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Abstract: The Organic Rankine Cycle (ORC) is an electricity generation system that uses 

organic fluid instead of water in the low temperature range. The Organic Rankine cycle using 

zeotropic working fluids has wide application potential. In this study, data mining (DM) model 

is used for performance analysis of organic Rankine cycle (ORC) using zeotropik working 

fluids R417A and R422D. Various DM models, including Linear Regression (LR), Multi-

Layer Perceptron (MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision 

Tree (DT) models are used. The MLP model emerged as the most effective approach for 

predicting the thermal efficiency of both R417A and R422D. The MLP’s predicted results 

closely matched the actual results obtained from the thermodynamic model using Genetron 

software. The Root Mean Square Error (RMSE) for the thermal efficiency was exceptionally 

low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-squared (R2) values for 

thermal efficiency were very high, reaching 0.9999 for R417A and R422D. The findings 

demonstrate the effectiveness of the DM model for complex tasks like estimating ORC thermal 

efficiency. This approach empowers engineers with the ability to predict thermal efficiency in 

organic Rankine systems with high accuracy, speed, and ease. 

Keywords: ORC; data mining; machine learning; zeotropik working fluids 

1. Introduction 

It clearly states the critical issue of climate change caused by carbon dioxide 
emissions from burning fossil fuels. It even cites the International Energy Agency 
(IEA) statistic of a staggering 36.3 gigatons of CO2 released into the atmosphere in 
2021 [1]. The transition to a more sustainable energy system hinges on two crucial 
elements: developing renewable energy sources to replace fossil fuels and utilizing 
waste heat to enhance overall energy conversion efficiency. Notably, within renewable 
and waste heat resources, there exists a vast potential for development, particularly in 
the area of medium and low-grade thermal energy. As the use of renewable energy 
grows and waste heat generation increases, the organic Rankine cycle (ORC) emerges 
as a highly suitable technology for heat conversion. This is due to its ability to 
efficiently utilize low-grade thermal energy. The ORC operates on a similar principle 
to the traditional steam Rankine cycle, but employs organic fluids with lower boiling 
points as the working fluid [2]. 

Machine learning, a type of artificial intelligence algorithm, has gained 
significant interest in recent years. This is due to its ability to effectively handle 
complex data, with multiple dimensions and variations, even in situations with 
dynamic or uncertain conditions [3]. In the field of Organic Rankine Cycles (ORCs), 
some promising research has begun to explore how machine learning can be applied. 
Several studies documented in academic literature have employed machine learning 
techniques to estimate and optimize ORC power system performance. Table 1 
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summarizes prior research that investigated ORC systems using various machine 
learning approaches. 

Table 1. Summary of related studies on optimization and performance prediction of ORC systems. 

Author (Years) Working fluid Estimated property Method 

Arslan and Yetik (2011) [4] R744 Optimization Artificial Neural Network (ANN) 

Yilmaz et al. (2016) [5] R410a and R407c System performance ANN 

Rashidi et al. (2011) [6] R717 Optimization  ANNs and Artificial Bees Colony (ABC) 

Kovacı et al. (2017) [7] R365-mfc and SES32 Thermal efficiency Neuro-fuzzy (ANFIS) and ANN 

Massimiani et al. (2017) [8] R1234yf Optimization ANN 

Yang et al. (2018) [9] R123 System performance ANN 

Bilgiç et al. (2016) [10] 
R245fa, tolüen, siklo-hekzan 
and solkaterm 

Power production ANN 

Dong et al. (2018) [11] Unspecified System performance Support Vector Machine (SVM) and ANN 

Kılıç and Arabacı (2019) [12] 
R123, R125, R227, R365mfc, 
and SES36 

System performance ANN and ANFIS 

Luo et al. (2019) [13] Different working fluids System performance ANN 

Palagi et al. (2019) [14]  Unspecified  System performance 
Feed-forward, recurrent (RNN) and long short-
term memory (LSTM) networks 

Huster et al. (2020) [15]  Different working fluids 
Working fuid selection 
and optimization 

ANN 

Wang et al. (2020) [16]  
R141b, R236ea, R245fa, 
R245ca, R123, R114 and R11 

Thermal and exergy 
efficiency 

SVM and ANN 

Peng et al. (2021) [17]  Different working fluids System performance ANN 

In this paper, unlike the studies in the literature, data mining method is used for 
the thermal efficiency estimation of the ORC system using R417A and R422D as 
working fluid. The thermodynamic modeling of the ORC system was performed using 
the Genetron software (Genetron Properties 1.4.2). The results obtained from the data 
mining method were compared with the thermodynamic model results (actual results) 
obtained using the Genetron software. The data mining method will help to predict the 
thermal efficiency of the ORC system very accurately and quickly. 

2. ORC system and thermodynamic modeling 

The corresponding system flowchart for the ORC system is presented in Figure 
1. The basic ORC configuration consists of four essential components [18]: 
 Evaporator: This component transfers heat from an external source to the system, 

vaporizing the high-pressure organic working fluid. 
 Turbine: The high-temperature, high-pressure organic working fluid expands in 

the turbine, generating electricity. 
 Condenser: Here, heat is extracted from the low-pressure working fluid exiting 

the turbine, condensing it back into a liquid state. 
 Pump: The pump increases the pressure of the liquid working fluid to match the 

evaporator pressure, allowing the cycle to repeat. 
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Figure 1. Schematic diagram of ORC. 

The four components associated with the ORC (pump, evaporator, turbine and 
condenser) are steady-state flow devices, and thus the four processes that make up the 
ORC can be analyzed as a steady flow process which can be expressed as [19,20]: 

൫�̇�௜௡ − �̇�௢௨௧൯ + ൫�̇�௣ − �̇�௧൯ = �̇�௥(ℎ௢௨௧ − ℎ௜௡) (1) 

The energy conservation relationship for each component can be expressed as 
follows: 

Pump: The power required to pump the condensed liquid working fluid to the 
inlet side of the boiler is calculated by the equation: 

�̇�௣ =
�̇�௥(ℎହ − ℎସ)


௣

 (2) 

Evaporator: In the evaporator, heat is added to the liquid working fluid so that it 
changes its phase to gas. The calorific value required by the boiler is calculated by the 
equation: 

�̇�௜௡ = �̇�௥(ℎ଻ − ℎ଺) (3) 

Turbine: The process of expansion of the working fluid in gaseous form from 
high pressure to condensing pressure produces turbine power, the output power is 
calculated by the equation: 

�̇�௧ = �̇�௥௧(ℎଵ − ℎଶ) (4) 

Condenser: In the condenser a certain amount of heat is discharged into the 
environmental air, and the value of the heat released is calculated by the equation: 

�̇�௢௨௧ = �̇�௥(ℎଷ − ℎସ) (5) 

The performance of ORC systems is usually expressed by thermal efficiency, and 
is calculated by the equation: 

𝜂 =
�̇�௢௨௧

�̇�௜௡
=
൫�̇�௧ − �̇�௣൯

�̇�௜௡
 (6) 

The thermodynamic modeling of the ORC system was performed using the 
Genetron software. 

Some of parameters and assumptions in this study presented in Table 2 were 
selected based on the working range of ORC systems that have been used as small-
scale power plants. 
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Table 2. Research parameters and assumptions. 

Parameters Unit Value 

Turbine output power ൫�̇�𝐭൯ kW 70 

Evaporator temperature (𝐓𝐄) ℃ 61–77 

Condenser temperature (𝐓𝐂) ℃ 26–42 

Superheating temperature (∆𝐓𝐒𝐇) ℃ 3, 5, 7 

Subcooling temperature (∆𝐓𝐒𝐂) ℃ 3, 5, 7 

Turbine isentropic efficiency ൫
𝐭
൯ - 0.84 

Pump isentropic efficiency ൫
𝐏
൯  - 0.72 

3. Data mining model and application 

Data mining is an interdisciplinary field that integrates elements from databases, 
statistics, machine learning, signal processing, and high-performance computing. Its 
primary objective is to uncover meaningful correlations and patterns within existing 
data that are potentially valuable and understandable. It serves as a potent tool for 
extracting predictive insights from vast datasets. Data mining tasks can generally be 
categorized as either predictive or descriptive in nature. Predictive modeling involves 
the construction of predictive models based on the outcomes of disparate datasets. In 
contrast, descriptive modeling aims to identify underlying patterns or relationships 
within the data. Unlike predictive modeling, which focuses on making predictions, 
descriptive modeling seeks to uncover inherent characteristics of the data being 
studied rather than predicting new features. Common predictive modeling tasks in data 
mining include classification, prediction, regression, and time series analysis. 
Descriptive tasks encompass techniques such as clustering, summarization, 
association rules, and ranking. Figure 2 illustrates the various tasks and models in data 
mining [21]. 

 
Figure 2. Data mining tasks and models. 

Among predictive models, Classification is arguably the most comprehensively 
understood approach in data mining. Three key characteristics of classification tasks 
are [22]: 
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 Supervised learning, 

 Categorical dependent variable, 

 Ability to assign new data to distinct predefined classes. 
In contrast to classification, Prediction modeling aims to forecast future outcomes 

rather than describing current behavior. Its output can be either categorical or 
numerical. 

Another type of forecasting model, known as Statistical Regression, is a 
supervised learning technique that involves analyzing the relationship between 
attributes within the same dataset and building a model capable of predicting attribute 
values for new instances. Forecasting scenarios involving one or more time-dependent 
attributes are commonly referred to as time series problems. 

CRISP-DM (Cross-Industry Standard Process for Data Mining) is a process 
model management and implementation of data mining projects. It is the most widely-
used analytics model. This methodology consists of six phases [23]: Business 
Understanding, Data Preparation, Modelling, Evaluation and Deployment, as shown 
in Figure 3. 

 
Figure 3. Steps of CRISP-DM Methodology [24]. 

Business Understanding: It includes business understanding and is the stage 
where the objectives and requirements are determined. The purpose and business 
requirements of the data mining are determined. At this stage, objectives and 
requirements are understood. 

Data Understanding: In the data understanding phase, the existing data set is 
analyzed and understood. Data quality, missing data and data relationships are 
analyzed at this stage. In this phase, important information about the data is obtained 
and analyzed. The influence of evaporator, condenser, subcooling, and superheating 
temperatures on the thermal efficiency of an ORC system is well known. Consequently, 
these temperatures were selected as the input data in the study. Thermal efficiency is 
the output data of the data mining model. 

Data Preparation: In the data preparation phase, the data is made suitable for data 
mining operations. The data is cleaned, transformed and brought into a suitable format. 
At this stage, the data set is made ready to be used in the modelling phase. In this study, 
the thermodynamic modeling of the ORC system was made using the Genetron 
software. The data set used to train the network was obtained from the results of the 
thermodynamic modeling 
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Modelling: Data mining models are created and tested. At this stage, learning 
from the data set is performed using different algorithms and techniques. In this study; 
The Linear Regression (LR), Multi-Layer Perceptron (MLP), Decision Table (DT), 
M5 rules (M5R), M5P model tree (M5P) and Random Committee (RC) models are 
applied for the thermal efficiency estimating of the ORC system working with R417A 
and R422D. Information on these models is given below. 

 Linear Regression: Regression analysis is a statistical method utilized to 
investigate the numerical relationship between two or more variables. Its primary 
objective is to elucidate the functional relationship between variables and to 
articulate this relationship through a model. Within regression analysis, when 
there exists one dependent variable and one independent variable, it is termed as 
Simple Linear Regression; whereas, if there are multiple independent variables, 
it is referred to as Multiple Linear Regression. Multivariate Regression analysis 
represents a generalized form of Multiple Linear Regression analysis, wherein 
there are multiple dependent variables involved [25]. 

 Multilayer Perceptron: A multilayer perceptron (MLP) serves as a classifier 
employing backpropagation for sample classification and learning. These 
networks, known as feed-forward neural networks, are trained utilizing the 
standard backpropagation algorithm. Being supervised networks, MLPs 
necessitate a desired response for training purposes. They learn the process of 
transforming input data into the desired response, making them extensively 
employed for pattern classification tasks. Equipped with one or two hidden layers, 
MLPs demonstrate the capability to approximate nearly any input-output 
mapping. Moreover, they have demonstrated the ability to approach the 
performance levels of optimal statistical classifiers even in challenging 
conditions [26,27]. 

 M5 Rules: The M5 Rules algorithm is a method that employs the divide-and-
conquer approach to construct decision lists for regression tasks. Utilizing the 
divide-and-conquer technique, the M5 Rules algorithm constructs a model tree, 
generates rules from the optimal leaf, and subsequently processes the remaining 
instances in the dataset based on the generated rule. In contrast to PART (Partial 
Decision Trees), which employs a similar strategy for categorical prediction, M5 
Rules constructs complete trees rather than partially explored trees. The 
generation of partial trees offers enhanced computational efficiency without 
compromising the size and accuracy of the resultant rules [26]. 

 M5P: M5P represents a modification of the M5 algorithm tailored for 
constructing a regression tree model based on experimental data. Within an M5P 
model, each branch of the tree encapsulates a linear regression model that predicts 
the class values for the corresponding segment of the dataset reaching the leaf. 
The dataset undergoes partitioning based on specific data characteristics, 
allowing for the creation of model trees that extend beyond the traditional fixed-
value branches of regression trees. Consequently, model trees resemble 
piecewise linear functions, thus exhibiting non-linear behavior. Model trees offer 
enhanced learning efficiency and are adept at handling tasks involving high 
dimensionality, even up to hundreds of attributes. Noteworthy advantages of 
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model trees over regression trees include their comparatively smaller size, 
transparent decision-making processes, and the tendency for regression functions 
to involve a manageable number of variables [26]. 

 Random Committee: The Random Committee classifier functions by assembling 
an ensemble of base classifiers that are randomized in nature. Each base classifier 
is generated utilizing a distinct random number kernel, albeit based on the same 
dataset. The ultimate prediction is derived by computing a simple average of the 
predictions generated by each individual base classifier [28]. 

 Decision Table: The Decision Table classifier is employed to construct a majority 
classifier using a straightforward decision table. Through an induction algorithm 
applied to a labeled training set, this classifier is generated. Two distinct variants 
of decision table classifiers have been delineated. The first variant, known as 
DTMaj (Decision Table Majority), returns the majority class of the training set if 
the corresponding cell in the decision table, corresponding to the new example, 
is empty, signifying the absence of any training examples. The second variant, 
termed DTLoc (Decision Table Local), introduces a novel approach by seeking 
a decision table entry with fewer matching attributes (larger cells) in the event 
that the matching cell is devoid of examples. Consequently, this variant furnishes 
a response from the local vicinity, where minor alterations in a pertinent attribute 
do not induce changes in the label [29,30]. 
Evaluation: The effectiveness and performance of the models created are 

evaluated. At this stage, the performance of the models is evaluated by looking at how 
well they meet the set objectives. Different statistical criteria can be used to determine 
the model’s performance, such as mean absolute error (MAE), Root Mean Square 
Error (RMSE), and coefficient of determination (R2), as given below [22]. 

𝑀𝐴𝐸 =
1

𝑛
෍ห𝑦௘,ଵ − 𝑡௔,௜ห

௡

௜ୀ଴

 (7) 

𝑅𝑀𝑆𝐸 = ඨ∑ ൫𝑦௘,௜ − 𝑡௔,௜൯
ଶ௡

௜ୀଵ

𝑛
 (8) 

𝑅ଶ = 1 −
∑ ൫𝑦௘,௜ − 𝑡௔,௜൯

ଶ௡
௜ୀଵ

∑ ൫𝑡௔,௠ − 𝑡௔,௠൯
ଶ௡

௜ୀଵ

 (9) 

In these equations, ye,i refers to the prediction value, ta.i to the true value, t̅a.m to 
the mean of the true value, and n to the number of data. 

Deployment: Successful models are integrated into the business. It is planned 
how the models will be used and maintained in real conditions. 

4. Result and discussion 

Different Data mining models (LR, MLP, DT, M5 rules, M5 model tree, and 
Random Committee) were used to determine the thermal efficiency of the ORC system 
operating with R417A and R422D working fluids. Data mining analyses were 
conducted using WEKA 3.9 software (Waikato Environment for Knowledge 
Analysis). The performance of various models was evaluated using metrics like R-
squared (R²), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). 
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The formulas for these metrics are provided earlier in the text. The ideal estimating 
model is highly accurate, meaning the Mean Absolute Error (MAE) and Root Mean 
Squared Error (RMSE) approach zero, while the R-squared (R2) value gets as close to 
1 as possible. Accordingly, Tables 3 and 4 show that the best results for the thermal 
efficiency of the ORC system with R417A and R422D working fluids are obtained 
using the MLP model. 

Table 3. Thermal efficiency values for R417A. 

Model R2 MAE  RMSE 

Linear Regression 0.9983 0.0006 0.0008 

Multi Layer Perceptron 0.9999 0.0001 0.0002 

Random Committee 0.9874 0.0019 0.0022 

Decision Table 0.9062 0.0041 0.0059 

M5Rules 0.9992 0.0004 0.0006 

M5P 0.9992 0.0004 0.0006 

Table 4. Thermal efficiency values for R422D. 

Model R2 MAE RMSE 

Linear Regression 0.9979 0.0007 0.0009 

Multi Layer Perceptron 0.9999 0.0002 0.0003 

Random Committee 0.9872 0.0018 0.0022 

Decision Table 0.9092 0.0039 0.0057 

M5Rules 0.9736 0.0016 0.0032 

M5P 0.9996 0.0003 0.0004 

For the test data set, the comparison of actual and predicted thermal efficiency of 
R417A and R422D is shown in Figure 4. The correlation coefficient values for R417A 
and R422D are 0.9961 and 0.9936, respectively. 

 
Figure 4. Actual and predicted thermal efficiency for R417A and R422D. 

Figure 5 compares the actual thermal efficiency of the ORC system with the 
efficiencies estimated by the MLP model, for both R417A and R422D working fluids. 
As the figure shows, thermal efficiency increases with higher evaporator temperatures. 
The MLP model’s estimates closely match the actual efficiency values. 
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(a) (b) 

Figure 5. Results comparison of actual thermal efficiency with MLP model results 
depending on evaporator temperature for R417A and R422D. (a) R417A (TC = 

26 ℃; TSH = 3 ℃; TSC = 3 ℃); (b) R422D (TC = 26 ℃; TSH = 3 ℃; TSC = 

3 ℃). 

Comparison of actual and MLP estimated thermal efficiency of the ORC system 
for the R417A and R422D working fluids is given in Figure 6. As seen in Figure 6, 
if the condenser temperature is increased, the thermal efficiency value decreases. The 
thermal efficiency values estimated by the MLP model are close to the actual values. 

  
(a) (b) 

Figure 6. Results comparison of actual thermal efficiency with MLP model results 
depending on condenser temperature for R417A and R422D. (a) R417A (TE = 61 ℃; 

TSH = 3 ℃; TSC = 3 ℃); (b) R422D (TE = 61 ℃; TSH = 3 ℃; TSC = 3 ℃). 

Tables 5 and 6 compare the actual thermal efficiency of the ORC system using 
R417A and R422D working fluids with the estimates from the MLP model. The 
comparison considers the evaporator temperature, condenser temperature, subcooling 
temperature, and superheating temperature. The maximum percentage errors in 
thermal efficiency were 2.51% for R417A and 2.37% for R422D. 

Table 5. Comparison of actual and model results for R417A. 

TE (℃) TC (℃) ΔTSH (℃) ΔTSC (℃) Actual η Predicted η Percentage error 

61 42 5 5 0.0359 0.0368 –2.51 

61 40 7 7 0.0382 0.0388 –1.57 

63 30 5 5 0.0655 0.0655 0.00 

65 40 3 3 0.0512 0.0512 0.00 
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Table 5. (Continued). 

TE (℃) TC (℃) ΔTSH (℃) ΔTSC (℃) Actual η Predicted η Percentage error 

65 32 5 5 0.0654 0.0654 0.00 

67 34 7 7 0.0636 0.0636 0.00 

69 34 5 5 0.0691 0.0692 –0.14 

69 32 5 5 0.0729 0.0730 –0.14 

71 42 7 7 0.0559 0.0556 0.54 

73 40 5 5 0.0654 0.0652 0.31 

75 34 5 5 0.0797 0.0798 –0.13 

75 26 7 7 0.0923 0.0919 0.43 

77 28 7 7 0.0920 0.0917 0.33 

77 26 3 3 0.0975 0.0968 0.72 

Table 6. Comparison of actual and model results for R422D. 

TE (℃) TC (℃) ΔTSH (℃) ΔTSC (℃) Actual η Predicted η Percentage error 

61 42 5 5 0.0379 0.0388 –2.37 

61 40 7 7 0.0402 0.0408 –1.49 

63 36 7 7 0.0533 0.0534 –0.19 

65 40 3 3 0.0531 0.0533 –0.38 

67 38 3 3 0.0611 0.0612 –0.16 

67 34 7 7 0.0655 0.0657 –0.31 

69 38 3 3 0.0650 0.0651 –0.15 

69 40 3 3 0.0612 0.0613 –0.16 

71 40 3 3 0.0651 0.0652 –0.15 

71 30 7 7 0.0802 0.0806 –0.50 

75 34 7 7 0.0803 0.0804 –0.12 

75 32 3 3 0.0857 0.0860 –0.35 

77 34 3 3 0.0856 0.0859 –0.35 

77 28 7 7 0.0935 0.0932 0.32 

5. Conclusion 

This study combined thermodynamic and data mining methods to predict the 
thermal efficiency of an Organic Rankine Cycle (ORC) system. We evaluated various 
data mining models, including Linear Regression (LR), Multi-Layer Perceptron 
(MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision Tree (DT) 
models. Analyses were conducted for R417A and R422D zeotropic working fluids. 

The MLP model emerged as the most effective approach for predicting the 
thermal efficiency of both R417A and R422D. The MLP’s predicted results closely 
matched the actual results obtained from the thermodynamic model using Genetron 
software. The Root Mean Square Error (RMSE) for the thermal efficiency was 
exceptionally low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-
squared (R2) values for thermal efficiency were very high, reaching 0.9999 for R417A 
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and R422D. While the model exhibited high accuracy, the maximum percentage errors 
in thermal efficiency were 2.51% for R417A and 2.37% for R422D. 

It describes the successful use of data mining for complex engineering tasks, like 
modeling ORC systems. The newly created model allows for predicting ORC system 
performance in a simpler, faster, and more accurate way compared to traditional 
models. As is proved by the results presented in this research, the data mining method 
can be used to solve many engineering problems. The authors believe this machine 
learning approach has the potential to be applied to a wide variety of engineering 
problems in future studies. 
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Abbreviations 

ℎ Enthalpy (kJ/kg) 

�̇� Mass flow rate (kg/s) 

�̇� Heat transfer (kW) 

𝑇  Temperature (℃) 

�̇�  Power (kW) 

 Efficiency 

 Difference 

C Condenser 

E Evaporator 

in Inlet 

out Outlet 

p Pump 

r Working fluid 

SC Subcooling 

SH Superheating 

t Turbine 
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