ 90.0◦ 4.0× 106 1.2× 107 3.4× 104 3.5× 104 3
rough-plaster 0.0◦ 90.0◦ 4.8× 106 1.2× 107 2.2× 104 2.4× 104 2
stucco 0.0◦ 90.0◦ 1.1× 106 1.1× 107 6.7× 104 7.1× 104 2
stucco 0.0◦ 90.0◦ 6.9× 105 1.1× 107 5.6× 104 6.0× 104 3
stucco 0.0◦ 90.0◦ 1.2× 106 1.1× 107 4.5× 104 4.8× 104 3
stucco 0.0◦ 90.0◦ 1.5× 106 1.1× 107 3.4× 104 3.6× 104 3
stucco 0.0◦ 90.0◦ 2.1× 106 1.1× 107 2.2× 104 2.4× 104 2

1.8. RMS relative error
Root-mean-squared (RMS) relative error (RMSRE) provides an objective, quantitative

evaluation of experimental data versus theory. It gauges the fit of measurements g(Rej)
to function f(Rej), giving each of the n samples equal weight in Equation (5). Along
with presenting RMSRE, charts in the present work split RMSRE into the bias and scatter
components defined in Equation (6). The root-sum-squared of bias and scatter is RMSRE.

RMSRE =

√√√√ 1

n

n∑
j=1

∣∣∣∣ g(Rej)f(Rej)
− 1

∣∣∣∣2 (5)

bias =
1

n

n∑
j=1

{
g(Rej)

f(Rej)
− 1

}
scatter =

√√√√ 1

n

n∑
j=1

∣∣∣∣ g(Rej)f(Rej)
− 1− bias

∣∣∣∣2 (6)
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2. Natural convection
Jaffer [5] derived a natural convection formula for external flat plates (with convex

perimeter) in any orientation from its analyses of horizontal and vertical plates. This
investigation uses the same approach.

Figure 1a–c show the induced fluid flows around heated vertical and horizontal surfaces.
For a horizontal plate with heated upper face, streamlines photographs in Fujii and

Imura [3] show natural convection pulling fluid horizontally from above the plate’s perimeter
into a rising central plume. Figure 1b is a diagram of this upward-facing convection. Horizontal
flow is nearly absent at the elevation of the dashed line.

The streamlines photograph of a vertical plate in Fujii and Imura [3] shows fluid being
pulled horizontally before rising into a plume along the vertical plate. Figure 1a is its diagram.

Modeled on a streamlines photograph in Aihara et al. [16], Figure 1c is a flow diagram
for a horizontal plate with heated lower face. Unheated fluid below the plate flows horizontally
inward. It rises a short distance, flows outward closely below the plate, and flows upward upon
reaching the plate edge. The edge flows self-organize so that they are at the opposing edges of
the plate which are nearest to each other.

Horizontal flow in Figure 1b is radial, but not radial in Figure 1c.

(a)

(c)

(b)

Figure 1. (a) Vertical plate, (b) flow above a heated plate, and (c) flow below a heated
plate.

An important aspect of all three flow topologies is that fluid is pulled horizontally before
being heated by the plate. Pulling horizontally expends less energy than pulling vertically
because the latter does work against the gravitational force. Inadequate horizontal (or vertical)
clearance around a plate can obstruct flow and reduce convection and heat transfer; such a plate
is not “external”.

From thermodynamic constraints, Jaffer [5] derives generalized natural convection
Equation (7) with the parameters specified in Table 2:
• θ is the angle of the plate from vertical;
• L is the characteristic length of a flat plate with convex perimeter:

– face up L∗ is the area-to-perimeter ratio;
– vertical L′ is the harmonic mean of the perimeter vertical spans (the height of a

level rectangle);
– face down LR is the harmonic mean of the perimeter distances to that bisector

which is perpendicular to the shortest bisector (1/2 of the shorter side of a
rectangle);

• Nu0 is the conduction into the fluid when not moving (static);
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• Ra′ is computed with vertical L′; Ra∗ = Ra′ [L∗/L′]3; RaR = Ra′ [LR/L
′]3.

Pr does not affect upward-facing heat transfer because the heated fluid flows directly
upward, as does conducted heat. When heated fluid must flow along vertical and
downward-facing plates, its heat transfer potential is reduced by dividing Ra by Ξ from
Equation (8).

• E is the count of 90◦ changes in direction of fluid flow;
• B is the sum of the mean lengths of flows parallel to the plate divided by L;
• C is the plate area fraction responsible for flow induced heat transfer;
• D is the effective length of heat transfer contact with the plate divided by L;
• The ℓp-norm combines the static conduction and induced convective heat flows.

Nu =

∥∥∥∥∥Nu0 [1− C
]
,

2+E

√[
C DNu0

]3+E 2

B
Ra

∥∥∥∥∥
p

(7)

Ξ =

∥∥∥∥1 , 0.5

Pr

∥∥∥∥√
1/3

Nu∗0 =
2

π
Nu′0 =

24

4
√
2π2

(8)

Table 2. Natural convection parameters.

Face θ L Nu Nu0 Ra E B C D p

up −90◦ L∗ Nu∗ Nu∗0 Ra∗ 1 2 1/
√
8 1 1/2

vertical 0◦ L′ Nu′ Nu′0 Ra′/Ξ 1 1/2 1/2 1/4 1/2

down +90◦ LR NuR Nu′0/2 RaR/Ξ 3 4 1/2 2 1

2.1. Effective vertical reynolds number
From the derivation in Jaffer [5] withRa′/Ξ ≫ 1,Nu ≈ C DNu0Re. Heat transferNu′

is reduced by the self-obstruction factor 1/ 3
√
Ξ, which grows withPr. However, heat transfer is

not the same as fluid flow, which increases with decreasing Pr. The Ξ3 factor in Equation (9)
makes ReN increase with decreasing Pr. Proposed is Equation (9) as the Reynolds number
associated with the natural convective flow from a vertical plate.

ReN ≈ NuΞ2+E

Nu0 C D
=

8Nu′ Ξ3

Nu′0
Nu′ ≫ Nu′0 (9)

2.2. Natural convection from an inclined plate
Ra is proportional to gravitational acceleration. Following the approach of Fujii and

Imura [3], the Ra argument to h′(Ra) ≡ k Nu′(Ra)/L′ is scaled by |cos θ|, modeling the
reduced convection of a tilted plate as a reduction in gravitational acceleration. Similarly,
the Ra arguments to h∗ and hR are scaled by |sin θ|. An unobstructed plate induces a single
steady-state mode of natural convection (face up, down, or vertical). The instances of max() in
Equation (10) choose the largest surface conductance among these modes.

h =

max
(
h′(|cos θ|Ra′/Ξ), h∗(|sin θ|Ra∗)

)
sin θ < 0

max
(
h′(|cos θ|Ra′/Ξ), hR (|sin θ|RaR/Ξ)

)
sin θ ≥ 0

(10)

6
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In reality, the θ transition is more gradual using the ℓ16-norm in Equation (11):

h =


∥∥h′(|cos θ|Ra′/Ξ), h∗(|sin θ|Ra∗)∥∥

16
sin θ < 0∥∥h′(|cos θ|Ra′/Ξ), hR (|sin θ|RaR/Ξ)

∥∥
16

sin θ ≥ 0
(11)

2.3. Rough natural convection
The agreement of rough plate measurements with theory over the±90◦ range in Figure 2

indicates that Equation (11) governs plates with RMS height-of-roughness 0 ≤ ε≪ L.

 0
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Figure 2. Rough ε = 3.0 mm natural convection versus angle.

3. Forced convection
Forced convection Nu is the heat transfer caused by forced flow along (and parallel to)

a heated plate. The surface conductance hF ≡ Nuk/L grows with ReF , Pr, and k. Its
characteristic length L is the length of the plate in the direction of forced flow.

3.1. Rough convection
Jaffer [2] derives the forced convection Nuρ of rough flow from isotropic, periodic

roughness:

Nuρ(ReF ) =
ReF Pr

1/3
∞ w

6 [ln (L/ε)]2
ReF >

[
0.664

ε

]2
LP L (12)

w = ∥1, ε/LW ∥√
1/2

(13)
• ε≪ L is the root-mean-squared (RMS) height of roughness.
• LP ≪ L is the isotropic period of the roughness [2].
• LW is the width of the plate (perpendicular to L).
• Pr∞ is the bulk fluid’s Prandtl number (far from the plate).

If the roughness extends to the plate’s rim, then it increases the effective width of the rough
face by more than 2 ε because, in addition to the fluid adjacent to plate’s face and rim, the fluid
near the edge between them is affected. Thus ε and plate width LW cooperate weakly, leading
to an effective width of ∥LW , ε∥√

1/2
. Dividing by LW , Equation (13) is the edge roughness

correction factor w. Figure 3 graphs w as a function of ε.
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Figure 3. Edge roughness correction factor.

3.2. Plateau roughness
There are isotropic, periodic roughnesses whose convective heat transfer differs from

Equation (12).
• Informally, a “plateau roughness” is an isotropic, periodic roughness with most of its area

at its peak elevation. A quantitative definition is given in Jaffer [2].
• A “plateau wells roughness” is an array of co-planar wells dropping below a flat surface.
• A “plateau islands roughness” is an array of co-planar islands.

The present apparatus plate has plateau islands roughness.
For a given ReF , a plateau roughness may contain areas transferring heat per

Equation (12), and separate areas transferring heat as turbulent flow along a smooth plate,
but with characteristic length LP .

3.3. Turbulent forced convection
Jaffer [2] derives the average surface conductance, hF ≡ Nuτ k/L, of turbulent flow

along an isothermal plate as Equation (14).

Nuτ =
Nu0ReF fτ√

3

√
Pr/

√
162 + 1√

162Pr fτ + 1
3

√
Pr/Ξ

∥1, 1/Pr∥3

√
162 ≡ 9

√
2 (14)

fτ =
2−5/4[

W0

(
ReF /

√
3
)
− 1

]2 Ξ =

∥∥∥∥1, 0.5

Pr

∥∥∥∥√
1/3

Nu0 =
24

π2 4
√
2

(15)

• The fluid’s effective Prandtl number Pr = Pr
1/4
W Pr3/4∞ (from Žukauskas and

Šlančiauskas [17]).
PrW is the Prandtl number of fluid at wall (plate) temperature.
Pr∞ is the Prandtl number of fluid at the bulk flow temperature.

• W0 is the principal branch of the Lambert W function, defined as
W0(φ expφ) = φ when φ ≥ 0.

• In Equation (15), 2−5/4 replaces the 3
√
2/3 coefficient from Jaffer [2], a +0.11%

correction.
• Plateau islands roughness can shed rough and turbulent flow simultaneously.

3.4. Plateau islands roughness
The plateau islands roughness described in Appendix C has Nuρ Equation (12) rough

convection in the leading ReI/ReF portion of the plate, and NuI Equation (16) turbulent
convection in the rest of the plate. Equation (17) ReI separates the regions, where L• is the
ratio of each (convex) island’s area to its perimeter.

8
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NuI =

{
1− Ω+

∥∥∥∥Ω2 , 2 ε [4L•]L2
P

∥∥∥∥
2

}
L

LP
Nuτ

(
ReF LP

L

)
(16)

ReI =
33 ε2 L2

L• L3
P

ln
33 ε2 L2

√
3L• L3

P

(17)

Nuι =NuI(ReF ) +Nuρ (∥ReF , ReI∥−4)−NuI (∥ReF , ReI∥−4) (18)

“Openness” 0 < Ω < 1 is the non-plateau area per cell area ratio. Given a w × w matrix
of elevations Ss,t:

Ω ≈ 1

w2

w−1∑
t=0

w−1∑
s=0

1, Ss,t < max(S)− ε2/LP

0, otherwise
(19)

In the log-log plots in Figure 4a,b, the effective ReF exponent is the slope of its line.
For example, the “ReF /200” and “ReF /333” lines have slope 1; thus they are proportional to
ReF

1 ≡ ReF . In each plot, the “bi-level” trace is Nuι Equation (18). The “turbulent part”
trace is Equation (20), which is the turbulent component of Nuι Equation (18):

NuI(ReF )−NuI (∥ReF , ReI∥−4) (20)

In both Figure 4a,b, the slope of the Equation (20) “turbulent part” trace is close to 1
throughmore than an order of magnitude ofReF . The discrepancy at largerReF is unimportant
because the heat transfer is dominated by forced convection in that range.
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Figure 4. (a) Forced convection ReI = 6178 and (b) Forced convection ReI = 55, 566.

4. Mixing natural and forced convections
The previous sections established that:

• The effective natural Reynolds number ReN is proportional to NuN when NuN ≫ Nu0.
• Forced rough convection Nuρ is proportional to ReF in Equation (12).
• And forced turbulent Equation (20) is nearly proportional to ReF when ReF > ReI .

On that basis, this investigation proposes:
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• Surface conductances hN and hF both being proportional to Reynolds numbers indicates
that they are commensurate; they can be combined using symmetrical functions such as
the ℓp-norm.

One approach to predicting mixed convection would be to computeNu from a function of
ReF and ReN . However, choosing a single Nu formula is problematic; while Re and Nu
are nearly proportional in all three cases, their coefficients are very different. Also, rough
convectionNuρ is strongly dependent on height-of-roughness ε, but Section 2 found that natural
convection is insensitive to roughness ε≪ L.
• This investigation combines a natural surface conductance hN (specifically h∗, h′, or hR)

with the forced surface conductance hF using the ℓp-norm (where p depends on plate
and flow orientations). Surface conductance h is used instead of Nu in order to avoid
characteristic-length mismatch between Nu formulas.

This approach departs from prior works (all of which concerned smooth plates), which
compute Nu from a ratio of powers of ReF and the Grashof number Gr = Ra/Pr.

4.1. Theory and measurements
Figures which follow plot Nu at L = L′ measurements and theoretical curves versus

103 < ReF < 105 using logarithmic scales on both axes. Logarithmic scales do not include 0;
the following figures plot the natural convection measurement (ReF = 0) at ReF = 103.

θ is the angle of the plate from vertical; −90◦ is face up; +90◦ is face down.
ψ is the angle of the forced flow from the zenith; ψ = 90◦ is horizontal flow; ψ = 0◦

is upward. In this investigation, forced flow is always parallel to the plate; hence, horizontal
plates have ψ = 90◦.

RMSRE is calculated from the measurements between the vertical lines, 1950 < ReF <

5× 104.
The ε = 3 mm plate sheds only rough flow at 1950 < ReF < 5 × 104; its graphs are

captioned “rough”. The ε = 1.04 mm plate sheds rough flow at ReF < ReI = 6178 and
turbulent flow otherwise. Hence it sheds mostly turbulent flow at 1950 < ReF < 5× 104; its
graphs are captioned “turbulent”.

5. Horizontal forced flow

5.1. Vertical plate with horizontal forced flow
Figure 1a shows that fluid is drawn horizontally towards the heated surface, then rising.

The forced and natural heat flows are thus perpendicular, suggesting the ℓ2-norm for combining
hF and vertical h′:

h =
∥∥hF , h′∥∥2 (21)

5.2. American society of heating and ventilation engineers
Rowley et al. [14] measured mixed convection of 0.305 m square vertical plates in

horizontal flow in awind tunnel. Their graphs report surface conductance of the plate versusTm,
the mean of the plate and airflow (Fahrenheit) temperatures. The Rayleigh numbers used by
natural convection formulas have the temperature difference as a factor. Through trial and error
it was found that taking 1.05Tm as the (Fahrenheit) plate temperature and 0.95Tm as the fluid
temperature kept RMSRE values less than 10%, which fixed temperature offsets did not. Using
coefficients of 1.1 and 0.9 or 1.2 and 0.8 did not strongly affect RMSRE values.

Figures 5 and 6 compare (Nu ≡ hL/k) Equation (21) with measurements of vertical
plates in horizontal flow shedding turbulent and rough flow, respectively.
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Figure 5. Vertical plate in horizontal forced turbulent flow.
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Figure 6. Vertical plate in horizontal forced rough flow.

At a constant rate of airflow, increasing fluid temperature causes kinematic viscosity ν to
grow and hF to shrink becauseReF = V L/ν. However, the traces in the graphs from Rowley
et al. [14] show increasing convective conductance with temperature. Rowley et al. [14] reports
the airspeed measured at the center of the duct (of which the rough plate replaces one side).
However, V is defined as the average velocity inside a duct. Let V⊙ be the velocity at the
center of the duct.

The velocity is 0 at the duct wall, so some velocity near the wall must be used as the
effective velocity V at the test plate. The velocity profile across the duct develops from flat
at the duct entrance to the Hagen-Poiseuille parabolic velocity profile for a “fully developed”
flow [18] (p. 356). The dimensionless development length is LD/D = 25.625, where LD =

5.207m is the duct length between the fan and the leading edge of the plate andD = 203.2mm
is the hydraulic-diameter of the duct.

V = V⊙ when LD = 0; otherwise V < V⊙. Dimensional analysis finds that V must
depend on V⊙, LD/D, ν, and a viscosity parameter which is independent of temperature. For
a gas, let ν0 be the viscosity at its boiling point.
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Dry air is composed of 78.084% N2, 20.946% O2, and 0.934% Argon. N2 has kinematic
viscosity ν0 = 1.15× 10−6 m2/s at its 77.355 K boiling point. O2 has ν0 = 1.58× 10−6 m2/s
at its 90.188 K boiling point; Argon gas has 1.4223 × 10−6 m2/s at 100 K. Combining these
per the air percentages yields ν0 = 1.2422 × 10−6 m2/s. Equation (22) is the effective V at
the plate.

V = V⊙

/[
1 +

√
2
LD

D

ν0
ν

]
ν0 ≈ 1.2422× 10−6 m2

s
(22)

Rowley et al. [14] did not characterize the roughnesses other than to note that the forced
convection component was greatest from stucco, followed by brick and rough-plaster, followed
by concrete, and the least from smooth-plaster. This investigation has assigned the RMS
height-of-roughness (ε) parameters shown in Table 3.

Table 3. Assigned parameters.

Figure Surface ϵ ε

Figure 7 stucco 0.91 1.47 mm
Figure 8a rough-plaster 0.91 0.75 mm
Figure 8b brick 0.93 0.75 mm
Figure 9a concrete 0.94 0.55 mm
Figure 9b smooth-plaster 0.91 0.20 mm

Rowley et al. [14] did not address thermal radiative transfers except to state “In order
to obtain average radiation conditions, the inside surface of the test duct was painted a dull
gray, and all the pipe outside of the refrigerator was covered with a one-inch thick blanket of
insulating material.” Table 3 shows common values for the surface emissivity ϵ of each rough
material tested. Experimenting with its value, an effective inside surface emissivity of ϵ = 0.70

keeps all non-stucco RMSRE values less than 5%. Unexpectedly small for paint, ϵ = 0.70

would compensate for the wind-tunnel walls being warmer than the forced airflow.
Figure 7 shows the mixed convective conductance curves for stucco, the roughest surface

Rowley et al. [14] tested. The derivation in Jaffer [2] of rough convection Equation (12) assumes
isotropic roughness. Stucco being non-uniform in its application, it has larger RMSRE than the
other surfaces.
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Figure 7. Stucco.

Figures 8a,b and 9a,b compare the present theory with measurements from rough plaster,
brick, concrete, and smooth plaster, respectively2. Closer to the isotropic ideal, they have
RMSRE values smaller than 5%.
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Figure 8. (a) Rough Plaster and (b) Brick.

Lacking the actual RMS height-of-roughness and emissivities of the original apparatus,
while these results lend support to the present theory, they are not conclusive.
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5.3. Upward facing plate
Figure 1b shows that flow is inward above the heated surface. Forced flow parallel

to the surface is thus compatible with upward natural convection h∗. Their heat flows are
perpendicular, suggesting the ℓ2-norm for combining h∗ and hF :

h =
∥∥hF , h∗∥∥2 (23)

Figures 10 and 11 compare Equation (23) with measurements of upward-facing plates
shedding turbulent or rough flow, respectively.

5.4. Downward facing plate
Figure 1c shows that flow is outward immediately beneath the heated surface. Forced

flow parallel to this surface is thus incompatible with downward natural convection hR. These
two fluid flows will compete for surface area. Table 2 shows that NuR is asymptotically
proportional to 5

√
RaR. The ℓ5-norm combines RaR with ReF 5, manifesting the fragility of
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hR flow because moderate ReF values can overpower the hR term:

h =
∥∥hF , hR∥∥5 (24)
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Figure 10. Upward facing plate in horizontal forced turbulent flow.
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Figure 11. Upward facing plate in horizontal forced rough flow.

Figures 12 and 13 compare Equation (24) with measurements of downward-facing plates
shedding turbulent or rough flow, respectively.

6. Vertical plate with vertical forced flow
A vertical plate with vertical forced flow requires a more thorough analysis.
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Figure 12. Downward facing plate in horizontal forced turbulent flow.
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Figure 13. Downward facing plate in horizontal forced rough flow.

6.1. Velocity profiles
The velocity profile function u(y) is the velocity at x = L/2 and distance 0 < y < δ from

the plate, where δ is the boundary layer thickness at x = L/2. Positive u(y) is in the direction
of forced flow. The upper plot in Figure 14 shows the velocity profiles of forced turbulent and
natural convection adjacent to a vertical 30.5 cm square plate per the theory in Appendix A, as
well as their sum and difference profiles.

The widest y span of constant u(y) occurs in opposing vertical flows when ReF =

ReN . Because of the laminar sublayer of turbulent flows, this cancellation occurs around
u = 0.065 m/s, not u = 0.

The lower plot in Figure 14 shows the theoretical velocity profiles of forced turbulent
flow, and that flow combined with laminar natural flow. The forcedReF values are double and
half of natural ReN .

In the opposing flow cases, the “forced− natural” and “forced− natural 21,600” traces
both have two inflection points near the plate. These indicate that the boundary layer is split,
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with laminar flow at 0 < y < 5 mm and turbulent flow at 5 < y < 15 mm.
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Figure 14. Velocity profiles.

6.2. Vertical plate with forced downward flow
Because the net velocity of the “forced− natural 5400” curve goes negative near the plate,

these opposing fluid flows compete for plate area. Nu′ is asymptotically proportional to 3
√
Ra′

in Table 2; the ℓ3-norm combines Ra′ with ReF 3 (which is more robust than the ℓ5-norm):

h =
∥∥hF , h′∥∥3 (25)

The “forced− natural 21,600” trace indicates that its boundary layer is split with laminar
natural flow near the plate and forced turbulent flow away. This serves to increase heat transport
through the boundary layer (compared with pure laminar), exceeding the ℓ2-norm, but less than
the ℓ

√
2-norm. The “mixed ℓ

√
3-norm” curve, Equation (26), is close to the upper measurements

in Figures 15 and 16.
h =

∥∥hF , h′∥∥√3
(26)

Both the 1 mm and 3 mm plates had plateau islands roughness, as described in Section 3.
The ReI arrow marks the transition from rough to turbulent flow along the plateau islands
roughness.

The ReN arrow indicates the position of natural convection’s effective Reynolds number
calculated by Equation (9). “ReN χI” is ReN scaled by the roughness correction (χI ≥ 1)
detailed in Appendix B; it marks the ReF lower-bound of the transition between p = 3 and
p =

√
3.
When the whole plate is shedding turbulent flow, χI = 1. When the whole plate is

shedding rough flow, χI = χ, which is derived in Appendix A. The close spacing between the
arrows in Figure 15 indicates that nearly all of the plate is shedding turbulent flow.

Figures 15 and 16 show the theory curve and themeasurements switching from the “mixed
ℓ3-norm” to the “mixed ℓ

√
3-norm” at ReF > ReN χI .
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Figure 15. Vertical plate in opposing forced turbulent flow.

10
1

10
2

10
3

10
3

10
4

10
5

Re
N

 ≈ 5230  Re
N

 χ
I
 ≈ 6465

Re
I
 = 55566

 RMSRE  Bias  Scatter  Used

  2.6%   −0.7%   2.5%  11/13

 ε = 3 mm;  θ = 0°;  ψ = 180°
 L = 305 mm

av
er

ag
e 

N
u
ss

el
t 

n
u
m

b
er

  
 N

u

forced Reynolds number  Re
F

theory ± uncertainty

mixed l
√−

 3−norm

theory

mixed l
3
−norm

forced only

measured

Figure 16. Vertical plate in opposing forced rough flow.

6.3. Vertical plate with forced upward flow
At low speeds, the wide separation between the “forced+ natural 5400” and “forced 5400”

traces in Figure 14 indicates the boundary layer is split, with laminar natural flow near the plate
and forced turbulent flow away, leading to h =

∥∥hF , h′∥∥√3
.

The steep slope of the “forced+ natural 21,600” and “forced 21,600” traces near the plate
indicates that both flows are close to the plate, competing for plate area and leading to h =∥∥hF , h′∥∥3.

Figures 17 and 18 show the theory curve and themeasurements switching from the “mixed
ℓ3-norm” to the “mixed ℓ

√
3-norm” at ReF smaller than ReN χI .
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Figure 17. Vertical plate in aiding forced turbulent flow.
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Figure 18. Vertical plate in aiding forced rough flow.

7. Vertical plate with forced flows at any angle
All vertical cases examined so far combine h′ and hF using the ℓp-normwith

√
3 ≤ p ≤ 3.

However, p is a function ofReF in the vertical aiding and opposing cases. Needed is a function
of ReF which varies smoothly between asymptotes

√
3 and 3. This suggests raising 3 to an

exponent between 1/2 and 1. With ζ > 1 and η > 0, the expression ηζ/ζ varies between 0
and ∞, and expζ

(
−ηζ/ζ

)
varies between 0 and 1. Equation (27) varies between p = 3 and

p =
√
3, with the transition slope controlled by ζ.
The aiding flow transition is gradual with ζ = 2 and η = ReN χI/ReF . The opposing

flow transition is abrupt with ζ = 16 and η = ReF /[ReN χI ]. Note that η = ReN χI/ReF

differs from η = ReF /[ReN χI ].

p(ζ, η) = exp3
(
1/2 + expζ

(
−ηζ/ζ

) /
2
)

(27)

Introduced in Section 4, ψ is the angle between the forced flow and the zenith.
Figure 19a,b plot p at ζ = 2 and ζ = 16, used with cosψ > 0 and cosψ < 0, respectively.
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Table 4 lists p for horizontal and vertical plate and flows.
The theory curve and error statistics in Figures 15–18 employ p Equation (27).
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Figure 19. (a) Vertical aiding plate p and (b) Vertical opposing plate p.

Table 4. Corner cases p.

Description θ ψ p

upward facing plate −90◦ 90◦ 2

aiding vertical plate +0◦ 0◦ exp3
(
1/2 + exp2

(
−[ReN χI/ReF ]2/2

) /
2
)

vertical plate, level flow +0◦ 90◦ 2

opposing vertical plate +0◦ 180◦ exp3
(
1/2 + exp16

(
−[ReF /[ReN χI ]]

16/16
) /

2
)

downward facing plate +90◦ 90◦ 5

At ψ = 0◦, the forced and natural flows align. As ψ tilts toward horizontal (±90◦), the
forced flow can be split into components aligned and perpendicular to the natural upward flow.
The coefficients of these components are trigonometric functions of ψ. Tilting to the left or
right of ψ = 0◦ by equal angles must transfer the same amount of heat. Thus, the trigonometric
coefficients must be “even” functions of ψ, that is, F (ψ) = F (−ψ). Equation (28) coefficients
[sinψ]2, [cosψ]2, [sinψ]4, and [cosψ]4 are even functions of ψ.

Downward tilted flow requires a steeper transition slope around ψ = 180◦; this is
implemented using [sinψ]4 and [cosψ]4 as the coefficients in the second line of Equation (28).

hθ =


[sinψ]2

∥∥∥hF , h′θ∥∥∥
2
+ [cosψ]2

∥∥∥hF , h′θ∥∥∥
p(2,ReN χI/ReF )

0 ≤ cosψ;

[sinψ]4
∥∥∥hF , h′θ∥∥∥

2
+ [cosψ]4

∥∥∥hF , h′θ∥∥∥
p(16,ReF /[ReN χI ])

cosψ ≤ 0
(28)

The vertical natural convection component is independent of ψ:

h′θ = h′(|cos θ|Ra′/Ξ) (29)

8. Mixed convection from an inclined plate
To compute mixed convection from an inclined plate, Equation (30) replaces conductance

functions h′, h∗, and hR in Equation (11) with ℓp-norms mixing each function with hF .

h =


∥∥hθ, ∥∥hF , h∗(|sin θ|Ra∗)∥∥2∥∥16 0 ≤ sin θ∥∥hθ, ∥∥hF , hR (|sin θ|RaR/Ξ)

∥∥
5

∥∥
16

sin θ ≤ 0
(30)
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Figure 20 shows forced flow opposing natural convection at θ = +82 with ψ = 98◦.
Figure 21 shows forced flow aiding natural convection at θ = ψ = +82◦. The θ = ψ = +90◦

curve is shown for comparison.
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Figure 20. Inclined plate, θ = +82◦, opposing forced turbulent flow.
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Figure 21. Inclined plate, θ = +82◦, aiding forced turbulent flow.

With hF = 0, mixed Equation (30) simplifies to natural Equation (11).
When θ and ψ are multiples of 90◦, Equation (30) simplifies to

∥∥hF , hN∥∥
p
, with p from

Table 4.

9. Practice
The natural convection heat transfer formulas for h∗, h′, and hR were presented in

Section 2. The formulas for forced convection heat transfer hF were presented in Section 3.
These are combined using the ℓp-norm:

∥F1, F2∥p ≡ [ |F1|p + |F2|p]1/p (31)
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θ is the angle of the plate from vertical; −90◦ is face up; +90◦ is face down. Coefficient
| sin θ| scales Ra∗ and RaR to model the effect of the plate’s inclination as a reduction in the
gravitational acceleration.

h =


∥∥hθ, ∥∥hF , h∗(|sin θ|Ra∗)∥∥2∥∥16 0 ≤ sin θ∥∥hθ, ∥∥hF , hR (|sin θ|RaR/Ξ)

∥∥
5

∥∥
16

sin θ ≤ 0
(32)

ψ is the angle of the forced flow from the zenith; ψ = 0◦ is upward flow; ψ = 90◦ is
horizontal flow; ψ = 180◦ is downward flow. The forced flow is always parallel to the plate.

hθ =


[sinψ]2

∥∥∥hF , h′θ∥∥∥
2
+ [cosψ]2

∥∥∥hF , h′θ∥∥∥
p(2,ReN χI/ReF )

0 ≤ cosψ;

[sinψ]4
∥∥∥hF , h′θ∥∥∥

2
+ [cosψ]4

∥∥∥hF , h′θ∥∥∥
p(16,ReF /[ReN χI ])

cosψ ≤ 0
(33)

The vertical natural convection component h′θ is independent of ψ:

h′θ = h′(|cos θ|Ra′/Ξ) (34)

However, its combination with hF depends on function p(ζ, η), specifically
p(2, ReN χI/ReF ) when cosψ ≥ 0, and p(16, ReF /[ReN χI ]) when cosψ ≤ 0:

p(ζ, η) = exp3
(
1/2 + expζ

(
−ηζ/ζ

) /
2
)

expb(φ) ≡ bφ (35)

The χI factor models the longer path which forced flow takes along plateau islands
roughness. The χ factor models the longer path which forced flow takes along non-plateau
roughness. ReI Equation (17) is in Section 3. Use ReI = +∞ (which implies χI = χ) for
non-plateau roughness.

χ = 1− 3
√
3
ε

L
ln
ε

L
χI = expχ

(
exp4

(
− [ReF /ReI ]

4
))

(36)

ReN is the effective Reynolds number of vertical natural convection:

ReN ≈ 8Nu′ Ξ3

Nu′0
Ξ ≡

∥∥∥∥1 , 0.5

Pr

∥∥∥∥√
1/3

Nu′ ≡ h′ L

k
Nu′0 ≡ 24

4
√
2π2

(37)

10. Results
Table 5 shows the combinations of flow types and orthogonal orientations.
Configurations measured by the present apparatus with its 0.305 m square plates are

marked with •.
Configurations having turbulent natural convection are marked with ⃝. These would

require either a larger plate and wind-tunnel or higher plate temperatures than the present
apparatus supports.

Table 5. Mixed convective modes.

Natural Forced Vertical Up Down Opposing Aiding

laminar turbulent •Figure 5 •Figure 10 •Figure 12 •Figure 15 •Figure 17
laminar rough •Figure 6 •Figure 11 •Figure 13 •Figure 16 •Figure 18
turbulent turbulent ⃝ ⃝ ⃝ ⃝ ⃝
turbulent rough ⃝ ⃝ ⃝ ⃝ ⃝
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Tables 6 and 7 summarize the present theory’s conformance with 104 measurements in
twelve data-sets from the present apparatus’s two plates.

The “ε” column identifies the 30.5 cm square plate used. The 3.00 mm plate had rough
flow over the 1950 < ReF < 5×104 range. The 1.04 mm plate had turbulent flow over nearly
all of the same range. The “Used” column is the count of measurements having 1950 < ReF <

5 × 104 out of the count of measurements. Measurements at ReF > 5 × 104 were practically
unaffected by mixing.

The ε = 3.00 mm data-sets have RMSRE values between 2.0% and 3.8%.
The ε = 1.04 mm data-sets have RMSRE values between 1.3% and 3.1%.

Table 6. Convection measurements versus present theory, forced rough flow.

Description ε θ ψ RMSRE Bias Scatter Used

downward facing plate 3.00 mm +90.0◦ 90.0◦ 3.8% +1.0% 3.7% 10/14
upward facing plate 3.00 mm −90.0◦ 90.0◦ 3.6% −0.2% 3.6% 6/10
vertical plate, level flow 3.00 mm +0.0◦ 90.0◦ 2.0% +0.8% 1.8% 6/8
opposing vertical plate 3.00 mm +0.0◦ 180.0◦ 2.6% −0.7% 2.5% 11/13
aiding vertical plate 3.00 mm +0.0◦ 0.0◦ 3.3% +0.6% 3.3% 9/11

Table 7. Convection measurements versus present theory, forced turbulent flow.

Description ε θ ψ RMSRE Bias Scatter Used

downward facing plate 1.04 mm +90.0◦ 90.0◦ 2.6% −0.6% 2.6% 12/15
upward facing plate 1.04 mm −90.0◦ 90.0◦ 2.5% +0.2% 2.4% 6/8
vertical plate, level flow 1.04 mm +0.0◦ 90.0◦ 3.0% +0.8% 2.8% 10/14
opposing vertical plate 1.04 mm +0.0◦ 180.0◦ 3.1% +0.0% 3.1% 10/12
aiding vertical plate 1.04 mm +0.0◦ 0.0◦ 3.0% −0.4% 3.0% 10/12
opposing inclined plate 1.04 mm +82.0◦ 98.0◦ 1.4% −0.1% 1.4% 7/8
aiding inclined plate 1.04 mm +82.0◦ 82.0◦ 2.1% +0.5% 2.1% 7/8

Table 8 summarizes the present theory’s conformance with 78 measurements in 28
data-sets on five vertical rough surfaces in horizontal flow from Rowley et al. [14]. The five
stucco data-sets have RMSRE values between 2.5% and 6.5%; the other data-sets have RMSRE
values between 0.2% and 5%.

11. Discussion
Developing this theory was difficult due to the lack of photographs of mixed convection

streamlines along rough surfaces. Analysis of the measurements made clear that mixed
convection from rough plates was different from that of smooth plates. The flow patterns had
to be inferred from these measurements and knowledge of natural and forced convections.

Many theories were tried and discarded concerning the forced vertical flow cases.
Examination of hypothetical velocity profiles sparked the present theory, which explains
the aiding and opposing flow cases both having ℓ

√
3-norm and ℓ3-norm asymptotes.

11.1. Heat transfer bounds
All of the ℓp-norms combining natural and forced heat transfer have

√
3 ≤ p ≤ 5. The

mixed heat transfer is thus bounded between ∥hF , hN∥5 and ∥hF , hN∥√3.
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Table 8. Rowley et al. mixed convection measurements.

Surface ϵ ε V RMSRE Bias Scatter Count

smooth-plaster 0.910 0.200 mm 15.65 m/s 3.3% −0.8% 3.3% 2
smooth-plaster 0.910 0.200 mm 13.41 m/s 2.7% −0.1% 2.7% 2
smooth-plaster 0.910 0.200 mm 11.18 m/s 0.6% +0.6% 0.1% 2
smooth-plaster 0.910 0.200 mm 8.94 m/s 1.5% +1.5% 0.3% 2
smooth-plaster 0.910 0.200 mm 6.71 m/s 2.4% +2.3% 0.8% 2
smooth-plaster 0.910 0.200 mm 4.47 m/s 2.7% +1.3% 2.4% 2
concrete 0.940 0.550 mm 15.65 m/s 0.2% −0.2% 0.0% 1
concrete 0.940 0.550 mm 13.41 m/s 2.3% −0.1% 2.3% 3
concrete 0.940 0.550 mm 11.18 m/s 2.5% −1.0% 2.3% 7
concrete 0.940 0.550 mm 8.94 m/s 4.7% −3.6% 3.0% 2
concrete 0.940 0.550 mm 6.71 m/s 2.4% +0.1% 2.4% 2
concrete 0.940 0.550 mm 4.47 m/s 4.1% +4.1% 0.3% 2
brick 0.930 0.750 mm 12.67 m/s 4.7% −3.8% 2.8% 6
brick 0.930 0.750 mm 10.95 m/s 3.6% +0.0% 3.6% 4
brick 0.930 0.750 mm 8.94 m/s 4.4% −1.6% 4.1% 3
brick 0.930 0.750 mm 8.00 m/s 2.5% +1.4% 2.1% 5
brick 0.930 0.750 mm 5.99 m/s 4.4% +4.3% 0.8% 4
brick 0.930 0.750 mm 3.38 m/s 2.9% −0.2% 2.9% 4
rough-plaster 0.910 0.750 mm 13.41 m/s 2.6% −2.6% 0.0% 1
rough-plaster 0.910 0.750 mm 11.18 m/s 2.5% −2.0% 1.5% 2
rough-plaster 0.910 0.750 mm 8.94 m/s 1.3% +0.8% 1.1% 2
rough-plaster 0.910 0.750 mm 6.71 m/s 0.5% −0.1% 0.4% 3
rough-plaster 0.910 0.750 mm 4.47 m/s 1.7% −0.9% 1.5% 2
stucco 0.910 1.500 mm 13.41 m/s 6.8% −6.7% 1.0% 2
stucco 0.910 1.500 mm 11.18 m/s 3.3% −2.9% 1.6% 3
stucco 0.910 1.500 mm 8.94 m/s 2.1% +1.5% 1.4% 3
stucco 0.910 1.500 mm 6.71 m/s 5.4% +4.9% 2.3% 3
stucco 0.910 1.500 mm 4.47 m/s 5.7% +5.7% 0.6% 2

11.2. Horizontal flow obstruction
The fan pulling air through the chamber is sufficient to counter the effect of the

wind-tunnel’s obstructions to horizontal flow, except in the case of the vertical plate with
opposing flow. In order to draw some air upward at slow (downward) fan speeds, the air’s
momentum must be reversed. This is modeled by increasing parameter B of Table 2 by twice
the vertical distance from the plate to the test chamber upper edge, normalized by L and the
ratio of the upper edge perimeter to the plate width. This same correction applies to still air in
the vertical tunnel.

11.3. Effective vertical reynolds number
Aiding and opposing vertical plate measurements in a fluid other than air are needed to

further test the effective vertical Reynolds number, ReN Equation (9).
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11.4. Rough velocity profiles
The hypothetical forced flows in the Section 6 velocity profiles were turbulent flows.

Measurements of both vertical plates in vertical flow conforming to the present theory suggests
that the rough and turbulent velocity profiles are similar.

11.5. Duct velocity profile
The aggregate boiling point kinematic viscosity ν0 in Equation (22) may be useful in

developing formulas for pipe and duct velocity profiles as a function of duct length.

12. Conclusions
Formulas were presented for predicting the mixed convective surface conductance of a

flat isotropic surface roughness having a convex perimeter in a Newtonian fluid with a steady
forced flow in the plane of that roughness.

The prerequisites are the RMS height-of-roughness 0 < ε, angle θ of the surface from
vertical, angle ψ of the forced flow from the zenith, Ra/L3 and Pr of the fluid, and the
characteristic-length L > 0 and Re > 0 of the forced flow.
• RMS height-of-roughness ε is the correct metric for predicting forced convective surface

conductance.
• Roughness ε≪ L does not affect the natural component of mixed convection.
• Plate inclination does not affect the forced component of mixed convection.
• When Re = 0, the mixed convection is the same as its natural component.

The present work’s formulas were compared with 104 measurements in twelve data-sets
from the present apparatus in two inclined and all five corner case orientations. The twelve
data-sets had RMSRE values between 1.3% and 4% relative to the present theory.

The present work’s formulas were compared with 78 measurements in 28 data-sets on five
vertical rough surfaces in horizontal airflow from Rowley et al. [14]. The five stucco data-sets
had RMSRE values between 2.5% and 6.5%; the other data-sets had RMSRE values between
0.2% and 5%.

Supplementary materials: A zip archive of PDF files of graphs and estimated measurement
uncertainties of each 102-min time-series producing a convection measurement can be
downloaded from: http://people.csail.mit.edu/jaffer/convect. A zip archive
of the aggregate measurements is also available from the site.
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Nomenclature

Latin letters
A surface area (m2)
Gr Grashof number
h average convective surface conductance (W/(m2 · K))
hF forced convective surface conductance (W/(m2 · K))
hN natural convective surface conductance (W/(m2 · K))
h∗ upward natural convective surface conductance (W/(m2 · K))
h′ vertical plate natural convective surface conductance (W/(m2 · K))
hθ vertical mode of inclined natural convective surface conductance (W/(m2 · K))
h′θ vertical component of hθ (W/(m2 · K))
hR downward natural convective surface conductance (W/(m2 · K))
k fluid thermal conductivity (W/(m · K))
L characteristic length (m)
LP roughness spatial period (m)
L∗ ratio of plate area to its perimeter (m)
L• ratio of island area to its perimeter (m)
LW width of plate (m)
Nu average Nusselt number
NuN average Nusselt number of natural convection
Nu′ average Nusselt number of vertical plate natural convection
Nu′0 Nusselt number of vertical plate conduction
p exponent in ℓp-norm: {|F1|p + |F2|p}1/p

Pr Prandtl number of the fluid
Ra Rayleigh number
Ra′ vertical plate Rayleigh number
Ra∗ upward Rayleigh number
RaR downward Rayleigh number
ReF Reynolds number of the forced flow parallel to the plate
ReI Reynolds number of rough turbulent transition to forced turbulent flow
ReN effective Reynolds number of vertical natural convection
Rey friction Reynolds number
u(y) velocity at x = L/2 and distance y from the plate (m/s)
uN effective natural flow speed = ν ReN/L (m/s)
u∗ friction velocity (m/s)
W0 principal branch of the Lambert W function
y distance from plate (m)
z average roughness elevation (m)
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Greek symbols
δ boundary layer thickness (m)
δλ laminar boundary layer thickness (m)
δτ turbulent boundary layer thickness (m)
ϵ surface emissivity
ε surface RMS height-of-roughness (m)
η ratio of ReN and ReF (either order)
κ von Kármán constant ≈ 0.41

Ω ratio of non-plateau area to cell area (m2/m2)
ν fluid kinematic viscosity (m2/s)
ν0 gas kinematic viscosity (m2/s) at boiling point
ψ angle between the forced flow and the zenith; 0◦ is aiding flow; 180◦ is opposing flow
θ angle of the plate surface from vertical; face up is −90◦; face down is +90◦

Ξ natural convection self-obstruction factor
χ roughness velocity correction factor for forced flow
χI plateau islands roughness correction factor

Notes
1 Schlichting [19] describes a boundary-layer: “In that thin layer the velocity of the fluid increases from zero at the wall (no slip)

to its full value which corresponds to external frictionless flow.”

2 One outlying measurement for brick at V = 15.65 m/s was omitted.
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Appendix A

Ⅰ. Velocity profiles
This investigation assumes that the laminar natural boundary layer thickness δλ is the same as the forced laminar thickness

calculated using the effective vertical ReN . Formulas from Lienhard and Lienhard [18] lead to natural convection velocity profile
u(y) Equation (A1), where y is the horizontal distance from the mid-line of the vertical plate, ν is the fluid’s kinematic viscosity, and
uN = ν ReN/L is the effective natural flow speed.

u(y) ≈ 4uN
y

δλ

[
1− y

δλ

]2
0 < y < δλ ≈ 4.92L√

ReN
(A1)

In forced turbulent flow along a smooth plate, let friction velocity u∗ ≈ u∞

√
fτ/2, and Rey = u∗ y/ν, with fτ from

Equation (15). Lienhard and Lienhard [18] gives the viscous sublayer velocity profile as Equation (A2), and the log-layer velocity
profile as Equation (A3). The von Kármán constant κ ≈ 0.41.

u(y)

u∗
≈ Rey Rey < 7 (A2)

u(y)

u∗
≈

[
1

κ
ln (Rey) + 5.5

]
Rey > 30 (A3)

Lienhard and Lienhard [18] does not tell how to interpolate these two formulas. The 7 < Rey < 30 range to be interpolated is
large, and the transition must be gradual. Adapting the staged-transition formula from Jaffer [2] by using the ℓ−

√
1/3-norm instead

of the ℓ−4-norm in ReY Equation (A4) yields Equation (A5).

ReY = ∥7, Rey∥−√1/3
y < δτ ≈ 0.37L

5
√
Re

(A4)

u(y)

u∗
=

[
5.5 +

ln (Rey)
κ

]
+
ReY
Rey

[
ReY − 5.5− ln (ReY )

κ

]
(A5)

Equation (A6) is a proposed alternative to Equation (A5) based on the Lambert W0 function.

u(y)

u∗
=

8√
3
W0(

√
3Rey) (A6)

The “interpolated” Equation (A5) and Equation (A6) curves are nearly identical in Figure A1. It is not surprising that a formula
for turbulent flow involves the Lambert W0 function. Equation (A6) uses W0(

√
3Rey) while fτ Equation (15) uses W0(ReF /

√
3).

While interesting, these curves are employed only for estimating the net vertical flow near the plate. None of the convective
surface conductance formulas quantitatively depend on them.
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Figure A1. Forced convection velocity profile.

Ⅱ. Rough plates
Because roughness ε ≪ L has negligible effect on natural convection, uN should be the same from smooth and rough plates.

Hence, their ReN ≡ uN ε/ν should also be equal.
Forced flow along a rough surface traverses a path longer than L. The effective ReN/ReF ratio of a rough surface should be

increased by a function of the “roughness Reynolds number” Reε Equation (A7).

Reε =
u∗ ε

ν
=

Re√
3 [L/ε] ln(L/ε)

(A7)

Proposed is ReN/Re scale factor χ Equation (A8), where Re is the solution of Equation (A7) combined with Reε = 3 [ε/L]2.
Figure A2a graphs χ as a function of ε.

χ =
ReF +Re

ReF
= 1− 3

√
3
ε

L
ln
ε

L
(A8)
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Appendix B

Plateau islands roughness correction
Plates shedding only turbulent flow have χI = 1. Plates shedding only rough flow have χI = χ from Equation (A8).
Plateau roughness (forced) convection transitions from rough flow to turbulent flow as the ℓ−4-norm in Equation (18). The scale

factor χI should vary between 1 and χ as a function of ReF . Expression exp4
(
−[ReF /ReI ]

4
)
varies between 0 and 1. Proposed is

χI , the ReN/ReF scale factor:
χI = expχ

(
exp4

(
−[ReF /ReI ]

4
))

(B1)

Note the similarity of Equation (B1) and Equation (27) with ζ = 4.
Figure A2b plots χI with ε = 3 mm, ε = 1.143 mm, and ε = 0.
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Appendix C

I. Apparatus and measurement methodology
The original goal of the present apparatus was to measure forced convection heat transfer from a precisely rough plate over the

widest practical span of airflow velocities. To minimize natural convection, it measured downward natural convection mixed with
horizontal forced flow. Its measurements are presented in Jaffer [2].

Although more complicated to analyze, the plate was suspended, not embedded, in the wind-tunnel. The measurements from
prior investigations which embedded the plate in a wind-tunnel wall were largely incompatible with the present theory because their
flows were not isobaric.

The small size of the wind-tunnel chassis (1.3 m× 0.61 m× 0.65 m) afforded an opportunity to characterize mixed convection
at other orientations of the plate and flow.

II. The plate
Figure C1a shows the rough surface of the test plate; it was milled from a slab of MIC-6 aluminum (Al) to have (676 of) square

8.33mm×8.33mm×6mm posts spaced on 11.7 mm centers over the 30.5 cm×30.5 cm plate. The area of the top of each post was
0.694 cm2, which was 50.4% of its 1.38 cm2 cell. The RMS height-of-roughness ε = 3.00 mm. Openness Ω ≈ 49.6%. Embedded
in the plate are 9 electronic resistors as heating elements and a Texas Instruments LM35 Precision Centigrade Temperature Sensor.
2.54 cm of thermal insulating foam separates the back of the plate from a 0.32 mm thick sheet of aluminum with an LM35 at its
center. Figure C1b is a cross-section illustration of the plate assembly.

MIC-6 aluminum

polyisocyanurate foam

extruded polystyrene foam

heating element temperature sensor

(a) (b)
Figure C1. (a) Rough surface of plate and (b) Plate assembly cross-section.

III. Wind tunnel
The fan pulls air from the test chamber’s open intake through the test chamber. The fan blows directly into a diffuser made

of folded plastic mesh to disrupt vortexes generated by the fan. In a sufficiently large room, the disrupted vortexes dissipate before
being drawn into the open intake.

To guarantee isobaric (no pressure drop) flow, the wind-tunnel must be sufficiently large that its test chamber and plate assembly
boundary-layers do not interact at fan-capable airspeeds.

The wind-tunnel test chamber in Figure C2a has a 61 cm × 35.6 cm cross-section and a 61 cm depth. This allows the plate
assembly to be centered in the wind-tunnel with 15 cm of space on all sides. The fan pulling air through the test chamber produces
a maximum airspeed of 4.65 m/s (Re ≈ 9.2 × 104 along the 30.5 cm square plate). Its minimum nonzero airspeed is 0.12 m/s
(Re ≈ 2300).
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Test chamber laminar and turbulent 99% boundary-layer thicknesses ([19]) are:

δλ = 4.92

√
xν

u
δτ = 0.37x4/5

[ν
u

]1/5
(C1)

Figure C2b shows that the 15 cm clearance between the plate and the test chamber walls is sufficient to prevent their
boundary-layers from interacting at airspeeds within the fan’s capabilities.

The plate assembly (face down in Figures C1b and C2a is suspended by six lengths of 0.38 mm-diameter steel piano wire
terminated at twelve zither tuning pins in wooden blocks fastened to the exterior of the test chamber. With the plate assembly in the
test chamber, the airspeed increases in proportion to the reduction of test chamber apertureAe by the plate’s cross-sectional areaA×:

u×
u

=
Ae

Ae −A×
≈ 107.6% (C2)
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Figure C2. (a) ε = 3 mm plate in wind-tunnel and (b)Wind-tunnel boundary-layers.

IV. Automation
Data capture and control of convection experiments are performed by an “STM32F3 Discovery 32-Bit ARM M4 72MHz”

development board. The program written for the STM32F3 captures readings and writes them to the microprocessor’s non-volatile
RAM, controls the plate heating, servos the fan speed, and later uploads its data to a computer through a USB cable.

Once per second during an experiment, the program calibrates and reads each on-chip 12 bit analog-to-digital converter 16
times, summing the sixteen 12 bit readings to create a 16 bit reading per converter.

Rotations of the fan are sensed when a fan blade interrupts an infrared beam. The microprocessor controls a solid-state relay
(supplying power to the fan) to maintain a fan rotation rate, ω, which is dialed into switches. At ω ≤ 210 r/min, the microprocessor
pulses power to the fan to phase-lock the beam interruption signal to an internal clock. At ω > 210 r/min, the microprocessor servos
the duty cycle of a 7.5 Hz square-wave gating power to the fan. This system operates at 32 r/min < ω < 1400 r/min.

V. Calibration
The correspondence between fan rotation rate ω and test chamber airspeed u was determined using an “Ambient

Weather WM-2”, which specifies an accuracy of ±3% of reading. After 2017 an “ABM-200 Airflow & Environmental Meter”
specifying an accuracy of ±0.5% of reading between 2.2 m/s and 62.5 m/s, was used.

The “UtiliTech 20 inch 3-Speed High Velocity Floor Fan” has three blades with maximum radius r = 0.254m. Its characteristic
length is its hydraulic-diameter,DH = 0.550 m. The velocity of the blade tips is 2π r ω/60, where ω is the number of rotations per
minute. The Reynolds number of the fan is:

Ref =
2π rDH ω/60

3 ν
(C3)

The 3 blade tips trace the whole circumference in only 1/3 of a rotation, hence the 3 in the denominator.
Faster fan rotation ω yields diminishing increases of test-chamber airspeed ut, suggesting Equation (C4), where uu is the
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limiting velocity for arbitrarily fast rotation, and coefficient η converts fanRef to test-chamberRet. Figure C3 gives the parameters
andmeasurements at 300 r/min ≤ ω ≤ 1500 r/min. The “3mm” points are theWM-2measurements of the 3mmplate in the original
wind-tunnel; The “1mm” points are the ABM-200 measurements of the 1 mm plate in the tunnel with a new diffuser and fan cowling.

Ret = ∥η Ref , DH uu/ν∥−2 ut = ∥π η r ω/90, uu∥−2 (C4)

Airspeeds slower than 2 m/s should be nearly proportional to ω. Both anemometers show evidence of dry (bearing) friction in
Figure C3. The ABM-200 “meter predictions” trace plots 1.125ut−0.381; theWM-2 “meter predictions” trace plots 1.477ut−0.81

when ut < 1.725 and ut otherwise. A mistake in the 2016 measurement software under-counted fan rotations at ω > 1200 r/min.
It is compensated by replacing ω in Equations (C3, C4) with [ω−6 − 1750−6]−1/6 in the WM-2 “meter predictions”. The RMSRE
and Bias are relative to the “meter predictions”. The second “1mm” row includes the point at 400 r/min.
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Figure C3. Airspeed versus fan speed.

Figure C4a,b show the fan speed variability in each experiment; these are used in the measurement uncertainty calculations.
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Figure C4. (a) Fan variability 3 mm plate and (b) Fan variability 1 mm plate.

VI. Ambient sensing
Figure C5a shows the ambient sensor board which was at the lower edge of the test chamber in Figure C2a. It measures the

pressure, relative humidity, and air temperature at the wind-tunnel intake. Wrapped in aluminum tape to minimize radiative heat
transfer, the LM35 temperature sensor projects into the tunnel. To minimize self-heating, the LM35 is powered only while being
sampled.
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side metal strip

XPS
foam

polyisocyanurate
(PIR) foam

metal

(a) (b)
Figure C5. (a) Ambient sensors and (b) XPS wedge conduction.

VII. Physical parameters
Table C1 lists the static parameters from measurements and specifications.
The effective ϵwt may differ from the medium-density-fiberboard emissivity given by Rice [20] because the temperatures of

the test chamber surfaces may not be uniform. Through the open intake, the plate also exchanges thermal radiation with objects in
the room having different temperatures.

Table C1. Physical parameters.

Symbol Values Description

L 0.305 m length of flow along test-surface
A 0.093 m2 area of test-surface
ε 3.00 mm 1.04 mm RMS height-of-roughness
Cpt 4691 J/K 4274 J/K plate thermal capacity
DAl 19.4 mm metal slab thickness
DPIR 25.4 mm polyisocyanurate (PIR) foam thickness
Dw 19.05 mm XPS foam wedge height
kPIR 0.0222W/(m · K) PIR foam thermal conductivity
kXPS 0.0285W/(m · K) XPS foam thermal conductivity
UI 0.075 W/K front-to-back insulation thermal conductance
ϵAl 0.04 test-surface (MIC-6 Al) emissivity
ϵXPS 0.515 XPS foam emissivity (see text)
ϵdt 0.89 duck tape emissivity
ϵwt 0.90 test chamber interior emissivity

VIII. The 1 mm roughness plate
When the 6 mm posts were milled down to 2 mm height, the four corner posts were left at their 6 mm height in order to preserve

the wire suspension. This resulted in ε = 1.04 mm for the plate as a whole. However, ReI occurs within the first few rows of posts.
ε = 1.143 mm over the first three rows of posts results in ReI = 6178.

IX. Modeling of parasitic heat flows
The plate has six surfaces from which heat can flow. At low airflow velocities, the sides of the insulation behind the test plate

can leak more heat than the test-surface transfers, shrinking to 6% at 1300 r/min.
In order to measure natural convection from the (rough) test surface, natural convection and thermal radiation from the four

sides (US) and back must be deducted from the total heat flow. Heat from the front plate flows through thermal insulating foam to a
thin aluminum sheet with a temperature sensor at its center. This heat flow is simply UI [TP −TB ], the product of the foam’s thermal
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conductance and the temperature difference across it.

X. Forced convection side model
The four sides are not isothermal; a 3.5 mm metal strip (see cross-section Figure C5 runs the length of the side; and aDw-tall

wedge of extruded polystyrene foam (XPS) insulation fills the metal slab’s 27 mm (=
√
2DAl) 45

◦ chamfer. The local surface
conductance hW (z) at elevation z (from the wedge point) is found by averaging the reciprocal distance to slab metal with respect to
angle θ:

hW (z) =

∫ θc

0

kXPS√
2 z θc

cos
(
θ +

π

4

)
dθ +

∫ θW

θw

kPIR
z −Dw

cos θ
θW − θw

dθ (C5)

=
kXPS√
2 z θc

[
sin

(
θc +

π

4

)
− sin

π

4

]
+

kPIR
z −Dw

[
sin θW − sin θw

θW − θw

]
θc = arctan

Dw − z

Dw
θw = arctan

Dw

z −Dw
θW = max

(
θw, arctan

L−Dw

z −Dw

)
Forced air flows parallel to the long dimension on two sides, but flows into the windward side and away from the leeward side.

Air heated by the windward side reduces heat transfer from the test-surface; air heated by the test-surface suppresses heat transfer from
the leeward side. Hence, the model excludes windward and leeward forced convection. The average forced convective conductance
of the flow-parallel foam wedges is calculated by integrating hW (z) in series (reciprocal of the sum of reciprocals, which is also
the ℓ−1-norm) with the local surface conductance kNuσ(Rex)/L, where Nuσ(Rex) is the local pierced-laminar convection from
Jaffer [2]:

UW =

∫ Dw

0

∫ L

0

∥∥∥∥hW (z),
k Nuσ(Rex)

L

∥∥∥∥
−1

dx dz (C6)

XI. Other side models
The heat flow through the four sidesUS will be estimated from the plate and ambient temperatures. While the forced convective

surface conductance of the sides is modeled by integrating the local forced surface conductance, this is not generally possible for
natural convection.

Natural convection formulas are known for some convex surfaces. The plate’s side metal surface is not convex.
Instead, the effective side width Les and effective emissivity ϵW are introduced into the model. The natural convection of each

side is calculated for an Les ×LC area instead of its actual LS ×LC area. The black-body radiation from each side is calculated for
its actual LS × LC area with an effective emissivity of ϵW .

The schematic drawing Figure 1b (modeled on the flow patterns in Fujii and Imura [3] Fig. 14(e) and 14(f)) shows a plume
rising from the center of an upward-facing plate fed by flow from the plate’s edges. For the test surface, the upward heat flow of
0.467W/K is more than twice the 0.212W/K expected from the back and sides. Convective flow from the upward-facing test surface
will draw in the air heated by the back and sides, reducing heat transfer from the test surface. In order to avoid double counting the
convected heat from the back and sides, they should not be deducted from the plate heat (the thermal radiation is still deducted). The
“reuptake” of this convected back and side heat should be nearly complete; its coefficient was set to 1 to avoid introducing another
degree-of-freedom into the model.

Not deducting side convection from upward natural convection has an unexpected benefit: the upward convection model is
thus insensitive to Les, allowing ϵW to be determined from only upward-facing measurements.

XII. Radiative transfer side model
The 3 mm roughness plate had its sides wrapped with duck tape, which has a different emissivity from the foamwedges forming

each side surface. Some of the 1 mm roughness plate runs were with tape and some without, requiring different ϵW values. For taped
sides ϵW ≈ 0.703; without tape ϵW ≈ 0.515.

Figure C2a shows duck tape applied to the lower 54% of the plate’s side, which corresponds to 50% coverage of the XPS
foam wedge. For this partial tape coverage, ϵW Equation (C7) is the area proportional mean of the duck tape emissivity and XPS
emissivity. Barreira et al. [21] measured ϵdt emissivities of 0.86 and 0.89 from two brands of “duck tape”. The emissivity is largely
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controlled by the exposed polyethylene film, and increases with oxidation. Hence, the larger value is used for the aged duck tape on
the plate sides. As of this writing, published emissivity measurements of XPS foam have not been located.

ϵW = 50% ϵdt + 50% ϵXPS (C7)

Natural convection measurements (u = 0) from the plate assembly over the span of inclinations in Figure 2 have less than
3.3% RMSREwhen calculated with ϵXPS = 0.515; the RMSRE increases to either side of 0.515. This value is consistent with natural
convection measurements of the plate assembly without tape.

XIII. Natural convection side model
With ϵW thus determined, Les was the remaining degree of freedom. Trials with vertical and downward plate measurements

found that Les had a value near the sum of the aluminum slab thickness 19.4 mm and the effective height of the side face of
the roughness ≈

√
2 ε. This makes sense for a natural convection dimension; it is used for Les. The 3 mm roughness plate has

Les ≈ 23.6 mm; 1 mm has Les ≈ 21.0 mm.
In the vertical case, 1/2 of the heated air from the bottom side flows along the vertical test surface and would be counted twice.

And 1/2 of the air drawn by the top side comes from the vertical test surface and would be counted twice. This vertical reuptake
coefficient was set to 1/2; discrepancy from the actual reuptake coefficient will manifest as error in measurements.

Consider the (initially) vertical plate as θ decreases from 0◦. As the bottom side face tilts upward, more (than half of the) heated
air will rise toward the test surface. That heat will reduce the convection from the test surface. When tilted downward, the heat from
the test surface will reduce the convection from the top side. To handle these cases, Equation (C8) includes a term 2 cos θ sin θ
whose minimum of −1 is reached at θ = −45◦ and a term −2 cos θ sin θ whose minimum of −1 is reached at θ = +45◦.

XIV. Combining radiative transfer and convection
A side’s radiative emissions, Uϵ, compete with its convective heat transfer. Both increase with side temperature, but both

act to lower that side temperature. Competitive heat transfer processes can often be modeled using the ℓp-norm with p > 1. The
value of p was adjusted so that the ∆T = 3.8K and ∆T = 11K data points align with the theory traces in Figure 2. The optimal
range is between p = 4/3 and p = 3/2; the geometric mean of those values is p =

√
2. The ℓ

√
2-norm appears three times in US

Equation (C8).
Equation (C8)US is an amount whichwill be deducted from themeasured heat flow. For each side, the ℓ

√
2-norm of the radiative

and convective conductances is paired with the product of the convective conductance and a continuous trigonometric function of
θ which goes negative when the natural convection would otherwise be double counted. Because of the triangle inequality, the
ℓ
√
2-norm will be greater than the convective component; thus, each side’s contribution to US will be positive.
No more than one reuptake process will be simultaneously active for a side. In Equation (C8) the expressions

min(0, sin θ,−.5 cos θ, 2 cos θ sin θ) and min(0, sin θ,−.5 cos θ,−2 cos θ sin θ) return the negative of the largest magnitude
potential reuptake. Table C2 describes the natural convection parameters and function.

Note that this analysis applies only to the plate assembly in alignment with the wind-tunnel, and oriented to have at least one
horizontal edge. Hence, rotation in plane of plate, ϕ, must be an integer multiple of 90◦. The only effect of ϕ in the equations is to
swap arguments LF and LW when ϕ is an odd multiple of 90◦.

US = ∥Uϵ, UN (θ − 90◦, LC , Les, 0
◦)∥√2

+ UN (θ − 90◦, LC , Les, 0
◦) min(0, sin θ,−.5 cos θ,−2 cos θ sin θ)

+ ∥Uϵ, UN (90◦ − θ, LC , Les, 0
◦)∥√2

+ UN (90◦ − θ, LC , Les, 0
◦) min(0, sin θ,−.5 cos θ, 2 cos θ sin θ)

+ 2 ∥Uϵ, UN (0◦, Les, LC , θ)∥√2

+ 2UN (0◦, Les, LC , θ) min(0, sin θ)

(C8)
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Table C2. Natural convection function and parameters.

Symbol Description

UN (θ, LF , LW , ϕ) natural convective conductance from Jaffer [5]
θ surface angle from vertical (−90◦ is face up)
LF plate length
LW plate width
ϕ rotation in plane of plate; integer multiple of 90◦

LC = 0.305 m plate length = side length
LS = 45.8 mm side width
Les = 19.4 mm+

√
2 ε effective side width for natural convection

ϵwt = 0.9 wind-tunnel test chamber emissivity
ϵW ≈ 0.703 taped; 0.515 bare effective side emissivity
hR black-body radiative surface conductance
Uϵ = LC LS ϵW ϵwt hR radiative emission from a side

UB0 is the test surface reuptake conductance from the back. Its min(0, sin θ) term is squared because the heated air from the
back must flow around two right-angle edges to reach the test surface.

UB0 = −UN (90◦, LC , LC , 0
◦) min(0, sin θ)2 (C9)

Figures C6–C8 show upward, vertical, and downward convection measurements, respectively. Taken from 3 mm and 1 mm
roughness plates over a range of Ra values, these graphs, in combination with Figure 2 test the natural convection and radiative
transfer side models.

The traces labeled “theory” are Equation (7) with the appropriate row of Table 2. The difference betweenψ = 0◦ andψ = 180◦

in Figure C7 is explained in Section 11.
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Figure C6. Natural convection from upward-facing surface.

37



Thermal Science and Engineering 2025, 8(1), 9275.

25

30

35

40

45

50

10
7

av
er

ag
e 

N
u
ss

el
t 

n
u
m

b
er

  
 N

u

Rayleigh number  Ra′

uncertainty

theory ψ = 0°
theory ψ = 180°

external 3mm 20160212 T
F
 = 18.7°C

ψ = 180° 1mm 20170430 T
F
 = 18.0°C

Figure C7. Natural convection from vertical surface.

 6

 7

 8

 9

10

11

10
6

10
7

av
er

ag
e 

N
u
ss

el
t 

n
u
m

b
er

  
 N

u

Rayleigh number  Ra
R

uncertainty

theory
3mm 20160813 T

F
 = 22.2°C

1mm 20220702 T
F
 = 21.4°C

Figure C8. Natural convection from downward-facing surface.

XV. Mixed convection side model
Each ℓ

√
2-norm instance of a call to UN is replaced by a call to UM , with first argument Ufl(u) or Uft(u) Table C3. In order

to ignore forced convection from the leading and trailing sides, Uft(u) = 0 when ψ = 90◦ (horizontal flow); otherwise, Ufl(u) = 0.
The reuptake instances of UN (θ, LF , LW , ϕ) are changed to the equivalent UM (0, θ, LF , LW , ϕ, 0◦).

Table C3. Mixed conductance functions and parameters.

Symbol Description

Ufl(u) level flow side forced thermal conductance
Uft(u) tilted flow side forced thermal conductance

u bulk flow velocity
UM (UF , θ, LF , LW , ϕ, ψ) mixed convective conductance

UF forced thermal conductance
θ surface angle from vertical (−90◦ is face up)
LF forced characteristic length
LW other plate dimension
ϕ rotation in plane of plate; integer multiple of 90◦

ψ angle of fluid flow from vertical (0◦ is upward)
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US(u) = ∥Uϵ, UM (Ufl(u), θ − 90◦, LC , Les, 0
◦, ψ)∥√2

+ UM (0, θ − 90◦, LC , Les, 0
◦, 0◦) min(0, sin θ,−.5 cos θ,−2 cos θ sin θ)

+ ∥Uϵ, UM (Ufl(u), 90
◦ − θ, LC , Les, 0

◦, ψ)∥√2

+ UM (0, 90◦ − θ, LC , Les, 0
◦, 0◦) min(0, sin θ,−.5 cos θ, 2 cos θ sin θ)

+ 2 ∥Uϵ, UM (Uft(u), 0
◦, Les, LC , θ, ψ)∥√2

+ 2UM (0, 0◦, Les, LC , θ, 0
◦) min(0, sin θ)

(C10)

When u is large, US(u) approaches the sum of the forced convection conductances. US(0) ≡ US of Equation (C8).

XVI. Measurement methodology
The measurement methodology employed is unusual. Instead of waiting until the plate reaches thermal equilibrium, the plate

is heated to 15 K above ambient, heating stops, the fan runs at the designated speed, and convection cools the plate. All of the sensor
readings are captured each second during the 102 min process, Table C4 lists the dynamic physical quantities measured each second.
Table C5 lists computed quantities. BothUS(u) and {ϵAl ϵwt hRA} are subtracted from the combined heat flow. The mean of h(u, t)
over the time interval in which∆T drops by half (or exceeds 6142 s total time) is the result from that experiment.

Table C4. Dynamic quantities.

Symbol Units Description

ω r/min fan rotation rate
TF K ambient air temperature
TP K plate temperature
TB K back surface temperature
P Pa atmospheric pressure
Φ Pa/Pa air relative humidity

Table C5. Computed quantities.

Symbol Units Description

hR W/(m2K) radiative surface conductance
US(u) W/K side radiative and convective conductance
h(u, t) W/(m2K) convective surface conductance

XVII. Heat balance
Collecting into UT (u) Equation (C11) those terms which have a factor of temperature difference TP − TF , Equation (C12) is

the heat balance equation of the plate during convective cooling:

UT (u) = US(u) + {h(u)A}+ {ϵAl ϵwt hRA} (C11)

0 = UT (u)
[
TP − TF

]
+ UI

[
TP − TB

]
+ Cpt

dTP
dt

(C12)

The plate and ambient temperatures are functions of time t. Determined experimentally during heating, the temperature
group-delay through the 2.54 cm block of insulation between the slab and back sheet is 110 s:

TP (t) =
UT (u)TF (t) + UI TB(t− 110 s)− Cpt [dTP (t)/dt]

UT (u) + UI
(C13)
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To compute Nusselt number Nu = hL/k, Equation (C13) is solved for the {h(u, t)A} term from Equation (C11).

ς(t) = −UI

[
TP (t)− TB(t− 110 s)

]
(C14)

{h(u, t)A} =
ς(t)− Cpt

[
TP (t)− TP (t

′)
]
/[t− t′]

TP (t)− TF (t)
− {ϵAl ϵwt hRA} − US(u) (C15)

where t′ is the previous value of t. In Equations (C14) and (C15), TP (t), TF (t), and TB(t) are the 15-element cosine averages of
plate and fluid temperatures (centered at time t).

In order to simulate TP from the other dynamic inputs, (C13) is solved as a finite-difference equation where dt = t− t′ = 1:

TP (t) =
UT (u)TF (t) + UI TB(t− 110 s) + Cpt TP (t

′)

UT (u) + UI + Cpt
(C16)

In Equation (C16), TP (t′) is the previous simulated value, not a measured value.

XVIII. Measurement uncertainty
Following Abernethy et al. [22], the final steps in processing an experiment’s data are:

• Using Equation (C15), calculate the sensitivities of convected power hA∆T per each parameter’s average over the
measurement time-interval;

• multiply the absolute value of each sensitivity by its estimated parameter bias to yield component uncertainties;
• calculate combined bias uncertainty as the root-sum-squared (RSS) of the component uncertainties;
• calculate the RSS combined measurement uncertainty as the RSS of the combined bias uncertainty and twice the product of the

rotation rate sensitivity and variability.

Tables C6 and C7 list the sensitivity, bias, and uncertainty for each component contributing more than 0.20% uncertainty for
downward-facing 3 mm and 1 mm roughness plates, respectively. Figure C9a, b show the measurements relative to the present
theory for rough flow and turbulent flow, respectively.

The supplementary data contains these graphs and tables for each data-set.

Table C6. Estimated measurement uncertainties, bi-level 3mm roughness at Re = 59, 593.

Symbol Nominal Sensitivity Bias Uncertainty Component

∆T 9.47K +12.2%/K 0.10K 1.22% LM35C differential
P 101kPa +0.0009%/Pa 1.5kPa 1.28% MPXH6115A6U air pressure
Cpt 4.69kJ/K +0.024%/(J/K) 47J/K 1.13% plate thermal capacity
η 0.401 +180% 0.014 2.52% anemometer calibration
ς 6.00mm +11285%/m 100um 1.13% post height

3.49% combined bias uncertainty

Symbol Nominal Sensitivity Variability Uncertainty Component

ω 905r/min +0.081%/(r/min) 5.2r/min 0.43% fan rotation rate
3.60% RSS combined uncertainty
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Table C7. Estimated measurement uncertainties, bi-level 1mm roughness at Re = 55, 935.

Symbol Nominal Sensitivity Bias Uncertainty Component

∆T 10.2K +11.7%/K 0.10K 1.17% LM35C differential
P 100.0kPa +0.0008%/Pa 1.5kPa 1.26% MPXH6115A6U air pressure
Cpt 4.24kJ/K +0.028%/(J/K) 42J/K 1.17% plate thermal capacity
η 0.340 +195% 0.003 0.66% anemometer calibration
uu 6.381 +2.44% 0.100 0.24% diffuser airflow upper bound
LT 8.34mm +9365%/m 100um 0.94% post length
Lm 3.57mm +454%/m 500um 0.23% side metal strip width
ϵrs 0.040 +20.4% 0.010 0.20% test-surface emissivity
ϵwt 0.900 +9.05% 0.025 0.23% wind-tunnel emissivity

2.44% combined bias uncertainty

Symbol Nominal Sensitivity Variability Uncertainty Component

ω 1.03kr/min +0.065%/(r/min) 2.5r/min 0.16% fan rotation rate
2.46% RSS combined uncertainty
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Figure C9. (a)Measured versus theory ε = 3 mm and (b)Measured versus theory ε = 1 mm.

XIX. Details
Documentation, photographs, electrical schematics, and software source-code for the apparatus, as well as calibration and

measurement data are available from: http://people.csail.mit.edu/jaffer/convect.
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