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ABSTRACT 

This research paper explores the influence of first-order chemical reactions on the sustainable properties of 

electrically conducting magnetohydrodynamic (MHD) fluids in a vertical channel with the unique characteristics of 

Jeffrey fluid flow. The mathematical model of MHD flow with Jeffrey fluid and chemical reaction incorporates the 

impacts of viscous dissipation, Joule heating, and a non-Newtonian fluid model with viscoelastic properties in the flow 

regions. The governing equations of the flow field were solved using the finite difference method, and the impacts of flow 

parameters on the flow characteristics were discussed numerically using a graphical representation. It’s revealed that 

increasing the Jeffrey parameter results in a decline in the velocity field profiles. Also, species concentration field profiles 

decline with higher values of the destruction chemical reaction parameter. The findings of this study have significant 

implications for various engineering applications, including energy generation, aerospace engineering, and material 

processing. Additionally, the inclusion of Jeffrey’s fluid flow introduces a viscoelastic component, enhancing the 

complexity of the fluid dynamics. 
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1. Introduction 
Electrically conducting fluids play a crucial role in modern 

engineering applications, and understanding their behaviour under the 
influence of magnetic fields is essential for optimizing processes and 
enhancing sustainability. This paper investigates the sustainability 
aspects of such fluids by incorporating Jeffrey fluid flow, a non-
Newtonian fluid model with viscoelastic properties. Narsimha Reddy et 
al.[1] studied the behaviour of MHD with Casson fluid and nanofluid for 
the advanced application of MHD. Magnetohydrodynamics involves the 
study of the dynamics of electrically conducting fluids, considering the 
interactions between fluid motion and electromagnetic fields. 

First-order chemical reactions, characterized by their rate directly 
proportional to the concentration of a single reactant, are fundamental in 
chemical kinetics. The study of these reactions becomes even more 
compelling when coupled with the complexities introduced by MHD. 
Electrically conducting fluids, often encountered in plasmas and liquid 
metals, exhibit unique responses to magnetic fields, leading to 
phenomena such as magnetohydrodynamic instabilities and magnetic 
damping. Incorporating first-order chemical reactions into this MHD 
framework adds an additional layer of intricacy to the understanding of 
dynamic systems. Noh et al.[2] analysed the surface modification of 
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dielectric materials to change the dipole-dipole interactions under electric fields. Sedki and Qahiti[3] 
investigated the phenomenon of radiative heat with an unsteady MHD electrically conducting boundary layer 
of chemically reactive Casson nanofluid flow due to a pored stretchable sheet immersed in a porous medium 
in the presence of heat generation, thermophoretic force, and Brownian motion. Furthermore, Venkateswarlu 
et al.[4] introduced a novel theoretical model known as the trihybrid nanofluid (THNF), which demonstrates 
remarkable thermal conductivity properties to enhance heat transfer in liquids. 

MHD is widely acknowledged as a scientific discipline that places significant emphasis on the dynamics 
of electrically conducting fluids. The field of MHD boasts many industrial applications, such as accelerometers, 
cooling system designs using liquid metals, crystal growth, flow meters, and MHD power production. In recent 
years, numerous scholars have undertaken various studies to gain a comprehensive understanding of the 
profound impact of magnetic fields on HT and liquid flow across various geometric configurations. Guedri et 
al.[5] analysed EM-THNF flow over a stretching sheet under the influence of Joule heating and viscous 
dissipation using the HAM method. 

Jeffrey fluid flow introduces a viscoelastic component, characterized by a fractional derivative of the 
stress tensor. The constitutive equations governing Jeffrey fluid flow will be included in the theoretical 
framework to capture the unique rheological properties of the fluid. The effect of heat and mass transfer on 
two immiscible fluids between two vertical plates in the presence of a chemical reaction with radiation 
parameters was studied by Govindarajan and Lakshmipriya[6]. Sandeep et al.[7] investigated the stagnation point 
flow of MHD Jeffrey nanofluid over a stretching surface with an induced magnetic field and chemical reaction. 
Raju et al.[8] analyzed the effects of nonlinear thermal radiation on 3D Jeffrey fluid flow over a 
stretching/shrinking surface in the presence of homogeneous-heterogeneous reactions, non-uniform heat 
source/sink, and suction/injection. Rashidi et al.[9] performed mixed convective laminar, incompressible flow, 
and heat analysis transfer of viscoelastic fluid over a permeable wedge with thermal radiation by employing 
the homotropy analysis method (HAM). 

Recently, Kuznetsov and Nield[10] revised the problem[11] by replacing the boundary condition with a more 
physical one. It is now assumed that there is no normal mass flux at the plate and that the particle fraction 
value there adjusts accordingly[12]. Hayat et al.[13] studied magnetohydrodynamic (MHD) three-dimensional 
flow of couple stress nanofluid in the presence of nonlinear thermal radiation. Malvandi et al.[14] examined 
laminar film-wise condensation of nanofluids over a vertical plate with nanoparticle migration. Hayat et al.[15] 
discussed the magnetohydrodynamic (MHD) flow of second-grade nanofluid over a nonlinear stretching 
surface with convective boundary conditions. Halim et al.[16] addressed the stagnation-point flow of 
Williamson nanofluid towards a horizontal linearly stretching/shrinking sheet. Hayat et al.[17] studied the active 
and passive controls of Jeffrey nanofluid flow over a nonlinear stretching surface. Shreedevi et al.[18] analysed 
the Jeffrey fluid flow of two immiscible fluids in the presence of a chemical reaction. 

The novelty of this study is to explore the influence of Jeffrey fluid and first-order chemical reactions on 
the sustainable properties of electrically conducting magnetohydrodynamic (MHD) fluids in a vertical channel 
with the unique characteristics of a non-Newtonian fluid model with viscoelastic properties by taking into 
account the impacts of viscous dissipation and Joule heating in the flow regions. The findings of this study 
have significant implications for various engineering applications, including energy generation, room 
ventilation, aerospace engineering, thermal insulation, packed beds, fuel combustion, and processing materials. 

2. Mathematical formulation 
The flow model consists of electrically conducting and Jeffrey fluid in both regions. A fully developed 

flow with transfer characteristics, the fluid flow depends on y transverse coordinate and the transverse velocity 
(the velocity in the x-direction) is negligible in this study, as depicted in Figure 1. It is assumed that the fluid 
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moves only due to the hydrostatic pressure. Hydrostatic and osmotic pressures outside the channel are also 
assumed to be constant (see [19]).  

 
Figure 1. Physical configuration. 

The governing equations of the flow problem, including the momentum, energy, and concentration 
equations, are shown below[18,19]: 

Region-I 

𝜌 𝛽 𝑔(𝑇 − 𝑇 ) + 𝜌 𝛽 𝑔(𝐶 − 𝐶 ) +
𝜇

(1 + 𝜆 )

𝑑 𝑈

𝑑𝑌
−
𝜇 𝑈

𝜅
−
𝑑𝑝

𝑑𝑋
− 𝜎 (𝐸 + 𝐵 𝑈 )𝐵 = 0 

𝑑 𝑇

𝑑𝑌
+

𝜇

𝜌 𝛼 𝐶

𝑑𝑈

𝑑𝑌
+

𝜎

𝜌 𝛼 𝐶
(𝐸 + 𝐵𝑈 ) = 0 

𝐷
𝑑 𝐶

𝑑𝑌
− 𝐾 (𝐶 − 𝐶 ) = 0 

(1)

Region-II 

𝜌 𝛽 𝑔(𝑇 − 𝑇 ) + 𝜌 𝛽 𝑔(𝐶 − 𝐶 ) +
𝜇

(1 + 𝜆 )

𝑑 𝑈

𝑑𝑌
−
𝜇 𝑈

𝜅
−
𝑑𝑝

𝑑𝑋
− 𝜎 (𝐸 + 𝐵 𝑈 )𝐵 = 0 

𝑑 𝑇

𝑑𝑌
+

𝜇

𝜌 𝛼 𝐶

𝑑𝑈

𝑑𝑌
+

𝜎

𝜌 𝛼 𝐶
(𝐸 + 𝐵𝑈 ) = 0 

𝐷
𝑑 𝐶

𝑑𝑌
− 𝐾 (𝐶 − 𝐶 ) = 0 

(2)

Boundary interface conditions are as follows[18,19]: 

𝑈 (−ℎ ) = 0,𝑈 (ℎ ) = 0,𝑈 (0) = 𝑈 (0), 
( )

(0) =
( )

(0) 

𝑇 (−ℎ ) = 𝑇𝑤 , 𝑇 (ℎ ) = 𝑇𝑤 ,𝑇 (0) = 𝑇 (0),𝛫 (0) = 𝛫 (0) 

𝐶 (−ℎ ) = 𝐶 ,𝐶 (ℎ ) = 𝐶 ,𝐶 (0) = 𝐶 (0), 𝐷 (0) = 𝐷 (0) 

(3)

Corresponding to the following non-dimensional variables: 

𝑢 = , 𝑦 = , 𝜃 = , 𝜃 = , 𝜙 = , 𝜙 =  

𝛥𝛵 = 𝛵 − 𝛵 , 𝛥𝜙 = 𝐶 − 𝐶 , 𝛼 = , 𝛼 =  
(4)
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𝐺𝑟 = , 𝐺𝑐 = , 𝑅𝑒 = , 𝐵𝑟 =
( )

 
2

1

1 1

,
h dp

p
dXU

 𝛭 = , 𝛦 =
̄
 

Substituting the non-dimensional variables (4) into Equations (1) and (2) we get  

Region-I 

𝑑 𝑢

𝑑𝑦
+ (1 + 𝜆 )𝐺 𝜃 + (1 + 𝜆 )𝐺 𝜙 − (1 + 𝜆 )𝑝 − (1 + 𝜆 )𝛭 [𝛦 + 𝑢 ] = 0 

𝑑 𝜃

𝑑𝑦
+ 𝐵𝑟

𝑑𝑢

𝑑𝑦
+𝛭 (𝑢 + 𝛦) = 0 

𝑑 𝜙

𝑑𝑦
− 𝛼 𝜙 = 0 

(5)

Region-II 

𝑑 𝑢

𝑑𝑦
+𝑚ℎ [𝑛𝑏 𝐺 (1 + 𝜆 )𝜃 + 𝑛𝑏 𝐺 (1 + 𝜆 )𝜙 −𝑀 𝜎𝑟(𝐸𝐸𝑟 + 𝑢 )(1 + 𝜆 ) − 𝑝(1 + 𝜆 )] = 0 

𝑑 𝜃

𝑑𝑦
+ 𝐵𝑟

𝑘

𝑚

𝑑𝑢

𝑑𝑦
+𝛭 ℎ 𝐾𝜎𝑟(𝑢 + 𝛦𝐸𝑟) = 0 

𝑑 𝜙

𝑑𝑦
− 𝛼 𝜙 = 0 

(6)

After the transformation of conditions at the interface and boundary Equation (3) transforms into, 

𝑢 (−1) = 0, 𝑦 = 1 at 𝑦 = −1,𝑢 (1) = 0 at 1y 𝑢 (0) = 𝑢 (0), 
( )

(0) =
( )

(0) at 𝑦 = 0 

𝜃 (−1) = 1 at 𝑦 = −1, 𝜃 (1) = 0 at 𝑦 = 1, 𝜃 (0) = 𝜃 (0), (0) = (0) at 𝑦 = 0 

𝜙 (−1) = 1at 𝑦 = −1,𝜙 (1) = 0 at 𝑦 = 1, 𝜙 (0) = 𝜙 (0), (0) = (0) at 𝑦 = 0

 where, 

𝐺 = ,𝐺 = ,ℎ = ,  𝑚 = ,  𝑏 = , 𝑏 = ,𝑛 = ,𝑑 = ,𝛦𝑟 = ,𝐾 = , 𝜎𝑟 =  (7)

3. Method of solutions 
The governing Equations (5) and (6) are solved numerically using the finite difference method subject to 

initial and boundary conditions given in Equation (7). Thus, the explicit finite difference method is utilized to 
solve the system of governing equations. The forward time central in space for u, θ, and ϕ is given as follows: 

=
∆

, =
∆

, =
∆

, =
∆

, =
∆

, =

∆
, 𝜙 = 𝜙 , 𝜃 = 𝜃 , 𝑢 = 𝑢  

(8)

Substituting Equation (8) into Equations (5) and (6), yields the following governing equation in finite 
difference form:  

Region-I 

𝑢 − 2𝑢 + 𝑢

∆𝑦
+ (1 + 𝜆 )𝐺 𝜃 + (1 + 𝜆 )𝐺 𝜙 − (1 + 𝜆 )𝑝 − (1 + 𝜆 )𝛭 [𝛦 + 𝑢 ] = 0 

𝜃 − 2𝜃 + 𝜃

∆𝑦
+ 𝐵𝑟

𝑢 − 𝑢

2∆𝑦
+𝛭 (𝑢 + 𝛦) = 0 

𝜙 − 2𝜙 + 𝜙

∆𝑦
− 𝛼 𝜙 = 0 

(9)
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Region-II 

𝑢 − 2𝑢 + 𝑢

∆𝑦
+𝑚ℎ [𝑛𝑏 𝐺 (1 + 𝜆 )𝜃 + 𝑛𝑏 𝐺 (1 + 𝜆 )𝜙 −𝑀 𝜎𝑟(𝐸𝐸𝑟 + 𝑢 𝑗)(1 + 𝜆 )

− 𝑝(1 + 𝜆 )] = 0 
𝜃 − 2𝜃 + 𝜃

∆𝑦
+ 𝐵𝑟

𝑘

𝑚

𝑢 − 𝑢

2∆𝑦
+𝛭 ℎ 𝐾𝜎𝑟(𝑢 + 𝛦𝐸𝑟) = 0 

𝜙 − 2𝜙 + 𝜙

∆𝑦
− 𝛼 𝜙 = 0 

(10)

4. Result and discussion 
This section highlights the influence of magnetic fields, Jeffrey fluid flow, and first-order chemical 

reactions on the sustainability of the system. The influence of various physical parameters on the flow variables 
is discussed through graphs. The implications of the findings on potential applications, such as energy 
generation and material processing. 

From Figure 2, graphically, it’s noted that both the velocity and thermal field’s profiles grow with larger 
values of the viscosity ratio parameter. Physically, by raising the values of the viscosity ratio, both fields 
increase due to the heat absorption effect.  

 
(a) 

 
(b) 

Figure 2. (a) and (b), velocity and temperature profiles for different values of viscosity ratios. 

From Figure 3, it’s noted that increasing the Hartmann number recedes the velocity field profiles. 
Physically, as expected, rising values of M result in an increase in magnetic force that retards the motion of 
the fluid due to the Lorentz force. Also, it’s observed that M has opposite effects in the thermal field profiles. 

From Figure 4, graphically, it’s noticed that the flow field profiles grow with higher progressive values 
of the width ratio parameter. Physically, increasing the width ratio enhances the flow width, and as a result, 
flow increases for both velocity and thermal field profiles. 



 

6 

 
(a) 

 
(b) 

Figure 3. (a) and (b), velocity and temperature profile for different values of Hartmann number. 

 
(a) 

 
(b) 

Figure 4. (a) and (b), velocity and temperature profile for different values of width ratios. 

From Figure 5, graphically, it’s observed that the flow field profiles rise with higher values of the Grashof 
number. Physically, increasing the Grashof number results in a reduction of viscous force in the flow and thus 
increases the buoyancy force. As a result, it optimizes the velocity field profiles. 
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Figure 6 shows that an increase in the electrical load-carrying parameter increases the energy. As a result, 
conductivity in the fluid increases, and hence the flow is enhanced. 

 
(a) 

 
(b) 

Figure 5. (a) and (b), velocity profile for different values of Grashof number. 

 
(a) 

 
(b) 

Figure 6. (a) and (b), velocity and temperature profiles for different values of electrical load parameters. 
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Graphically, from Figure 7, it can be seen that the velocity field profiles recede with progressive 
increments of the values of the Jeffrey parameter. Physically, due to the stress relaxation property of the fluid, 
the flow is suppressed. 

Figure 8 shows that the thermal field profiles increase with higher values of 𝑘. Physically, increasing the 
conductivity results in an increase of the flow field due to thermo-property. 

Figure 9 shows that the velocity field profiles recede with higher values of the electrical conductivity 
parameter. Physically, rising values of E retard the flow fields. Also, it’s observed that for different electric 
circuits with different electricity, it enhances the thermal field profiles. 

Figure 10 shows that the concentration decreases with higher values of destructive chemical reaction 
parameters. Physically, increasing the chemical reaction parameter increases the solute molecules, and as a 
result, the diffusion process decreases, so the flow field decreases. 

From Figure 11, it’s observed that the velocity field and thermal field profiles grow with progressive 
increments of the Brinkman number. Physically, rising Brinkman number Br enhances the flow due to 
buoyancy and electrical field. 

 
Figure 7. Velocity profile for different values of Jeffrey parameter. 

 
Figure 8. Temperature profile for different values of k. 
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(a) 

 
(b) 

Figure 9. (a) and (b), velocity and temperature profile for different values of electrical conductivity. 

 
Figure 10. Concentration profile for different values of chemical reaction parameter. 
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(a) 

 
(b) 

Figure 11. (a) and (b), velocity and temperature profile for different values of Brinkman number. 

5. Conclusions 
This research paper provides insights into the fluid sustainability of electrically conducting MHD fluids 

with Jeffrey fluid flow and first-order chemical reactions. The combination of magnetohydrodynamics and the 
unique rheological properties of Jeffrey fluid opens new avenues for optimizing engineering processes and 
enhancing sustainability in various applications. The major findings of this study are summarized as follows: 

(i) The velocity field profiles are enhanced with Gr, Gc, 𝐵𝑟, ℎ, and 𝑚 and declined with 𝜆, 𝜎, 𝐸, and 

𝑀. 

(ii) The Species concentration field profiles decline with larger values of 𝛼. 

(iii) The thermal field profiles are enhanced with 𝐵𝑟, 𝐸, 𝑘,𝑚, 𝜎, ℎ, and M. 

Nomenclature 
𝑏 : The ratio of Thermal expansion coefficient, 𝛽 /𝛽  

𝑏 : The ratio of concentration expansion coefficient 𝛽 /𝛽  

𝑔: Acceleration due to gravity 

𝐸: Electric field load parameter ( 𝑢 ) 

E01, E02: Applied electric fields  

𝐸𝑟: Applied electric filed ratios  

𝜎 : Electrical conductivity 
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𝐵𝑟: Brinkmann number (𝑇 − 𝑇 ) 

𝐺𝑅 : Thermal Grashof number 

𝐺𝑅 : Mass Grashof number 

𝐺 : The ratio of Grashof to Reynolds numbers,  

𝐺 : The ratio of Grashof to Reynolds numbers,  

𝜆 , 𝜆 : Jeffrey parameter  

ℎ: Width ratio h2/h1 

h1, h2: Height of Region-I, II 

𝑑: diffusion coefficient ratio ( ) 

𝐷 , 𝐷 : diffusion coefficient 

𝐾: Thermal conductivities ratios,  

𝐾 , 𝐾 : Thermal conductivity in Region-I, II 

𝑛: Micro-rotational velocity 

𝑚: Ratio of viscosities, 𝜇 /𝜇  

𝑅𝑒: Reynolds number 

𝑃: Pressure Gradient ( ) 

𝑇 : Average temperature  

𝑇: Temperature  

𝑇 , 𝑇 : Temperature of the boundaries 

𝐶 , 𝐶 : Concentrations of the boundaries 

𝐶 , 𝐶 : Reference concentrations 

𝑈: Velocity 

𝑈 : Average velocity 

𝑋, 𝑌: Space co-ordinates 

Greek symbols: 

𝛽: thermal expansion coefficient 

𝜇: Viscosity 

𝛼 , 𝛼 : Chemical reaction parameters 

𝜌 , , 𝜌 : Density of Region-I, II 

𝛥𝑇: Temperature difference 

𝛥𝐶: Difference in concentration 

𝜐 , 𝜐 : Kinematic viscosities 
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𝜙 , 𝜙 : concentrations in Region-I,II 

𝜃: Dimensionless temperature 

Subscript: 

1, 2 represent Region-I, II respectively.  
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