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ABSTRACT 

Heat conduction theory stipulates that two thermo-physical properties of materials: the thermal conductivity “k” and 

the thermal diffusivity “𝛼” influence the temperature evolution in regular and irregular bodies as a response to various 

cooling/heating conditions. The traditional statement involving the two thermo-physical properties is examined at length 

in the present study for the case of a semi-infinite region. The primary objective of the present study is to investigate the 

influence of the less known thermo-physical property called the thermal effusivity “e” on the incipient surface 

temperature rise in a semi-infinite body affected by uniform surface heat flux. The secondary objective of the study is to 

identify a key figure of merit named the dimensionless threshold time that separates the incipient temperature elevation in 

a semi-infinite region from the incipient temperature elevation in a large wall of finite thickness under the same uniform 

surface heat flux. The outcome of the methodical analysis suggests that the accurate estimate for the dimensionless 

threshold time   in the semi-infinite region should be 0.10. 

Keywords: semi-infinite region; uniform surface heat flux; incipient surface temperature elevation; role of the thermal 

effusivity 

1. Introduction 
Unsteady heat conduction in regular and irregular bodies has 

remarkable importance in a multitude of engineering scenarios 
around the world, as documented in the heat conduction textbooks by 
Carslaw and Jaeger[1], Arpaci[2], Luikov[3], Myers[4], Grigull and 
Sandner[5], Özişik[6], Poulikakos[7], Jiji[8] and Kakaç et al.[9]. 

With regards to unsteady heat conduction in regular and 
irregular bodies subject to various heating/cooling conditions, the 
plethora of mathematical procedures has led to an assortment of 1) 
exact analytical solutions, 2) approximate analytical solutions, and 3) 
approximate/numerical solutions. 

From the framework of thermo-physical properties of materials, 
it transcends that the temperature distribution in regular and irregular 
bodies is dependent upon two thermo-physical properties: the thermal 

conductivity “k” and the thermal diffusivity “”[1–9]. 

The present study focuses on a certain regular body, namely the 
semi-infinite region with constant initial temperature and 
temperature-invariant thermo-physical properties being heated with 
uniform heat flux at the surface (Neumann boundary condition). 

The primary objective of the study is to investigate the potential 
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interplay between the less known thermo-physical property called the thermal effusivity “e” and the surface 
temperature growth in the semi-infinite region as a consequence of continuous heating. 

The secondary objective of the study revolves around the identification of a dimensionless threshold time 

  that separates a semi-infinite region from a large wall with finite thickness during the initial stages of the 
continuous heating of both. This part establishes a key figure of merit that is valuable in the analysis of this 
kind of unsteady heat conduction problem. 

2. Semi-infinite region affected by uniform heat flux 
Consider a semi-infinite region exposed to a nearby heat source. Uniform heat flux 𝑞  emanates from the 

heat source in the form of electrical heating[10] or radiative heating[11] and subsequently intrudes into the 
semi-infinite region. 

Under the assumption that a material has constant thermal conductivity “k” and constant thermal 

diffusivity “” in the temperature interval of operation ∆𝑇 = |𝑇 − 𝑇 |, the temperature distribution in a 

semi-infinite region available in heat conduction textbooks[1–9] is 

𝑇 (𝑦, 𝑡) = 𝑇 +
𝑞

𝑘

4𝛼𝑡

π
exp −

𝑦

4𝛼𝑡
− 𝑦 erfc

𝑦

√4𝛼𝑡
 (1)

where the space coordinate y is measured from the free surface y = 0 of the semi-infinite region inward. Herein, 
the subscript “sir” attached to the symbol T denotes a semi-infinite region. 

Upon inspection of Equation (1), it is ascertainable that the temperature distribution 𝑇 (𝑦, 𝑡) depends on 

the thermal conductivity “k” in the ratio  preceding the bracket and on the thermal diffusivity “” in three 

different places inside the bracket. They are 1) in the square root, 2) in the argument of the exponential function, 
and 3) in the argument of the complimentary error function. 

Primary target temperatures 

Specifically, the primary target temperature in the continuous heating of the semi-infinite region under 

study here turns out to be the surface temperature 𝑇 . This is so because 𝑇  is the highest temperature in the 

semi-infinite region at any time during the heating, and it must remain below the melting temperature 𝑇  of 

the material. A list of typical melting temperatures 𝑇  of metals and alloys is available[12]. 

First, evaluating Equation (1) at the surface y = 0 in the semi-infinite region indicates that erfc (0) is 

nullified and exp  (0) equates to 1. Correspondingly, the surface temperature distribution becomes 

𝑇 (𝑡) = 𝑇 , (0, 𝑡) = 𝑇 +
𝑞

𝑘

4𝛼𝑡

π
exp  (0) − 0  (2)

where the subscript “s” attached to T indicates surface. Here, the thermal conductivity “k” appears in the ratio 

 preceding the bracket, whereas the thermal diffusivity “” appears in the square root inside the bracket. 

Second, replacing “𝛼” by its three components k, , cv, Equation (2) readily simplifies to 

𝑇 (𝑡) = 𝑇 +
2

√π

𝑞

𝑘

𝑘

 𝑐
√𝑡 (3)

Third, regrouping the three components k,,cv gives way to the definitive equation for the surface 
temperature distribution. 

𝑇 (𝑡) = 𝑇 +
2

√π

𝑞

𝑘𝜌𝑐
√𝑡 (4)
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3. The thermal effusivity 
The thermal effusivity “e”, also called the heat penetration coefficient or the thermal responsivity, is a 

thermo-physical property outlined in the heat conduction textbook by Grigull and Sandner[5]. Surprisingly, the 
thermal effusivity “e” is not mentioned in the other six heat conduction textbooks[1–4,6–9] cited in the 
Introduction. 

The thermal effusivity “e” is defined as the square root of the product of the thermal conductivity “k” and 

the heat capacity at constant volume “𝐶 ”: 

𝑒 = 𝑘𝐶 = 𝑘 𝑐  (5)

The earliest use of the term thermal effusivity “e” traceable with modern scientific indexing tools was 
done by Krischer and Esdorn[13] in 1955. 

The thermal effusivity “e” seems like a contrived thermo physical property, but it does have real meaning. 

If two separate semi-infinite regions 1 and 2 at different temperatures, 𝑇  and 𝑇 , and with different thermal 

effusivities, “𝑒 ” and “𝑒 ”, suddenly come into perfect contact, then the surface in each semi-infinite region 
will quickly reach an interface temperature. 

𝑇 =
𝑇 𝑒 + 𝑇 𝑒

𝑒 + 𝑒
 (6)

This relation constitutes a weighted mean of the thermal effusivities “𝑒 ” and “𝑒 ”. It transcends the fact 
that they will be closer to the temperature of the semi-infinite region with higher effusivity. In other words, the 

three options are: if “𝑒 ” = “𝑒 ”, then 𝑇  lies halfway between 𝑇  and 𝑇 , if “𝑒 ” > “𝑒 ”, then 𝑇  will be 

closer to 𝑇 , and if “𝑒 ” < “𝑒 ”, then 𝑇  will be closer to 𝑇 . In this context, the thermal effusivity “e” 
emerges as an important metric for textiles and fabrics. Additional information is given in Xin and Tao[14]. 

Conversely, the thermal diffusivity “𝛼” refers to the thermal conductivity “k” divided by the heat capacity 

at constant volume “𝐶 ”. 

𝛼 =
𝑘

𝐶
=

𝑘

𝑐
 (7)

At this point, it is important to realize that while the expression for “e” in Equation (5) and the expression 

for “𝛼” in Equation (7) contain the same physical quantities k, , cv, their contributions to unsteady heat 

conduction are quite different. On one hand, the thermal diffusivity 𝛼 is associated with the speed at which 
thermal equilibrium in a material can be reached[1–9]. On the other hand, the thermal effusivity “e” is connected 
to the capacity of a material to absorb heat[5]. 

Finally, the interplay between the thermal effusivity “e” and the thermal diffusivity “𝛼” can be visualized 
explicitly by rewriting Equation (5) in the following manner: 

𝑒 = 𝑘 𝑐 =
𝑘

√𝛼
=  𝑐 √𝛼 (8)

Next, returning to Equation (4) combined with Equation (5) brings forth the definitive equation for the 

surface temperature distribution in the semi-infinite region receiving uniform surface heat flux 𝑞  continually. 
That is, 

𝑇 (𝑡) = 𝑇 +
2

√π

𝑞

𝑒
√𝑡 (9)

Note that in the second term of the equation, 𝑇  is directly proportional to 𝑞  and √𝑡, while it is inversely 
proportional to “e”. 

An extensive list of thermal effusivities “e” for engineering materials was compiled by Baines[15]. Here, 
the typical values of “e” were grouped in the following manner: 1) 0.01–0.4 for insulating materials, 2) 0.4–1.5 
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kW m−2 K−1 s−1/2 for polymers, 3) 1.5–9.0 kW m−2 K−1 s−1/2 for ceramics; and 4) 7–37 kW m−2 K−1 s−1/2 for 
metals. Another list of thermal effusivities “e” for materials related to electronics cooling was compiled by 
Lasance[16].  

4. Identification of the threshold time between a semi-infinite region and a 
large wall of finite thickness 

The temperature distribution in a semi-infinite region subject to uniform surface heat flux copied from 
Equation (1) is 

𝑇 (𝑦, 𝑡) = 𝑇 +
𝑞

𝑘

4𝛼𝑡

π
exp −

𝑦

4𝛼𝑡
− 𝑦 erfc

𝑦

√4𝛼𝑡
 (10)

From geometry, the surface y = 0 in the semi-infinite region is coincident with the surface x = L on the 
right side of a large wall of finite thickness 2L. Elaborating on this issue, we proceed to evaluate the interior 
temperature 𝑇 (𝐿, 𝑡) in the semi-infinite region coinciding with the mid-plane temperature 𝑇 (0. 𝑡) in the 

large wall of finite thickness 2L. That is 

𝑇 (0. 𝑡) = 𝑇 (𝐿, 𝑡) = 𝑇 +
𝑞

𝑘

4𝛼𝑡

π
exp −

𝐿

4𝛼𝑡
− 𝐿 erfc

𝐿

√4𝛼𝑡
 (11)

where the subscript “mp” annexed to the symbol T stands for mid-plane in the large wall of finite thickness 2L. 

Dividing Equation(11) by  and grouping the temperature difference 𝑇 (𝑡) − 𝑇 , the resulting 

equation can be rewritten as 

1
𝑇 (𝑡) − 𝑇 =

4

π

𝛼𝑡

𝐿
exp −

𝐿

4𝛼𝑡
− erfc

𝐿

2√𝛼𝑡
 (12)

From here, manipulating the half-thickness 𝐿 of the large wall on the right-hand side in Equation (12), the 
equation switches adequately to 

1
𝑇 (𝑡) − 𝑇 =

2

√π

𝛼𝑡

𝐿
exp −

1

4
− erfc

⎝

⎛
1

2
⎠

⎞ (13)

In the previous equation, the ratio  appears in three places: the square root, the argument of the 

exponential function, and the argument of the complimentary error function. Since the ratio  defines the 

dimensionless time , Equation (13) can be further simplified to the working equation. 

𝜙 () =
2

√π
√ exp −

1

4
− erfc

1

2√
 (14)

where 𝜙  denotes the dimensionless mid-plane temperature 
( )

 in the large wall of half-thickness L. 

Now, we proceed to estimate the dimensionless threshold time  , a figure-of-merit that separates the 
dimensionless temperature sub-distribution in the semi-infinite region from the dimensionless temperature 
distribution in a large wall of half-thickness L. First, to estimate the dimensionless mid-plane temperature 𝜙  

at  = 0, a simple trial-and-error procedure is pursued. Various values of the dimensionless time  ranging 

between  = 0 and 0.10 are tested in Equation (14). In particular, when the dimensionless threshold time  =

0.10 is substituted in Equation(14), the dimensionless mid-plane temperature 𝜙  amounts to 

𝜙 (0.10) = 0.35683 × 0.08209 − 0.02535 = 0.0394 ≈ 0.005 (15)

Alternatively, this finding may be rephrased in the following manner: setting a very small 0.5% error in 
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the dimensionless mid-plane temperature 𝜙 (0) for the large wall of finite half-thickness L, the correlative 

dimensionless threshold time that results is  = 0.10.  Moreover, the validity of this number can be 
confirmed by looking at the right lower part of Figure 1. 

 
Figure 1. Dimensionless temperature distribution in the right part of a large wall of finite thickness 2L receiving uniform heat flux. 

5. Conclusion 
The main conclusion that may be drawn from the present study is that the thermal effusivity “e” plays a 

significant role in the incipient growth of the surface temperature in a semi-infinite region under the 
combination of constant initial temperature and uniform surface heat flux. The material of the semi-infinite 
region has temperature—invariant thermal conductivity “k” and temperature—invariant thermal diffusivity 

“𝛼”. 

It was found that the impact of the thermal effusivity “e” on the surface temperature growth in a 

semi-infinite region is dominant between the dimensionless initial time 𝜏 = 0 and the dimensionless threshold 

time 𝜏 = 0.10. At other interior locations beyond y > 0 different than the surface y = 0, the correlative 
dimensionless temperature vs. time relation in Equation (1) is affected by the thermal conductivity “k” outside 

the bracket and by the thermal diffusivity “𝛼” inside the bracket. 
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Nomenclature 
𝑐  Specific heat capacity at constant volume 

𝐶  Heat capacity at constant volume, 𝑐  

𝑒 Thermal effusivity, 𝑘𝑐  

𝐹𝑜 Fourier modulus in Figure 1, 
/
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k Thermal conductivity 

2L Thickness of large wall 

𝑞  Uniform surface heat flux 

t Time 

𝑡  Threshold time 

T Temperature 

Tin Initial temperature 

Ts Surface temperature 

x Space coordinate in a large wall 

X Dimensionless 𝑥 in Figure 1,  

y Space coordinate in a semi-infinite region 

Greek letters 

 Thermal diffusivity, 


 

 Density 

 Dimensionless time, 
/

 

  Dimensionless threshold time, 
/

 

𝜙 Dimensionless T, 
/
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