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Abstract: This research introduces a novel framework integrating stochastic finite element 

analysis (FEA) with advanced circular statistical methods to optimize heat pump efficiency 

under material uncertainties. The proposed methodologies and optimization focus on balancing 

the mean efficiency and variability by adjusting the concentration parameter of the Von Mises 

distribution, which models directional variability in thermal conductivity. The study highlights 

the superiority of the Von Mises distribution in achieving more consistent and efficient thermal 

performance compared to the uniform distribution. We also conducted a sensitivity analysis of 

the parameters for further insights. The results show that optimal tuning of the concentration 

parameter can significantly reduce efficiency variability while maintaining a mean efficiency 

above the desired threshold. This demonstrates the importance of considering both stochastic 

effects and directional consistency in thermal systems, providing robust and reliable design 

strategies. 
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1. Introduction 

The efficiency of thermal systems, particularly heat pumps, is pivotal in 

environmental sustainability and operational cost-effectiveness. Heat pumps are 

extensively used for heating and cooling in residential and industrial applications, 

where their efficiency directly impacts energy consumption and carbon emissions. As 

global energy efficiency standards tighten, optimizing the performance of heat pumps 

has become increasingly important. However, accurately predicting and optimizing 

heat pump performance remains challenging due to the variability in material 

properties such as thermal conductivity. These material properties are not only 

stochastic but also exhibit directional variability, introducing complexities that are 

often overlooked in traditional modeling approaches. 

Researchers have made significant strides in optimizing heat pump systems 

through various design and operational strategies in recent years. For example, Huang 

et al. [1] optimized integrating photovoltaic systems, heat pumps, thermal storage, and 

electric vehicles in residential building clusters to create self-sufficient energy 

ecosystems in Sweden. Similarly, Ahmed et al. [2] employed data-driven machine 

learning techniques to optimize the design and operational controls of borehole heat 

exchanger-coupled heat pumps, highlighting the potential of combining optimization 

algorithms with sustainable technology. 

However, while advancing the field, these studies often fail to account for the 

directional variability of material properties such as thermal conductivity. Most heat 
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pump optimization approaches, including those by Halilovic et al. [3] and Li et al. [4], 

have focused on optimizing spatial layouts, well configurations, or heat sink designs. 

Tancabel et al. [5], for instance, conducted a multi-physics analysis to optimize heat 

exchangers with novel non-round tubes, while Zhang et al. [6] improved the grid 

connection performance of pump turbines by optimizing the guide vane profile. 

Though these methods enhance system-level performance, they typically rely on linear 

or isotropic assumptions about material properties, which limit their applicability in 

anisotropic materials. 

This research builds on these foundational studies by addressing a gap in the 

literature: the role of directional variability in thermal conductivity. By integrating 

stochastic finite element analysis (FEA) with circular statistical methods, we provide 

a novel framework for evaluating and optimizing heat pump efficiency under material 

uncertainty. Unlike prior works focusing on system optimization from a macroscopic 

or operational perspective, this study delves into the material-level properties 

governing heat transfer. With its ability to model concentrated angular data, the Von 

Mises distribution offers a more realistic representation of directional consistency in 

thermal properties, particularly in anisotropic materials. 

A major gap in the existing literature is the lack of adequate modeling approaches 

that account for the directional properties of thermal conductivity. Current modeling 

techniques often rely on linear statistical methods or assume isotropic conditions, 

which neglect the complexity introduced by anisotropic materials. Moreover, these 

traditional models fail to capture the stochastic nature of material properties, which 

are subject to uncertainty due to manufacturing processes, environmental conditions, 

and aging. When combined with stochastic variability, the directional aspects of 

thermal conductivity can significantly affect heat pump efficiency, yet these factors 

are often overlooked in performance predictions. Recent advancements in circular 

statistics (see, e.g., Mardia and Jupp [7] and Jammalamadaka and SenGupta [8]) 

provide a promising framework for addressing this gap. Circular statistics allow for 

modeling angular variables such as phase angles and material orientations, making 

them ideal for analyzing directional properties in anisotropic materials. Specifically, 

the Von Mises distribution—a circular analog of the normal distribution—offers a 

robust method for capturing the concentration of directional data around a mean 

direction. By incorporating circular statistics, we can move beyond traditional scalar-

based models and develop a more accurate representation of thermal conductivity in 

anisotropic systems. In addition to addressing the modeling gap, our research 

complements previous optimization studies, such as those by Pejman et al. [9] and 

Chaoran et al. [10], which explored hybrid topology/shape optimization for 

microvascular composites and machine learning-driven ground source heat pump 

optimizations, respectively. While these studies advanced heat pump performance 

through design and operational improvements, they did not fully account for material 

properties’ anisotropic and stochastic nature. Our research takes another very different 

route, incorporating circular statistics. Our research introduces a new dimension to this 

work by incorporating stochastic effects and directional consistency, offering a more 

robust and reliable approach to optimizing heat pump systems. 

In this study, we conduct a comprehensive simulation analysis that compares the 

performance of heat pumps when thermal conductivity is modeled using both the 
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uniform and Von Mises distributions. The latter, characterized by its concentration 

parameter κ, is hypothesized to provide superior thermal performance by reducing 

variability and optimizing directional heat flow. Through extensive simulations, we 

demonstrate that the Von Mises distribution outperforms the uniform distribution in 

minimizing thermal losses and enhancing the reliability of heat pump performance. 

These findings are in line with other studies, such as those by Kudela et al. [11] and 

Ranganayakulu and Seetharamu [12], which emphasized the importance of accounting 

for geographic, climatic, and material conditions in thermal system performance. 

Our research significantly contributes to heat pump optimization by introducing 

an innovative modeling framework incorporating stochastic and directional 

variability. The results highlight the importance of considering these factors in future 

designs and suggest that circular statistical methods, particularly the Von Mises 

distribution, should be prioritized when analyzing and optimizing thermal systems. 

2. Related works 

The optimization of heat pump systems has been a focus of significant research 

in recent years, with various studies addressing different aspects of their performance 

and design. Aakbarzadeh et al. [13] introduced bi-functional heat pumps (bi-FHPs) as 

an energy-efficient solution for heating and cooling across multiple sectors. Their 

work highlights the potential of bi-FHPs to reduce costs and improve sustainability, 

although environmental and operational factors can significantly influence 

performance outcomes. Xu et al. [14] developed a semi-theoretical model for fixed-

speed air source heat pumps (ASHPs), considering no-load power consumption, 

cycling losses, and defrost effects. Their model enables dynamic simulations and 

energy efficiency analyses with less than 10% error in predicting seasonal 

performance, thus offering valuable tools for better understanding the energy 

dynamics of ASHPs. Chua et al. [15] provided a comprehensive review of 

advancements in heat pump systems, emphasizing innovations in cycle design, 

working fluids, and hybrid systems. Their work underscored the importance of 

developments such as heat-driven ejectors and improved compressor technologies, 

both of which have significantly enhanced the performance of modern heat pumps. 

Ruhnau et al. [16] used the “When2Heat” dataset to generate synthetic national time 

series for heat demand and the coefficient of performance (COP) of electric heat 

pumps in 16 European countries from 2008 to 2018. Their work is invaluable for 

analyzing temporal variability in heat pump power consumption across diverse energy 

systems. 

The performance of ground source heat pump (GSHP) systems has also been 

extensively studied. Noorollahi [17] reviewed key parameters affecting the 

performance of ground heat exchangers (GHE), such as inlet temperature, fluid 

velocity, and pipe arrangement. Their findings showed that properly optimizing these 

factors is crucial to enhancing system efficiency. Casasso et al. [18] focused on the 

rising importance of geothermal heat pumps in light of increasing fossil fuel costs and 

the need for CO2 emissions reduction. They highlighted how factors like borehole 

heat exchanger (BHE) length, heat carrier fluid, and soil properties critically influence 

system reliability and performance. 
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Air source heat pumps (ASHPs) have also been extensively examined. Chesser 

et al. [19] assessed the performance of ASHPs in retrofitted Irish homes, noting a 

discrepancy between actual COP values and manufacturer estimates. They employed 

statistical models to analyze the factors contributing to this underperformance, 

offering insights into how these systems can be better optimized for specific 

applications. Singh et al. [20] addressed the barriers to heat pump adoption in the UK, 

where conventional boilers still dominate despite the superior energy efficiency of heat 

pumps. Their study explored various factors influencing consumer choice, including 

operational costs, reliability, and environmental concerns. Dongellini et al. [21] 

presented a numerical model for evaluating the seasonal performance of electric air to 

water heat pumps, compliant with European standards. Their research emphasized the 

importance of operational modes and appropriate sizing, particularly for inverter-

driven and multi-compressor systems, to maximize seasonal efficiency. 

Borehole spacing in GSHP systems has also garnered attention. Cai et al. [22] re-

evaluated the optimal borehole spacing for long-term performance, recommending a 

6-meter spacing to prevent heat accumulation and ensure better system efficiency over 

20 years. This study underscored the significance of considering long-term thermal 

effects in system design. Reiners et al. [23] studied heat pumps in ultralow temperature 

district heating (ULTDH) networks, demonstrating that these systems can operate up 

to twice as efficiently at lower temperature spreads compared to geothermal probes, 

highlighting the benefits of reduced temperature differentials in district heating 

applications. 

The efficiency of heat pump water heaters (HPWHs) has been explored by 

Willem et al. [24], who reviewed technological advancements that could potentially 

increase COP values from the current 1.8–2.5 range to 2.8–5.5. Their review addressed 

the technical challenges that must be overcome to improve the energy efficiency of 

HPWH systems. Hu et al. [25] compared three centrifugal heat pump systems with 

waste heat recovery, finding that a two-cycle parallel system achieved up to 19% 

improvement in COP, making it particularly suitable for industrial applications where 

heat recovery is crucial. Cold climate applications of heat pumps were examined by 

Gibb et al. [26], who demonstrated that air-source heat pumps (ASHPs) remain more 

efficient than fossil fuel heating systems, even in sub-zero temperatures. Their work 

highlights the significant benefits of ASHPs in typical European winter conditions, 

although further analysis is needed for extreme climates. Sarbu et al. [27] reviewed 

the energy-saving potential of ground-source heat pumps (GSHPs) across different 

climates, including detailed analyses of surface water heat pumps (SWHP), 

groundwater heat pumps (GWHP), and ground-coupled heat pumps (GCHP). Their 

study underscored the adaptability of GSHPs to both cold and hot climates, offering 

significant environmental and economic benefits. Santa et al. [28] developed a 

validated mathematical model for water-to-water heat pump systems, achieving an 

average error of just 1.73% when compared to experimental data. Their model is useful 

for determining the optimal operating point to maximize system efficiency. Gao et al. 

[29] analyzed 26 GSHP systems in southwest and western China, finding suboptimal 

performance with COP values below 3.0. They recommended the adoption of ground-

coupled heat pump (GCHP) systems for improved energy efficiency in these regions. 

Saeidi et al. [30] improved geothermal heat pump efficiency by incorporating high 
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thermal conductivity materials into GHEs, achieving a 37% increase in overall 

efficiency. Their study emphasized the role of optimized soil moisture content and 

enhanced material conductivity in boosting system performance. The effect of frost 

prevention on heat-source-tower heat pump systems was examined by Cheng et al. 

[31], who demonstrated that system efficiency increased by 5% to 11% under 

antifreeze conditions, providing valuable design insights for cold-weather 

applications. Corbean et al. [32] introduced an innovative dual-source heat pump 

(DSHP) that switches between air and ground sources, achieving comparable 

efficiency to GSHPs at a fraction of the installation cost, making it a promising 

solution for multi-purpose heating and cooling systems. Wood et al. [33] explored 

using energy piles as sustainable heating solutions for residential buildings. Their 

findings indicated that concrete piles could economically provide the required heat 

while maintaining ground temperature stability. Eswiasi et al. [34] reviewed the 

thermal efficiency of vertical ground heat exchangers in GSHP systems, concluding 

that increasing borehole and pipe diameters, along with optimized configurations, 

significantly enhances thermal performance. De Le ón-Ruiz and Carvajal-Mariscal 

[35] introduced a novel thermal capacity metric to assess heat pump performance, 

combining it with COP to set minimum operational standards for energy demand 

fulfillment, further advancing the understanding of heat pump system performance. 

These diverse studies collectively contribute to the ongoing development of heat 

pump technologies, offering a range of methodologies and insights that address both 

system design and operational strategies. This body of work forms the foundation upon 

which this research builds, integrating stochastic finite element analysis and circular 

statistical methods to provide a more comprehensive framework for heat pump 

optimization. 

3. Objective and novelty of the research 

The primary objective of this research is to develop a comprehensive analytical 

framework that integrates stochastic finite element analysis (FEA) with advanced 

circular statistical methods, specifically emphasizing the superiority of the Von Mises 

distribution to optimize the performance of heat pumps under material uncertainty. 

This approach is particularly novel for several reasons: 

Incorporation of Directional Variability with Von Mises Distribution: Unlike 

traditional methods that treat thermal conductivity as a scalar quantity, this research 

models it as a stochastic process with a directional component using the Von Mises 

distribution. The concentration of directional data around a mean direction provided 

by the Von Mises distribution offers a more accurate representation of anisotropic 

materials and their impact on thermal performance than the uniform distribution. 

Application of Circular Statistics for Enhanced Accuracy: Circular statistical 

methods, particularly the Von Mises distribution, are introduced to analyze the angular 

components of thermal conductivity. This approach significantly differs from linear 

statistical methods, providing a more precise analysis of phenomena such as phase 

shifts and material orientations, thereby improving thermal system design. 

Integration of Circular Statistics with Stochastic FEA: The research directly 

integrates advanced circular statistical techniques into the stochastic FEA process. By 
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leveraging the Von Mises distribution, this integration allows for a detailed 

exploration of how directional consistency and randomness in material properties 

affect the heat pump’s overall efficiency, a novel contribution to thermal system 

modeling. 

Optimization to improve the heat pump’s performance: The optimization pertains 

to improving the heat pump’s performance by balancing efficiency and variability 

under material uncertainties. The optimization is achieved by tuning the concentration 

parameter κ of the Von Mises distribution, which models directional variability in 

thermal conductivity. Specifically, the optimization objective is to minimize the 

standard deviation (variability) of the efficiency while ensuring that the mean 

efficiency remains above a certain threshold, ηthreshold = 1.0 . The optimization 

method involves a stochastic finite element analysis (FEA) combined with circular 

statistical analysis to identify the optimal κ. Performance improvements after 

optimization are quantitatively demonstrated by comparing the variability before and 

after optimization. For example, by adjusting κ, the variability in efficiency was 

reduced by approximately 80.13%, providing more consistent heat pump operation 

with minimal efficiency loss. 

Performance Evaluation & Sensitivity Analysis: The study provides a more 

robust and realistic evaluation of heat pump performance by treating material 

properties as random variables and employing the Von Mises distribution for circular 

statistical analysis. This is crucial for developing reliable and efficient thermal systems 

in practical applications, particularly in environments where material properties are 

uncertain. The sensitivity analysis indicates that while mean efficiency η(κ) remains 

stable, variability in efficiency rises with increasing κ, suggesting that higher κ values, 

correlating with greater directional concentration, lead to increased performance 

variability. The sensitivity coefficient Sκ identifies critical regions where small 

changes in κ significantly impact efficiency. 

The novel combination of stochastic FEA and the superior circular statistical 

tools, particularly the 3 Von Mises distribution, represents a significant advancement 

in the field of thermal system design. It offers new insights and methodologies for 

optimizing performance under conditions of uncertainty, setting a new standard for 

the analysis and design of efficient thermal systems. 

4. Theoretical framework 

4.1. Thermodynamic principals 

The heat pump cycle is modeled using fundamental thermodynamic equations. 

The Carnot cycle serves as a basis, with modifications for real-world inefficiencies. 

The energy balance equation for a differential volume element in the heat pump is 

expressed as: 

𝑑𝑄

𝑑𝑡
= 𝑚 ⋅ 𝑐𝑝 ⋅

𝑑𝑇

𝑑𝑡
+ 𝜎𝑑𝑊(𝑡) 

where: 

Q is the heattransferrate, 

m is the mass flowrate, 
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cp is the specificheatcapacity, 

T is the temperature, 

σ is the volatility term, 

W(t) is a Wiener process representing the rmalfluctuations. 

4.2. Stochastic modelling 

Key material properties, such as thermal conductivity𝑘, are modeled as random 

fields: 

𝑘𝑖 ∼ 𝑁(𝑘, 𝜎𝑘
2) 

where: 

𝑘 is mean the mean thermal conductivity,  

𝜎𝑘
2 is the variance. 

For each element 𝑖  in the mesh, the thermal conductivity 𝑘𝑖  is independently 

sampled from this distribution. 

The governing equation of heat conduction in a one-dimensional rod without 

internal heat generation is:  

−𝑑

𝑑𝑥
(𝑘(𝑥)

𝑑𝑇(𝑥)

𝑑𝑥
) = 0 

Given that, 𝑘(𝑥) is now a stochastic process, this equation becomes: 

−𝑑

𝑑𝑥
(𝑘𝑖

𝑑𝑇𝑖(𝑥)

𝑑𝑥
) = 0 

where 𝑘𝑖  represents the random thermal conductivity in element 𝑖 and 𝑇𝑖(𝑥) is the 

temperature distribution in that element. 

5. Methodology: Part 1 

5.1. Design and geometry of the heat pump 

The novel heat pump design features a unique geometrical configuration 

optimized for efficient heat transfer. The geometry is modeled in cylindrical and 

spherical coordinates to account for varying heat flow patterns. The design is 

implemented in a Python based simulation environment using libraries such as 

𝑁𝑢𝑚𝑃𝑦 and 𝑆𝑐𝑖𝑃𝑦 for FEA. 

5.2. Stochastic finite element analysis (FEA) 

The rod is discretized into (𝑁)  elements in the finite element method, and 

piecewise linear basis functions approximate the temperature distribution. The weak 

form of the governing equation for each element leads to the system of equations: 

𝐾𝑖𝑇 = 𝐹𝑖 

where: 

𝐾𝑖  is the local stiffness matrix for element 𝑖 , which depends on the random 

thermal conductivity 𝐾𝑖, 
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𝑇 is the vector of nodal temperatures, 

𝐹𝑖 is the force vector, representing boundary conditions. 

Multiple simulations (Monte Carlo method) are performed to account for the 

randomness in thermal conductivity. For each simulation 𝑗: 

Sample 𝐾𝑖: A Set of 𝑘𝑖
(𝑗)

 values is drawn from (𝑁(𝑘, 𝜎𝑘
2) 

The system of linear equations is solved to find the temperature distribution 

𝑇𝑖
(𝑗)

(𝑥)corresponding to the sampled𝑘𝑖
(𝑗)

. 

After running 𝑀 simulations, the temperature distribution at each node is 

analyzed to compute the mean and variance: 

𝜇𝑇(𝑥) =
1

𝑀
∑ 𝑇(𝑗)(𝑥)

𝑀

𝑗=1

 

𝜎𝑇
2(𝑥) =

1

𝑀
∑ (𝑇(𝑗)(𝑥) − 𝜇𝑇(𝑥))

2
𝑀

𝑗=1

 

𝜎𝑇(𝑥) = √𝜎𝑇
2(𝑥) 

6. Methodology: Part 2: Incorporating circular statistical tools 

6.1. Introduction to circular statistics in thermal systems 

In classical statistics, data points typically lie linearly (e.g., temperatures, 

lengths). However, properties in thermal systems, such as phase angles in wave 

propagation or orientations in anisotropic materials, are better represented on a circular 

scale. Circular statistics provide the tools necessary to analyze such data, where the 

primary feature is the periodic nature of the domain (e.g., angles ranging from 0 to 2𝜋. 

In the context of this study, we introduce circular statistical methods to analyze 

potential angular components of thermal fluctuations, orientations in material 

anisotropy, or phase shifts in thermal waves. 

6.2. Motivation for using the Von Mises distribution 

While the uniform distribution is useful for modeling angular data where all 

directions are equally likely, it may not fully capture scenarios where there is a 

preferred direction or orientation. The Von Mises distribution, often referred to as the 

circular normal distribution, is the maximum entropy distribution for circular data 

under a given mean direction and concentration parameter constraint. This makes it 

particularly useful when modeling directional data with some degree of clustering 

around a mean direction. 

The Von Mises distribution is defined as: 

𝑓(𝜃; 𝜇, 𝜅) =
𝑒𝜅𝑐𝑜𝑠(𝜃−𝜇)

2𝜋𝐼0(𝜅)
 

where: 

𝜃 is the angular variable, 
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𝜇 is the mean direction, 

𝜅 is the concentration parameter (analogous to the inverse of the variance in the 

normal distribution, 

𝐼0(𝜅) is the modified Bessel function of the first kind of order 0. 

The Von Mises distribution is used in this study to model scenarios where the 

thermal conductivity 𝑘(𝑥) not only varies stochastically but also exhibits a directional 

preference. This allows us to explore how anisotropic properties with specific 

directional tendencies affect thermal performance. 

6.3. Modeling thermal fluctuations as circular data using uniform and 

Von Mises distributions 

Consider a scenario where the thermal conductivity 𝑘(𝑥)  not only varies 

stochastically but also has a directional component, possibly representing anisotropy 

in the material or the orientation of thermal flow. This directional component can be 

modeled using an angular variable 𝜃(𝑥), where 𝜃(𝑥) represents the direction or phase 

angle of the thermal conductivity at position 𝑥. 

We now model 𝜃(𝑥) as a random variable on the circle using both the uniform 

distribution and the Von Mises distribution: 

Uniform Distribution 

𝜃(𝑥) ∼ Uniform(0,2𝜋) 

This assumes that the thermal conductivity direction is equally likely in any 

direction. 

Von Mises Distribution 

𝜃(𝑥) ∼ Von Mises(𝜇, 𝜅) 

Here, 𝜇  represents the preferred direction of thermal conductivity, and 𝜅 

indicates how strongly the directions are concentrated around, 𝜇. A higher 𝜅 value 

suggests that the thermal conductivity is more likely to be aligned close to 𝜇, whereas 

a lower 𝜅 value indicates more spread around the circle. 

The thermal conductivity can now be expressed as a function of both magnitude 

and direction for both distributions: 

𝑘(𝑥) = 𝑘0(𝑥) ⋅ 𝑐𝑜𝑠(𝜃(𝑥)) 

where 𝑘0(𝑥) is the magnitude of the thermal conductivity, potentially modeled as a 

random variable as in Part 1. 

6.4. Circular statistical analysis of thermal conductivity 

To analyze the angular data 𝜃(𝑥), we apply circular statistical methods, including 

calculating the circular mean and the resultant vector length, which provides insight 

into the concentration of the directional data. 

The circular mean 𝜃 of the angles 𝜃(𝑥) at different positions 𝑥is given by:  

𝜃 = 𝑎𝑟𝑔 (∑ 𝑐𝑜𝑠(𝜃(𝑥))

𝑥

+ 𝑖 ∑ 𝑠𝑖𝑛(𝜃(𝑥))

𝑥

) 
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The resultant vector length 𝑅, which indicates the degree of concentration of the 

angles around the mean direction is defined as: 

𝑅 =
1

𝑁
√(∑ 𝑐𝑜𝑠(𝜃(𝑥))

𝑥

)

2

+ (∑ 𝑠𝑖𝑛(𝜃(𝑥))

𝑥

)

2

 

where, 𝑁is the number of positions 𝑥 considered. 

By comparing the results from both the uniform and Von Mises distributions, we 

can assess how different models of directional data influence the thermal 

conductivity’s directional consistency and its impact on thermal performance. 

6.5. Incorporating circular statistics in FEA 

In the context of Finite Element Analysis, we modify the thermal conductivity 

term to include the directional component modeled by both distributions: 

−𝑑

𝑑𝑥
(𝑘0(𝑥)𝑐𝑜𝑠(𝜃(𝑥))

𝑑𝑇(𝑥)

𝑑𝑥
) = 0 

This modification reflects the anisotropic or directional influence on heat 

conduction, where 𝜃(𝑥) represents the orientation of the material’s thermal properties. 

The boundary conditions remain as: 

𝑇(0) = 𝑇cold = 0∘𝐶, 𝑇(𝐿) = 𝑇hot = 100∘𝐶 

The simulation is repeated 100 times with 𝜃(𝑥) sampled uniformly and from the 

Von Mises distribution. The circular statistics of 𝜃(𝑥) are then computed to assess the 

impact of directional properties on the temperature distribution. 

6.6. Results: circular statistical analysis of thermal conductivity 

The circular mean 𝜃  and resultant vector length 𝑅 are calculated for each 

simulation under both distributions, providing insight into the directional consistency 

of thermal conductivity across the rod. 

6.7. Circular analysis of heat pump efficiency 

To incorporate circular statistics in the analysis of heat pump efficiency, we 

examine how the angular variability 𝜃(𝑥) influences the overall performance. 

Specifically, we analyze the relationship between the circular mean 𝜃  and the 

efficiency 𝜂: 

Circular-Efficiency Relationship: Investigate if the efficiency 𝜂  shows any 

dependence on the circular mean 𝜃 of the angles 𝜃(𝑥). 

Circular Variability Impact: Assess the impact of the resultant vector length 𝑅 on 

the stability of efficiency. A lower 𝑅 might indicate higher variability in efficiency 

due to more dispersed directional influences. 

Comparison Between Distributions: By comparing the results obtained from the 

uniform distribution and the Von Mises distribution, we can determine the sensitivity 

of heat pump efficiency to different models of directional data. With its ability to 
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model concentrated directions, the Von Mises distribution may provide deeper 

insights into the efficiency’s dependency on directional anisotropy. 

The circular statistical metrics and efficiency data are used to evaluate how 

directional properties influence the system’s thermal performance under both the 

uniform and Von Mises distribution scenarios. 

7. Stochastic finite element model with circular random variables 

As shown in Figure 1, the rod is modeled as a vertical system consisting of 𝑁 

finite elements, where each element 𝑒𝑖 has an associated thermal conductivity 𝑘𝑒𝑖
 and 

a heat flux 𝑞𝑒𝑖
. The nodal temperatures at the top and bottom of the rod are fixed, with 

the temperature at the bottom 𝑇(𝑥0) set to the cold sink temperature Tcold and the 

temperature at the top 𝑇(𝑥𝑁) set to the hot source temperature Thot.  

 
Figure 1. Vertical finite element model for heat conduction.  

The rod is divided into N elements 𝑒 𝑖, with heat flowing from the hot source at 

𝑇  𝑁 = 𝑇 𝐻𝑜𝑡 to the cold sink at 𝑇  0 = 𝑇 𝐶𝑜𝑙𝑑. The heat flux 𝑞 𝑒 𝑖 for each element 

is indicated, and the thermal conductivity of each element 𝑘, 𝑒, 𝑖, is shown. 

The heat flux, represented by the orange arrows between each element, shows the 

direction of heat transfer from the hot end to the cold end. The boundary conditions 

include a cold source at 𝑇𝐶𝑜𝑙𝑑  (bottom) and a heat source at 𝑇𝐻𝑜𝑡  (top), which are 

indicated by the red arrows. 

The governing heat conduction equation is: 
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−𝑑

𝑑𝑥
(𝑘(𝑥)

𝑑𝑇(𝑥)

𝑑𝑥
) = 0 

where k(x) is the material’s thermal conductivity in each element. In the finite element 

method, the weak form of this equation is solved to find the temperature distribution 

across the rod. 

Each element is represented by a local stiffness matrix that depends on the 

thermal conductivity 𝑘𝑒𝑖
, and the global system of equations for the entire rod is 

solved to find the nodal temperatures 𝑇(𝑥𝑖). The variation in kei across elements 

introduces stochastic effects in the heat transfer, which are analyzed in this study. 

The diagram provides a clear visual representation of the heat flow between 

elements, the temperatures at the boundaries, and the role of thermal conductivity in 

determining the heat transfer efficiency across the rod. 

Finite element model incorporating circular statistical features 

 
Figure 2. Finite element model of the heat pump system showing mesh 

discretization into elements, boundary conditions (𝑇𝐶𝑜𝑙𝑑 and 𝑇𝐻𝑜𝑡), directional thermal 

conductivity with angles 𝜃𝑖, and heat flow direction. The random angles 𝜃𝑖 

incorporate the circular statistical features into the model. 

The finite element model (FEM) of the heat pump system is illustrated in Figure 

2. The model represents a one-dimensional rod of length L, discretized into N finite 
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elements of equal length ∆𝑥 = 𝐿/𝑁 . Each node represents a point where the 

temperature is calculated. 

• Geometry and Mesh Discretization: The rod is divided into N elements, with 

nodes at positions 𝑥0 = 0, 𝑥1 = ∆𝑥, 𝑥2 = 2∆𝑥,, 𝑥𝑁 = 𝐿. 

• Boundary Conditions: 

𝑇(𝑥 = 0) = 𝑇𝐶𝑜𝑙𝑑, 

𝑇(𝑥 = 𝐿) = 𝑇𝐻𝑜𝑡 

• Heat Flow Direction: In the context of heat pump operation, heat is transferred 

from the cold end (𝑥 = 0) to the hot end (𝑥 = 𝐿), against the natural temperature 

gradient, as indicated by the red arrow in the figure. This process requires external 

work input, consistent with the principles of heat pumps. 

• Material Properties Assignment: Each element i is assigned a thermal 

conductivity 𝑘𝑖, which incorporates both stochastic and directional variability. 

1) Incorporation of Circular Statistical Features: 

To model the anisotropic and uncertain nature of the thermal conductivity, we 

introduce a directional component using circular statistics: 

𝑘𝑖 = 𝑘0𝑐𝑜𝑠(𝜃𝑖), 𝑖 = 1,2, … , 𝑁 (1) 

where: 

• 𝑘0 is the magnitude of the thermal conductivity, 

• 𝜃𝑖  is a random angle associated with element i, representing the directional 

variability, 

• 𝜃𝑖  is modeled as a random variable following either a Uniform distribution 

𝜃𝑖∼Uniform (0, 2π) or a Von Mises distribution 𝜃𝑖 ∼VonMises (μ, κ). 

The use of 𝑐𝑜𝑠(𝜃𝑖) in Equation (1) introduces the directional dependence of 

thermal conductivity, effectively modeling anisotropic behavior. The random angles 

𝜃𝑖  capture the variability in the material’s directional properties, incorporating the 

circular statistical features into the FEM. 

2) Finite Element Formulation 

The governing equation for steady-state heat conduction in one dimension, 

considering the heat pump operation (where external work is applied to transfer heat 

from cold to hot), can be modified to include a source term representing the work input 

𝑄work(𝑥): 

−𝑑

𝑑𝑥
(𝑘(𝑥)

𝑑𝑇(𝑥)

𝑑𝑥
) + 𝑄work(𝑥) = 0 (2) 

In this simplified model, we may assume that the work input is uniformly 

distributed along the rod or consider it as part of the boundary conditions. For the 

purposes of our FEM, we focus on the effective thermal conductivity and its impact 

on the temperature distribution, acknowledging that the heat pump operation involves 

external work to maintain the temperature gradient against the natural flow of heat. 

Discretizing the domain using the finite element method, we approximate the 

temperature distribution 𝑇(𝑥)  using linear shape functions within each element. 

Applying the Galerkin method leads to a system of equations for the nodes: 
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𝐾𝑇 = 𝐹 (3) 

where: 

• K is the global stiffness matrix, assembled from the elemental stiffness matrices 

𝑘𝑖, 

• T is the vector of nodal temperatures, 

• F is the global force vector, incorporating boundary conditions and any source 

terms. 

The elemental stiffness matrix for element i is given by: 

𝐾𝑖 =
𝑘𝑖

∆𝑥
[

1 −1
−1 1

] (4) 

3) Incorporation of Stochasticity and Directionality:  

By substituting 𝑘𝑖  from Equation (1) into the FEM formulation, we directly 

incorporate both stochasticity and directional variability into the model: 

𝑘𝑖 = 𝑘0𝑐𝑜𝑠(𝜃𝑖), 𝜃𝑖{
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,2𝜋),

𝑉𝑜𝑛𝑀𝑖𝑠𝑒𝑠(𝜇, 𝜅)
 (5) 

This approach allows us to model the uncertainty in material properties due to 

manufacturing variations or inherent material anisotropy. The circular statistical 

distributions used for 𝜃𝑖  capture the likelihood of certain directional orientations 

within the material. 

4) Simulation Procedure: 

The simulation involves the following steps: 

i. Initialization: Define the number of elements N, the length L, and the 

thermal conductivity magnitude k0. 

ii. Sampling of Angles: For each element i, sample θi from the chosen circular 

distribution. 

iii. Assembly of Stiffness Matrix: Compute ki using Equation (1) and assemble 

the global stiffness matrix K. 

iv. Application of Boundary Conditions: Incorporate the boundary conditions 

into the system. 

v. Solution: Solve the linear system in Equation (3) to find the temperature 

distribution T. 

vi. Repetition: Repeat the simulation multiple times to perform a stochastic 

analysis, capturing the variability due to the random angles θi. 

5) Role of Circular Statistics: The use of circular statistical tools is crucial for 

accurately modeling the directional variability of thermal conductivity: 

• The Uniform distribution assumes that all directions are equally likely, 

representing a material with isotropic random orientation. 

• The Von Mises distribution allows for modeling materials with a preferred 

orientation, with μ indicating the mean direction and κ controlling the 

concentration around μ. 

By comparing the results obtained using these two distributions, we assess the 

impact of directional consistency and variability on the heat pump’s efficiency. 
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6) Implications for Heat Pump Efficiency: The finite element model incorporating 

stochastic and directional variability provides insights into how material 

uncertainties affect thermal performance. The model helps in optimizing the heat 

pump design by: 

• Identifying the importance of material anisotropy and preferred orientations. 

• Quantifying the impact of directional variability on temperature distribution 

and heat flow. 

• Guiding the selection of materials and manufacturing processes to achieve 

desired thermal properties. 

The detailed finite element model and the incorporation of circular statistical 

features enhance the robustness of the simulation study, providing a comprehensive 

understanding of the factors influencing heat pump efficiency. 

8. Optimization methodology 

8.1. Optimization objectives 

The initial objective was to optimize the heat pump efficiency η by varying the 

concentration parameter κ of the Von Mises distribution, with the expectation that 

higher κ (i.e., greater directional concentration) would lead to increased efficiency. 

However, the simulation results indicate that the maximum mean efficiency occurs at 

the lowest κ value (κ = 0.5). Given this, we re-evaluate our optimization objective to 

focus on: 

1) Minimizing the Variability of Efficiency: Finding the κ that minimizes the 

standard deviation of efficiency 𝜎𝜂 , thereby achieving more consistent 

performance. 

2) Balancing Efficiency and Consistency: Identifying a κ value that provides 

acceptable mean efficiency while minimizing variability.  

Mathematically, the optimization problem is reformulated as: 

𝑚𝑖𝑛
𝜅

𝜎𝜂(𝜅) (6) 

subject to: 

• (𝜂(𝜅) ≥ 𝜂threshold), ensuring efficiency remains above a certain acceptable 

level. 

• κ ≥ 0. 

8.2. Optimization methods 

To solve the revised optimization problem, we: 

1) Parameter Sampling: Vary κ over the range [0.5, 10.0]. 

2) Stochastic Simulation: For each κ, perform stochastic simulations to 

compute η(κ) and 𝜎𝜂(κ). 

3) Optimization: Identify the κ that minimizes 𝜎𝜂(𝜅)while maintaining η(κ) ≥ 

𝜂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 
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8.3. Implementation details 

We set 𝜂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1.0, representing the baseline acceptable efficiency level. 

The optimization seeks to find the smallest ση (κ) among κ values satisfying η(κ) ≥ 

1.0.  

8.4. Mathematical formulation 

For each κ, we compute: 

𝜂(𝜅) =
1

𝑀
∑ 𝜂(𝑗)(𝜅)

𝑀

𝑗=1

 (7) 

𝜎𝜂(𝜅) = √
1

𝑀 − 1
∑ (𝜂(𝑗)(𝜅) − 𝜂(𝜅))

2
𝑀

𝑗=1

 (8) 

8.5. Performance improvement quantification 

We quantify performance improvement in terms of reduced variability 

(Variability Reduction (VR) %): 

𝑉𝑅 = (
𝜎𝜂(𝜅baseline) − 𝜎𝜂(𝜅opt)

𝜎𝜂(𝜅baseline)
) × 100% (9) 

9. Simulation of the methodology incorporating circular statistics 

The simulation process that implements the above methodology is outlined as 

follows: 

A. Step 1: Initialization of Parameters 

Begin by defining the basic parameters of the simulation: 

• Length of the rod L and discretization into elements. 

• Mean thermal conductivity (k) and its standard deviation (σk). 

• Two distributions for the angular variable θ(x):a uniform distribution across 

0 to 2πand a Von Mises distribution with parameters μand k. 

B. Step 2: Circular Statistical Generation 

For each element in the rod: 

Generate θ(x) from both the uniform distribution Uniform(0,2π)and the Von 

Mises distribution (Von Mises(μ, κ). 

Calculate the thermal conductivity for each element using k(x) =

k0(x)cos(θ(x)) under both distributions. 

A. Step 3: Finite Element Analysis with Circular Modification 

Modify the FEA process to incorporate the directional component: 

Use the modified thermal conductivity k(x)in the FEA formulation for both the 

uniform and Von Mises distributions. 

Solve the temperature distribution T(x) using the modified equation: 
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−d

dx
(k0(x)cosθ(x)

dT(x)

dx
) = 0 

Apply boundary conditions T(0) = 0∘C, T(L) = 100∘C. 

C. Step 4: Circular Statistical Analysis 

After obtaining the temperature distribution: 

• Calculate the circular mean θ and resultant vector length R for the set of 

θ(x) values under both the uniform and Von Mises distributions. 

• Assess the relationship between these circular statistics and the temperature 

distribution for each distribution. 

B. Step 5: Heat Pump Efficiency Analysis 

Finally, evaluate the heat pump efficiency η for each simulation: 

• Compute the heat input Qinand output Qout. 

• Calculate the efficiency η  and analyze its correlation with the circular 

statistics θ and R under both distributions. 

D. Step 6: Repeating the Simulation 

Repeat the entire simulation process 100 times for both distributions: 

• Aggregate the results of 𝜂, 𝜃 and 𝑅 across simulations for both the uniform 

and Von Mises distributions. 

• Perform statistical analysis on the aggregated results to conclude the 

directional effects on thermal conductivity and efficiency under each 

distribution. 

This simulation framework provides a comprehensive approach to incorporating 

circular statistics into the analysis of thermal systems. By analyzing the angular 

components and their influence on thermal conductivity and efficiency using uniform 

and Von Mises distributions, we gain deeper insights into the behavior of anisotropic 

or directionally dependent materials in thermal applications. The comparison between 

the two distributions will help understand the sensitivity of heat pump efficiency to 

different models of directional variability. 

10. Simulation analysis for methodology Part 1 

This section analyzes the simulation results for the novel heat pump design using 

stochastic finite element analysis (FEA). The simulation incorporates stochastic 

modeling of thermal conductivity, evaluates thermodynamic performance, and 

provides a statistical analysis of the results. The following subsections describe the 

methodology, present the resulting plots and tables, and provide detailed explanations 

of the findings. 

10.1. Stochastic modeling of thermal conductivity 

The thermal conductivity, 𝑘, of the material is modeled as a random variable 

following a normal distribution: 

𝑘𝑖 ∼ (𝑁(𝑘, 𝜎𝑘
2) 

where: 
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𝑘 = 200W/m·K is the mean thermal conductivity, 

𝜎𝑘 = 80W/m·Kis the standard deviation of the thermal conductivity. 

This stochastic approach allows us to account for the variability in material 

properties, which can significantly impact the thermal performance of the heat pump. 

10.2. Finite element analysis (FEA) 

The temperature distribution along the rod is computed using FEA. The rod is 

discretized into 50 elements, and the temperature at each node is determined by 

solving the system of linear equations derived from the discretized heat equation: 

-
𝑑

𝑑𝑥
(𝑘(𝑥)

𝑑𝑇(𝑥)

𝑑𝑥
) = 0] 

Given that 𝑘(𝑥)  is stochastic, the temperature distribution 𝑇(𝑥)  becomes a 

random variable as well. The boundary conditions are set as follows: 

T(0) = 𝑇cold = 0∘𝐶, 𝑇(𝐿) = 𝑇hot = 100∘𝐶 

The FEA simulation is performed 100 times, each with different random 

realizations of the thermal conductivity. 

10.3. Thermodynamic performance analysis 

The heat transfer efficiency 𝜂 of the heat pump is calculated as the ratio of heat 

output to heat input: 

𝜂 =
𝑄out

𝑄in

 

where: 

𝑄in = ∑(𝑇hot − 𝑇(𝑥)) ⋅ 𝛥𝑥is the heat input at the hot end, 

(𝑄out = ∑(𝑇(𝑥) − 𝑇cold) ⋅ 𝛥𝑥 is the heat output at the cold end, 

𝛥𝑥 is the length of each element. 

This efficiency metric is evaluated for each of the 100 simulations to analyze the 

performance variability due to the stochastic nature of the material properties. 

10.4. Results: Temperature distribution 

Table A1 (see Appendix) summarizes the mean temperature and its standard 

deviation at various positions along the rod. This data provides a quantitative 

assessment of the temperature distribution and highlights the influence of stochastic 

thermal conductivity. 

The table shows the mean temperature and its standard deviation at various 

positions along the rod. Notice that the standard deviation values are substantial, 

especially in the middle sections of the rod (0.06 m to 0.70 m). This indicates 

significant variability in temperature due to the random fluctuations in thermal 

conductivity, which could lead to unpredictable thermal performance in practical 

applications. 
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Figure 3 shows the mean temperature distribution along the rod, with a shaded 

area representing the standard deviation. The plot illustrates stochastic thermal 

conductivity’s impact on the rod’s temperature profile. 

 

Figure 3. Mean temperature distribution along the rod with standard deviation. The mean temperature is plotted as a 

blue line, while the shaded area represents the standard deviation due to stochastic thermal conductivity. 

The blue curve represents the mean temperature across 100 simulations, while 

the orange-shaded region indicates the variability (standard deviation) around the 

mean. The variability in temperature is more pronounced near the middle of the rod, 

where the effects of random thermal conductivity accumulate. 

10.5. Results: Heat pump efficiency 

Table 1 summarizes the mean and standard deviation of the heat pump efficiency 

across all simulations. 

Table 1. Summary of heat pump efficiency. 

Metric Value 

Mean Efficiency 

Efficiency Std Dev 

0.8856 

0.7375 

The mean efficiency of the heat pump is approximately 88.56%, but the standard 

deviation is quite high at 73.75%. This large variability suggests that the heat pump’s 

performance can fluctuate significantly depending on the specific realizations of 

thermal conductivity. In practice, such variability could lead to inconsistent operation, 

necessitating more robust design strategies or adaptive control mechanisms to ensure 

reliable performance. 

Figure 4 presents a histogram of the heat pump efficiency obtained from the 100 

simulations. The red dashed line indicates the mean efficiency. 
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Figure 4. Histogram of heat pump efficiency over 100 simulations. A red dashed line marks the mean efficiency. 

The histogram shows that the efficiency values are normally distributed around 

the mean efficiency of approximately88.56%. The spread of the histogram indicates 

the variability in efficiency caused by the random variations in thermal conductivity. 

10.6. Discussions 

The simulation analysis presented in this section highlights the significant impact 

of stochastic thermal conductivity on the performance of the proposed heat pump 

design. By incorporating stochastic modeling into the FEA, we have quantified the 

variability in temperature distribution and heat pump efficiency, providing a more 

robust and realistic evaluation of the heat pump’s performance under uncertain 

conditions. 

The results indicate that while the mean efficiency remains high, there is a 

noticeable spread in performance metrics due to material uncertainties, underscoring 

the importance of considering stochastic effects in thermal system design. 

11. Simulation analysis for methodology Part 2: Circular statistical 

analysis of heat pump efficiency 

In this section, we present the results of a comprehensive simulation study where 

circular statistical methods, including both uniform and Von Mises distributions, are 

employed to analyze the efficiency of a novel heat pump design. The simulation 

integrates the directional variability of thermal conductivity, represented by an angular 

component 𝜃(𝑥), and its effect on heat pump performance. The analysis includes a 

detailed exploration of the relationship between circular statistics (e.g., circular mean, 

resultant vector length) and the heat pump efficiency. 
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11.1. Simulation methodology 

The thermal conductivity 𝑘(𝑥) is modeled as a product of a random magnitude 

𝑘0(𝑥), drawn from a normal distribution, and a directional component represented by 

the cosine of a random angle 𝜃(𝑥). Two different distributions are used for 𝜃(𝑥): a 

uniform distribution and a Von Mises distribution. 

𝑘(𝑥) = 𝑘0(𝑥) ⋅ 𝑐𝑜𝑠(𝜃(𝑥)) 

where 𝜃(𝑥)  is either uniformly distributed over 02𝜋or drawn from a Von Mises 

distribution with parameters 𝜇 ∧ 𝜅. The simulation involves the following steps: 

1) Generating random thermal conductivity values 𝑘0(𝑥) and corresponding angles 

𝜃(𝑥) for each element in the rod under both uniform and Von Mises distributions. 

2) Solving the finite element model to obtain the temperature distribution 𝑇(𝑥) 

along the rod. 

3) Calculating the heat pump efficiency 𝜂 using the equation: 

𝜂 =
𝑄out

𝑄in

 

where 𝑄outand 𝑄in are the heat input and output, respectively. 

4) Applying circular statistical methods to compute the circular mean 𝜃  and 

resultant vector length𝑅 for the angles 𝜃(𝑥) under both distributions. 

The simulation was repeated 100 times for both the uniform and Von Mises 

distributions, generating datasets that include efficiency, circular mean, and resultant 

length for each run. The summary of these datasets is presented in Tables 2 and 3. 

11.2. Summary of simulation results 

Table 2. Summary statistics of circular analysis of heat pump efficiency (Uniform Distribution). 

 Efficiency Circular Mean(radians) Resultant Length 

Count 

Mean 

Std Dev 

Min 

25th Percentile 

Median (50th Percentile) 

75th Percentile 

Max 

100 

1.024 

1.018 

−5.734 

0.768 

1.001 

1.364 

4.881 

100 

0.107 

1.839 

−3.058 

−1.503 

0.237 

1.769 

3.138 

100 

0.127 

0.069 

0.002 

0.073 

0.126 

0.176 

0.325 

Table 3. Summary statistics of circular analysis of heat pump efficiency (Von Mises distribution). 

 Efficiency Circular Mean(radians) Resultant Length 

Count 

Mean 

Std Dev 

Min 

25th Percentile 

Median (50th Percentile) 

75th Percentile 

Max 

100 

3.782 

0.341 

2.938 

3.516 

3.829 

4.035 

4.569 

100 

0.255 

3.054 

−3.142 

−3.030 

2.962 

3.075 

3.141 

100 

0.702 

0.061 

0.545 

0.656 

0.714 

0.752 

0.856 
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The summary statistics of the simulation results for both distributions are shown 

in Tables 2 and 3. These tables provide the count, mean, standard deviation, minimum, 

maximum, and quartiles for efficiency, circular mean, and resultant vector length. 

11.3. Discussion of results 

The summary statistics indicate notable differences between the uniform and Von 

Mises distributions in terms of heat pump efficiency and circular statistical measures: 

• Efficiency: The mean efficiency is significantly higher for the Von Mises 

distribution 3.782compared to the uniform distribution 1.024. This suggests that 

the concentration of angles around a mean direction, as modeled by the Von 

Mises distribution, contributes to more consistent and efficient thermal 

conductivity. 

• Circular Mean: The circular mean for the Von Mises distribution 

(0.255 𝑟𝑎𝑑𝑖𝑎𝑛𝑠)is more concentrated around a central value compared to the 

uniform distribution (0.107 𝑟𝑎𝑑𝑖𝑎𝑛𝑠). This reflects the directional concentration 

effect of the Von Mises distribution. 

• Resultant Length: The resultant vector length, a measure of directional 

consistency, is much higher for the Von Mises distribution 0.702 than for the 

uniform distribution 0.127. This indicates a stronger directional alignment of the 

thermal conductivity in the Von Mises case, contributing to the higher efficiency. 

The higher consistency and concentration of directional properties in the Von 

Mises distribution result in a more predictable and efficient heat pump performance, 

while the uniform distribution shows greater variability and less efficiency. 

11.4. Visualization of simulation results 

The following figures provide visual comparisons of the simulation results for 

both distributions: 

 

Figure 5. Distribution of heat pump efficiency across 100 simulations. The Red 

dashed line marks the mean efficiency for the uniform distribution, and the blue 

dashed line marks the mean for the von mises distribution. 
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1) Distribution of Heat Pump Efficiency: Figure 5 shows the histograms of heat 

pump efficiency across all simulations for the uniform and Von Mises 

distributions, respectively. The distributions for the Von Mises case are more 

concentrated, with higher mean efficiency and lower variability. 

2) Circular Mean vs. Heat Pump Efficiency: Figure 6 presents scatter plots of 

circular mean 𝜃 versus heat pump efficiency 𝜂 for both distributions. The Von 

Mises distribution shows a tighter clustering around the circular mean, 

correlating with higher efficiency. 

 
Figure 6. Scatter plot of circular mean vs. heat pump efficiency for uniform and von 

mises distributions. 

 
Figure 7. Scatter plot of resultant length vs. heat pump efficiency for uniform and 

von mises distributions. 
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3) Resultant Length vs. Heat Pump Efficiency: Figure 7 shows scatter plots of 

resultant vector length 𝑅 versus heat pump efficiency 𝜂 for both distributions. 

The Von Mises distribution’s higher resultant length corresponds to higher 

efficiency, indicating the importance of directional consistency in thermal 

performance. 

4) Circular Plot of Raw Angular Data: Figure 8 shows circular plots of raw angular 

data under both distributions. The Von Mises distribution exhibits more 

directional clustering, aligning with its higher resultant length. 

 
Figure 8. Circular plot of raw angular data (first 10 simulations) for uniform and von mises distributions. 

5) Polar Histogram of Circular Means: Figure 9 presents polar histograms of the 

circular means 𝜃  across all simulations for the uniform and Von Mises 

distributions. The Von Mises distribution shows a more pronounced clustering 

around the mean direction, as expected from its concentration parameter 𝜅. 

 
Figure 9. Polar histogram of circular means across 100 simulations for uniform and von mises distributions. 
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6) Circular Variance vs. Heat Pump Efficiency: Figure 10 shows scatter plots of 

circular variance versus heat pump efficiency. Circular variance measures the 

dispersion of angles, with higher values indicating greater variability. With lower 

circular variance, the Von Mises distribution correlates with more consistency 

and higher efficiency. 

 
Figure 10. Scatter plot of circular variance vs. heat pump efficiency for uniform and 

Von Mises distributions. 

11.5. Discussions 

The simulation results demonstrate the intricate relationship between directional 

properties of thermal conductivity and heat pump efficiency under both uniform and 

Von Mises distributions. While circular statistics such as the circular mean and 

resultant vector length provide valuable insights, they alone cannot fully explain the 

variability in efficiency. The range of efficiency values observed across simulations 

underscores the need to consider multiple factors, including directional variability, 

when designing and optimizing thermal systems. With its ability to model directional 

concentration, the Von Mises distribution offers a more stable performance profile 

than the uniform distribution, suggesting its utility in applications where consistency 

in directional properties is crucial.  

12. Optimization results 

We optimized the heat pump efficiency by varying the concentration parameter 

κ from 0.5 to 10.0 in increments of 0.5. For each κ, we conducted M = 100 stochastic 

simulations to compute the mean efficiency η (κ) and the standard deviation 𝜎𝜂(κ). 

The goal was to identify the optimal concentration parameter κ that minimizes the 

variability of efficiency while maintaining a mean efficiency above the threshold 

𝜂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1.0. 

Table 4 presents the mean efficiency and standard deviation for each κ. 
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Table 4. Optimization results: Mean efficiency η (κ) and standard deviation  𝜎 𝜂 (κ). 

κ Mean Efficiency η (κ) Std Dev 𝜎𝜂(κ) 

0.5 1.3386 1.2623 

1.0 1.1105 0.7169 

1.5 1.1067 0.9257 

2.0 1.1213 0.5644 

2.5 1.2278 0.6516 

3.0 1.1519 0.8418 

3.5 1.0284 0.9658 

4.0 0.9576 0.2491 

4.5 1.0758 0.4422 

5.0 1.1227 0.4761 

5.5 1.0291 0.2874 

6.0 1.0357 0.3285 

6.5 1.0396 0.5480 

7.0 1.0255 0.2508 

7.5 1.0286 0.2322 

8.0 1.0785 0.4551 

8.5 1.0376 0.2674 

9.0 1.1167 0.5252 

9.5 1.0609 0.3814 

10.0 0.9844 0.1992 

From Table 4, we observe that the standard deviation 𝜎𝜂(κ) generally decreases 

as κ increases, indicating reduced variability in efficiency for higher κ values. The 

mean efficiency remains relatively stable around 1.0, satisfying our threshold 

𝜂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1.0.  

This figure demonstrates that increasing κ leads to reduced variability in 

efficiency, with the lowest variability observed at κ = 7.0. Beyond this point, the 

variability begins to rise slightly. 

Figure 11 shows the efficiency η (κ) for each κ. 

The box plot shows the variability. All efficiency belongs to an acceptable 

neighborhood 1, with prominently unsteady variability. Hence, even when the highest 

mean efficiency is at κ = 0.5, high variability makes it suboptimal compared to the 

lowest variability point, κ = 7. 

From the figure, we can see that the highest mean efficiency occurs at κ = 0.5, 

with η (0.5) = 1.3386. 

However, this comes with significant variability, as shown in the previous figure. 

12.1. Optimal concentration parameter 

The optimal κ is determined by the minimum 𝜎𝜂(κ) while ensuring η(κ) ≥ 1.0. 

From Table 4, the minimum 𝜎𝜂(κ) occurs at κ = 7.0, with 𝜎𝜂 (7.0) =0.2508 and η (7.0) 

= 1.0255. 
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12.2. Performance improvement 

Comparing the variability at 𝜅𝑜𝑝𝑡  = 7.0 to the baseline 𝜅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  = 0.5, we 

compute the percentage variability reduction as follows: 

 

Figure 11. Efficiency η(κ) versus concentration parameter κ. The box plot shows the 

variability. 

All efficiency belongs to an acceptable neighborhood 1, with prominently 

fluctuating variability. Even when the maximum mean efficiency is at κ = 0.5, high 

variability makes it sub-optimal in comparison with the lowest variability point, κ = 

7. 

Variability Reduction (%) (10) 

(
1.2623 − 0.2508

1.2623
) × 100% (11) 

≈ 80.13% (12) 

This indicates a significant reduction in efficiency variability, enhancing the 

consistency of the heat pump’s performance. 

12.3. Discussion 

The simulation results reveal that increasing κ leads to decreased variability in 

efficiency, even though the mean efficiency slightly decreases for higher κ. This 

suggests that higher directional concentration in thermal conductivity reduces 

fluctuations in performance due to material uncertainties, providing more consistent 

results. 

The optimal κ = 7.0 balances acceptable mean efficiency and minimized 

variability, resulting in more reliable heat pump operation. The variability is reduced 

by approximately 80.13% compared to the baseline κ = 0.5, demonstrating the benefit 

of controlling directional properties in material behavior. 
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13. Probability density function-based analysis of response 

variables 

This section conducts a detailed statistical analysis of the temperature distribution 

T (x) and the heat pump efficiency η. This section presents the PDFs and rose plots of 

the directional variables and discusses statistical characteristics such as skewness and 

kurtosis, providing deeper insights into the stochastic behavior of the system. 

13.1. Mathematical framework 

Let η denote the heat pump efficiency, which is a random variable due to the 

stochastic nature of the thermal conductivity 𝑘𝑖  in each element i. The probability 

density function of η is defined as: 

𝑓𝜂(𝜂) =
𝑑

𝑑𝜂
𝐹𝜂(𝜂) (13) 

where 𝐹𝜂(𝜂) is the cumulative distribution function (CDF) of η. 

Similarly, for the temperature at a specific location x, T (x), the PDF is: 

𝑓𝑇(𝑡) =
𝑑

𝑑𝑡
𝐹𝑇(𝑡) (14) 

where 𝐹𝑇(𝑡) is the CDF of T (x). 

To estimate the PDFs from the simulation data, we employ kernel density 

estimation (KDE), which provides a non-parametric method to estimate the probability 

density function of a random variable. This allows us to visualize the underlying 

distribution of the heat pump efficiency η, without assuming a specific parametric 

form for the distribution. 

13.2. Probability density functions of efficiency 

We performed M = 1000 simulations for the optimal concentration parameter κ 

= 7.0 and the baseline κ = 0.5. The PDFs of the efficiency η for both cases are plotted 

in Figure 12. 

The mathematical representation of the kernel density estimator 𝑓𝜂̂(𝜂) is: 

𝑓𝜂̂(𝜂) =
1

𝑀ℎ
∑ 𝐾 (

𝜂 − 𝜂(𝑗)

ℎ
)

𝑀

𝑗=1

 (15) 

where 𝜂(𝑗) are the observed efficiencies from simulations, ℎ is the bandwidth, and 

𝐾(⋅) is the kernel function, typically chosen as the Gaussian kernel: 

𝐾(𝑢) =
1

√2𝜋
𝑒𝑥𝑝 (

−𝑢2

2
) (16) 

From Figure 12, we observe that the PDF for κ = 7.0 is more concentrated and 

symmetric, while the PDF for κ = 0.5 is wider and shows more variability, consistent 

with the observed standard deviations. 
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Figure 12. Probability density function of heat pump efficiency η for κ = 0.5 (blue 

curve) and κ = 7.0 (red curve). Vertical lines indicate the mean efficiencies for each 

κ. 

13.3. Rose plots of directional variables 

To visualize the distribution of the directional angles 𝜃𝑖  used in the thermal 

conductivity 𝜅𝑖 =𝜅0 cos(𝜃𝑖), we present rose plots (circular histograms) for κ = 0.5 and 

κ = 7.0 in Figure 13. 

 

Figure 13. Rose plots of directional angles θi for (a) κ = 0.5 and (b) κ = 7.0. 

The probability density function of the Von Mises distribution, used to model the 

directional variability in thermal conductivity, is given by: 

𝑓𝛩(𝜃; 𝜇, 𝜅) =
1

2𝜋𝐼0(𝜅)
𝑒𝑥𝑝(𝜅𝑐𝑜𝑠(𝜃 − 𝜇)) (17) 

where 𝐼0(𝜅) is the modified Bessel function of the first kind of order zero, 𝜇 is the 

mean direction, and 𝜅 is the concentration parameter. 

The rose plots in Figure 13 show that for κ = 0.5, the directional angles θi are 

more uniformly spread. In contrast, for κ = 7.0, the angles are more concentrated 



Thermal Science and Engineering 2024, 7(4), 8795. 
 

30 

around the mean direction, leading to more consistent thermal conductivity and heat 

pump performance. 

13.4. Statistical analysis of distributions 

We computed the skewness 𝛾1 and kurtosis 𝛾2 of the efficiency distributions for 

both κ = 0.5 and κ = 7.0: 

𝛾1 =
𝐸 [(𝜂 − 𝜇𝜂)

3
]

𝜎𝜂
3  (18) 

𝛾2 =
𝐸 [(𝜂 − 𝜇𝜂)

4
]

𝜎𝜂
4 − 3 (19) 

where 𝜇𝜂 is the mean efficiency and 𝜎𝜂 is the standard deviation. 

Table 5 summarizes the statistical moments: The results in Table 5 indicate that 

for κ = 0.5, the efficiency distribution has a slight positive skewness and is more 

peaked, while for κ = 7.0, the distribution is almost symmetric and closer to normal, 

with lower skewness and kurtosis. 

Table 5. Statistical moments of efficiency distributions. 

κ Mean 𝜇𝜂  Std Dev 𝜎𝜂 Skewness 𝛾1 Kurtosis 𝛾2 

0.5 1.2224 0.5952 0.0875 −0.2934 

0.7 1.0111 0.2007 −0.0157 −0.2805 

13.5. Discussion of results 

From Figure 12, we observe that for κ = 0.5, the efficiency distribution is wider 

with a higher standard deviation, indicating greater variability. The slight positive 

skewness suggests higher efficiency values are possible but less frequent. 

For κ = 7.0, the efficiency distribution is more concentrated around the mean 

value 𝜇𝜂  = 1.0111 with a smaller standard deviation and near-zero skewness. This 

reflects a more stable and consistent heat pump performance, with lower efficiency 

variability. 

The rose plots in Figure 13 illustrate the concentration of directional angles 𝜃𝑖. 

For κ = 0.5, the angles are nearly uniformly distributed, leading to a wider spread in 

thermal conductivity directions and hence higher variability in efficiency. In contrast, 

for κ = 7.0, the angles are tightly concentrated around the mean direction, resulting in 

more uniform thermal conductivity and reduced variability. 

The skewness and kurtosis values in Table 5 further support these observations, 

with κ = 0.5 showing a higher tendency towards variability, while κ = 7.0 results in 

more consistent and normally distributed efficiency values. 

14. Parameter sensitivity analysis 

In this section, we perform a sensitivity analysis to explore how the concentration 

parameter κ affects the heat pump efficiency η. By analyzing the mean efficiency, 
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standard deviation, and sensitivity coefficients for varying values of κ, we aim to guide 

designers in selecting appropriate parameters for practical applications. 

14.1. Mathematical framework 

The concentration parameter κ influences the Von Mises distribution, which 

models the directional variability in thermal conductivity. The probability density 

function (PDF) of the Von Mises distribution is given by: 

𝑓𝛩(𝜃; 𝜇, 𝜅) =
1

2𝜋𝐼0(𝜅)
𝑒𝑥𝑝(𝜅𝑐𝑜𝑠(𝜃 − 𝜇)) (20) 

where 𝐼0(𝜅) is the modified Bessel function of the first kind of order zero, μ is the 

mean direction, and κ is the concentration parameter. 

To quantify the influence of κ on the efficiency η(κ), we define the sensitivity 

coefficient Sκ, which measures the rate of change of efficiency with respect to κ: 

𝑆𝜅 =
𝜕𝜂(𝜅)

𝜕𝜅
 (21) 

We approximate Sκ using finite differences: 

𝑆𝜅 ≈
𝜂(𝜅 + 𝛥𝜅) − 𝜂(𝜅)

𝛥𝜅
 (22) 

where ∆κ is a small increment in κ. This allows us to evaluate how sensitive the heat 

pump efficiency is to changes in κ across its range. 

14.2. Results 

 
Figure 14. Mean efficiency η(κ) vs. concentration parameter κ. 

We varied κ from 0.5 to 10.0, in steps of 0.5, and recorded the mean efficiency, 

standard deviation, and sensitivity coefficient for each value. The results are presented 

in Table A2. 

The mean efficiency η(κ) remains relatively stable around 1.0, while the standard 

deviation 𝜎𝜂 (κ) increases with larger κ, indicating more variability in performance for 

higher concentration parameters. The sensitivity coefficient Sκ shows that the system 
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is more sensitive to changes in κ in certain regions, particularly around κ = 5.5 and κ 

= 6.5. 

Figure 14 illustrates the relationship between κ and the mean efficiency η(κ), 

while Figure 15 shows how the standard deviation of efficiency changes with κ. The 

sensitivity coefficient Sκ is plotted in Figure 16. 

 
Figure 15. Standard deviation of efficiency 𝜎𝜂(κ) vs. concentration parameter κ. 

Figure 15 illustrates the relationship between 𝜎𝜂 (κ) and κ. A vertical line is 

drawn at κ = 7.0, where the standard deviation is minimized, indicating optimal 

stability. 

 

 
Figure 16. Sensitivity coefficient Sκ of efficiency vs. concentration parameter κ. 

14.3. Discussion 

The sensitivity analysis reveals that while the mean efficiency η(κ) remains fairly 

constant, the variability in efficiency increases with κ. This suggests that higher κ 

values, which correspond to more concentrated directional variability, result in more 

system performance variability. Designers should carefully choose κ to balance 

efficiency and variability in practical applications. The sensitivity coefficient Sκ 
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highlights regions where the efficiency is more sensitive to changes in κ, particularly 

between κ = 5.5 and κ = 6.5, where small changes in κ can lead to significant changes 

in efficiency. This information can be used to finetune the system for optimal 

performance. 

15. Limitations and future work 

Despite the novel contributions of this research, several limitations must be 

acknowledged. First, the current study assumes a simplified thermal conductivity 

model with only one directional component. In reality, thermal conductivity may 

exhibit more complex behavior, especially in materials with multiple anisotropic 

properties. Future work should explore multi-dimensional stochastic modeling to 

capture these complexities more accurately. 

Additionally, while integrating circular statistics provides a new perspective on 

thermal performance, it primarily focuses on analyzing phase angles and orientations. 

Further research could expand this approach to include other circular variables 

relevant to thermal systems, such as rotational symmetries and cyclic loading 

conditions. 

Another limitation lies in the computational demands of the stochastic FEA 

simulations, which may become prohibitive for large-scale systems with high degrees 

of variability. Future studies should investigate more efficient algorithms and parallel 

computing techniques to reduce computational costs while maintaining accuracy. 

Finally, the applicability of the proposed framework to other thermal systems, 

such as those involving phase change materials or non-linear heat conduction, remains 

an open question. Future research should extend the methodology to these areas, 

potentially uncovering new insights and applications of circular statistics in thermal 

science and engineering.  

16. Conclusion 

This research presents a novel optimization framework integrating stochastic 

finite element analysis (FEA) with circular statistical methods to improve heat pump 

efficiency under material uncertainties. The optimization focuses on tuning the 

concentration parameter κ of the Von Mises distribution, which models directional 

variability in thermal conductivity. 

The simulation results show that while the mean efficiency of the heat pump 

remains a bit high, there can be significant variability due to the stochastic nature of 

material properties. Through optimization, the variability in efficiency was reduced by 

approximately 80.13%, improving the stability and consistency of the heat pump’s 

performance. The sensitivity analysis conducted reveals that while the mean efficiency 

η(κ) remains relatively constant across different κ values, the standard deviation of the 

efficiency exhibits a notable increase as κ increases. This observation suggests that 

higher κ values, associated with more concentrated directional variability, tend to 

introduce greater variability in system performance. Consequently, designers are 

advised to carefully select values to balance maintaining high efficiency and 

controlling performance variability.  
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Moreover, the sensitivity coefficient Sκ provides valuable insights into regions 

where efficiency is particularly sensitive to changes in κ. Notably, between κ = 5.5 

and κ = 6.5, even minor adjustments to κ can lead to significant alterations in 

efficiency. This critical information can be strategically utilized to fine-tune the 

system, optimizing it for enhanced performance.  

The findings underscore the importance of controlling stochastic effects and 

directional properties in designing thermal systems. The integration of circular 

statistics allows for a more comprehensive understanding of directional influences on 

thermal performance, paving the way for more robust, reliable, and optimized designs 

in thermal systems. The novel methodologies and insights presented here have the 

potential to significantly influence the future design and optimization of thermal 

systems, especially in environments with material uncertainties. 
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Appendix 

Table A1. Summary of temperature distribution. 

Position (m) Mean Temp (°C) Std Dev (°C) 

0.00 −4.71 × 10−12 3.49 × 10−11 

0.02 2.92 1.41 × 101 

0.04 6.38  3.63 × 101 

0.06 −6.19 × 101 6.59 × 102 

0.08 −5.99 × 101 6.51 × 102 

0.10 −5.66 × 101 6.36 × 102 

0.12 −4.90 × 101 5.98 × 102 

0.14 −4.06 × 101 5.31 × 102 

0.16 −3.81 × 101 5.19 × 102 

0.18 −3.48 × 101 5.05 × 102 

0.20 −3.25 × 101 4.95 × 102 

0.22 −2.95 × 101 4.87 × 102 

0.24 −2.76 × 101 4.80 × 102 

0.26 −2.41 × 101 4.63 × 102 

0.28 −2.21 × 101 4.51 × 102 

0.30 −1.94 × 101 4.35 × 102 

0.32 −1.63 × 101 4.26 × 102 

0.34 −1.31 × 101 4.19 × 102 

0.36 −1.15 × 101 4.12 × 102 

0.38 −9.31  4.06 × 102 

0.40 −6.24  3.90 × 102 

0.42 −2.89 3.76 × 102 

0.44 −2.95 × 10−1 3.60 × 102 

0.46 2.50  3.55 × 102 

0.48 −3.29  3.72 × 102 

0.50 −6.34 × 10−1 3.64 × 102 

0.52 1.81  3.56 × 102 

0.54 5.15  3.41 × 102 

0.56 7.57  3.34 × 102 

0.58 1.01 × 101 3.28 × 102 

0.60 1.42 × 101 3.03 × 102 

0.62 1.75 × 101 2.94 × 102 

0.64 1.96 × 101 2.89 × 102 

0.66 2.24 × 101 2.82 × 102 

0.68 2.44 × 101 2.79 × 102 

0.70 2.72 × 101 2.73 × 102 

0.72 2.98 × 101 2.68 × 102 

0.74 3.20 × 101 2.70 × 102 

0.76 3.65 × 101 2.65 × 102 
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Table A1. (Continued). 

Position (m) Mean Temp (°C) Std Dev (°C) 

0.78 3.97 × 101 2.62 × 102 

0.80 5.07 × 101 2.54 × 102 

0.82 5.34 × 101 2.51 × 102 

0.84 5.76 × 101 2.41 × 102 

0.86 8.20 × 101 8.57 × 101 

0.88 8.40 × 101 7.74 × 101 

0.90 8.65 × 101 6.73 × 101 

0.92 8.90 × 101 5.57 × 101 

0.94 9.29 × 101 3.36 × 101 

0.96 9.52 × 101 2.35 × 101 

0.98 9.76 × 101 1.04 × 101 

Table A2. Sensitivity analysis results: Mean efficiency η(κ), standard deviation ση (κ), and sensitivity coefficient Sκ. 

κ Mean Efficiency η(κ)  Std Dev ση(κ) Sensitivity Coefficient Sκ 

0.5 1.0023 0.2188 0 

1.0 1.0016 0.2490 −0.0013 

1.5 0.9889 0.2717 −0.0255 

2 1.0022 0.3072 0.0267 

2.5 1.0004 0.3261 −0.0036 

3 1.0074 0.3544 0.0141 

3.5 0.9964 0.3681 −0.0222 

4 0.9938 0.3866 −0.0052 

4.5 0.9863 0.4078 −0.0149 

5 0.9968 0.4506 0.0209 

5.5 1.0251 0.4852 0.0567 

6 0.9933 0.4946 −0.0635 

6.5 1.0226 0.5337 0.0585 

7 1.0122 0.5690 −0.0209 

7.5 0.9843 0.5896 −0.0558 

8 0.9970 0.5797 0.0255 

8.5 0.9963 0.6208 −0.0014 

9 0.9917 0.6754 −0.0094 

9.5 1.0449 0.6531 0.1065 

10 0.9983 0.7143 −0.0932 

 


