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ABSTRACT 

Boiler combustion system is a typical dynamic system with many variables, strong coupling, large-lag, and multi-

ple input/output. It is very difficult to build a combustion system model that conforms to the actual working conditions. 

This paper presents a new modeling method of boiler combustion system based on bidirectional threshold cycle unit 

(Bi-GRU), and establishes the training model of combustion system under variable load (low, medium and high load) 

conditions. At the same time, gradient lifting decision tree (GBDT) is used to reduce the dimension of input characteris-

tic matrix. GBDT model can evaluate the weight of input features under different loads and outputs, and can identify the 

feature with the largest weight proportion on the basis of retaining the original physical meaning of the feature. The 

feature selection model based on GBDT can not only reduce the original input dimension, but also provide theoretical 

guidance for the subsequent combustion control strategy. The calculation results of actual operation data show that the 

new combustion system model established by Bi-GRU and GBDT can accurately reflect the dynamic changes of main 

steam flow, main steam pressure and NOx emission under different loads. Compared with the traditional recurrent neu-

ral network (RNN) model, the accuracy and performance of the new model in this paper are significantly improved, and 

the structure is simple and the amount of calculation is small. 
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1. Introduction 
The boiler combustion system is a typical multi-input and mul-

ti-output system with complex variables, which has the characteristics 
of nonlinearity, strong coupling, large lag, and strong timing and corre-
lation of input and output signals[1,2]. Large qualitative changes, unit 
load fluctuations caused by frequent grid adjustments, and fewer meas-
urement points of relevant parameters in the boiler all add difficulties to 
the modeling of boiler combustion system. Therefore, establishing a 
combustion system model closer to the actual working conditions has 
always been a hot spot in the field of boiler combustion[3-6]. 

The existing boiler combustion system modeling is mainly divided 
into white box model based on combustion mechanism and black box 
model based on data drive. The white box model is established based on 
the dynamic physical characteristics of thermodynamic variables[7-12], 
and its model is complex and difficult to be applied to the actual boiler 
combustion control site. Black box model is based on data modeling, 
and its calculation cost is low. It is generally modeled by data mining, 
data fitting and other methods. Common black box models are based 
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on neural network[13], support vector machine[14], 
Gaussian process[15], etc., which are established on 
the basis of analyzing the correlation between 
known operating parameters and experimental data. 
Compared with the white box model, the black box 
model is more suitable for complex industrial field 
control. With the continuous advancement of intel-
ligent control in power plants, the traditional 
rough boiler combustion control has gradually 
changed to fine combustion control, and the amount 
of data collected by boiler side measurement points 
and distributed control system (DCS) has increased; 
at the same time, industrial process modeling is not 
a static model, but a dynamic process in which the 
variables of the system change with time. Tradi-
tional data-driven methods cannot support large 
amount of data operations, and the implementation 
of dynamic models often increases with the geo-
metric multiple of the input model complexity. Re-
dundant information input seriously affects the ac-
curacy and generalization ability of the model. As a 
new machine learning algorithm, deep learning 
shows more and more powerful application value 
in big data mining, but it is less applied in boiler 
combustion system modeling. 

This paper presents a boiler combustion sys-
tem model based on data-driven bidirectional 
threshold cycle unit. Because the boiler combustion 
process is sensitive to load changes, the training 
model is divided into three parts: low load, medium 
load and high load. 40 features are selected as input 
features, such as coal feed volume, primary air 
volume, secondary air volume, pulverized coal 
fineness, oxygen content, etc. of each combustion 
layer; the main steam pressure, main steam temper-
ature and NOx emission are taken as outputs to es-
tablish the boiler combustion system model. At the 
same time, the gradient boosting decision tree 
(GBDT) is used to reduce the dimension of the in-
put features on the basis of retaining the original 
physical meaning of the features, and the most rel-
evant features under different loads are selected to 
facilitate the modeling and optimal control of the 
subsequent combustion system. Compared with the 
traditional recurrent neural network (RNN) method, 
the boiler combustion system model based on 
GBDT-BiGRU proposed in this paper has higher 

accuracy and less calculation time. 

2. GBDT-BiGRU algorithm 

2.1 Gradient lifting decision tree 

Gradient boosting decision tree is an iterative 
decision tree algorithm composed of multiple 
high-dimensional decision trees. It uses computa-
tional features to select features of the relative im-
portance of a single tree to achieve the purpose of 
dimensionality reduction of high-dimensional data. 
GBDT algorithm has the advantages of decision 
tree algorithm, that is, it automatically combines 
multiple features without standardizing or normal-
izing the features, does not consider whether the 
data is linearly separable, and the algorithm is 
highly interpretable; at the same time, it helps to 
suppress the complexity of the decision tree, reduce 
the fitting ability of a single decision tree, and 
eliminate the over fitting problem. Due to the ex-
cessive model input of the boiler combustion sys-
tem itself, in order to achieve combustion refine-
ment and refine some feature quantities, feature 
selection using GBDT algorithm can not only re-
duce the dimension of model input, but also global-
ly explain the overall role of features in the mod-
el[16,17]. 

The core of GBDT algorithm is to combine 
multiple weak classifiers cart tree into a strong 
classifier, follow the downward direction of nega-
tive gradient to ensure the convergence of the algo-
rithm and realize the global convergence of the 
model[18,19]. The implementation steps of GBDT 
algorithm are as follows: 

(1) the model input data set is {xi, yi}, where i, j = 
1, 2, …, n; GBDT model loss function L() is soft-
max function, namely: 

 
(1) 

(2) F(x) is the GBDT classifier function, where 
F0(x) is the initial classifier. Let the partial deriva-
tive of F0(x) be 0, and the initial weight y0 of the 
model can be obtained from equation (2). 

 
(2) 

(3) t = 1, 2 …, T is the number of iterations, 
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and the gradient descent direction gi,t: 

 

(3) 
(4) Use the sample data of {xi, gi,t } to fit the 

m-th CART regression tree. According to the least 
square method, calculate the best fitting parameters 
am,r of the r-th leaf node of the m-th CART regres-
sion tree and the fitted CART regression tree model 
h(xi, am,r): 

 
(4) 

(5) Minimize the loss function L(), and calcu-
late the new step size of the model according to 
equation (5), that is, the new weight of the model yt: 

 

(5) 
(6) Update the model until the model meets the 

maximum number of iterations T or convergence, 
and get the strongest CART regression tree Ft: 

 
(6) 

(7) Output Ft. 

2.2 GRU neural network model 

RNN model has obvious advantages in dealing 
with short-term ordinal series, but it is easy to dis-
appear gradient when dealing with time series with 
high analysis dimension. In this regard, Grave et al. 
proposed the long short-term memory (LSTM) 
neural network to improve the RNN model struc-
ture, set hidden layer memory units (i.e. Input gate, 
forgetting gate and output gate) to realize the 
memory control of time sequence, and solve the 
problem of gradient disappearance of RNN model. 
However, the hidden layer structure of LSTM neu-
ral network is complex and the training sample time 
is too long[20]. Therefore, Cho et al.[21] proposed the 
structure of gated recurrent unit (GRU) neural net-
work to simplify the gate setting of LSTM neural 
network and reduce the model training time. Com-
pared with the three gating units of LSTM neural 
network, GRU neural network has only two gating 

units, namely reset gate (z) and update gate (r); at 
the same time, GRU neural network does not have a 
separate storage unit, which simplifies the number 
of model parameters, improves the convergence 
speed of the algorithm, retains the advantages of 
LSTM neural network, and improves the efficiency 
of sample training. Figure 1 shows the structure of 
GRU neural network. 

 
Figure 1. Schematic diagram of the GRU neural network 
structure. 

The gating update formula of GRU neural 
network model is: 

 
(7) 

Where: r(t) and z(t) are the status of update 
door and reset door at time t respectively; Wr, Wz, 
Ws are the weight matrix of update gate, reset gate 
and hidden layer network state respectively; 

, ( ) ( )s t s t  are the network states of hidden layer and 
candidate hidden layer respectively; ° indicates 
Hadamard product. 

The output of GRU neural network is:  

 

(8) 

Where: W is the output matrix. 

2.3 Bi-GRU neural network model 

Due to the particularity of the boiler combus-
tion system, the current time output of the model is 
the result of the accumulation of all historical inputs 
and outputs[22]. Therefore, the model needs to be 
able to learn the complete before and after infor-
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mation of time series. In order to improve the train-
ing accuracy of the model, the hidden layer of GRU 
neural network in this paper selects the bidirectional 
gated recurrent unit (Bi-GRU) structure, and adds 
the full connection layer of linear correction unit 
function between the feature output layer and the 

input layer, so that the features extracted during 
network training are more effective. In order to 
prevent training from over fitting, the hidden layer 
loss rate of GRU neural network is set to 0.2. The 
structure of Bi-GRU neural network is shown in 
Figure 2. 

 
Figure 2. Schematic diagram of the Bi-GRU neural network structure. 

The update formulas of the forward and back-
ward candidate hidden layer network states 
�̃�௙ሺ𝑡ሻ,  �̃�௕ሺ𝑡ሻ of Bi-GRU neural network are shown 
in equations (9) and (10): 

 

(9) 

 

(10) 
The final output formula of Bi-GRU neural 

network is: 

 

(11) 
Where, ,f b

s sW W  are the weight matrices of 
the forward and backward hidden layer network 
states, and ( ), ( )f bs t s t  are the forward and back-
ward hidden layer network states. 

3. Boiler combustion system model 
based on GBDT-BiGRU 

3.1 Evaluation function 

In this paper, three criterion functions are se-
lected to evaluate the accuracy of the model: root 
mean square error δRMSE, mean absolute error δMAE 
and absolute error δAE. The root mean square error 

is sensitive to the main error of prediction. The av-
erage absolute error reveals the average distribution 
of the overall error. The absolute error represents 
the deviation degree between the identification val-
ue and the target value, and the expressions are: 

 

(12) 

 
(13) 

 

(14) 
Where: ytarget is the measured value of the tar-

get; yident is an analog value. 

3.2 Boiler combustion system modeling 

Based on GBDT and Bi-GRU neural network, 
the boiler combustion system model is established. 
The main steps are as follows: 

(1) Data preparation. Experimental input from 
10,500 sample data collected from the on-site DCS, 
including training data set (8,000 samples) and test 
data set (2,500 samples). One sample data is col-
lected every 30 s, and a total of 66 hours of contin-
uous and stable operation of the boiler under normal 
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working conditions is collected. 40 features are se-
lected as inputs (input coal volume, pulverized coal 
fineness, primary air volume, secondary air volume, 
etc. of each combustion layer), and 3 features are 
selected as outputs. The output characteristic varia-
bles are main steam flow, main steam pressure and 
NOx emission. 

(2) Feature selection the research object of 
the boiler in this paper is DG-2060/26.15-Ⅱ 
2660MW ultra supercritical variable pressure once 
through boiler manufactured by Dongfang Boiler 
Factory, which adopts the opposed swirl combus-

tion mode of front and rear walls. The boiler has 6 
layers of burners, 3 layers are arranged on the front 
and rear walls, and each layer is equipped with 6 
sets of burners, a total of 36 burners. Therefore, 
the boiler output below 200 MW is low load, 
200400 MW is medium load, and more than 400 
MW is high load. The pulverizing system adopts 
MPS212HP-Ⅱ medium speed coal mills, and 
each boiler is equipped with 6 medium speed coal 
mills and 6 EG-2690 electronic weighing coal 
feeders. See Table 1 and Table 2 for boiler param-
eters and pulverizer parameters. 

Table 1. Main design parameters of the ultra-supercritical 660 MW unit boiler 
Project BMCR value 
Superheated steam flow/(tꞏh-1) 2,060 
Superheater outlet steam pressure/MPa 26.15 
Superheater outlet steam temperature/℃ 605 
Reheat steam flow/(tꞏh-1) 1,676.9 
Reheater inlet steam pressure /MPa 5.33 
Reheater outlet steam pressure /MPa 5.13 
Reheater inlet steam temperature/°C 362 
Reheater outlet steam temperature/°C 603 
Feed water temperature at economizer inlet/°C 297 
Primary air outlet temperature/°C 339 
Secondary air outlet temperature/°C 345 
Exhaust outlet temperature (correction)/°C 122 
Actual fuel consumption/(tꞏh-1) 297.2 
Calculate boiler thermal efficiency/% 93.10 
Guaranteed thermal efficiency/% 93.00 

Table 2. Main design parameters of the ultra-supercritical 660 MW unit boiler equpped with medium speed coal mill 
Project Numerical value 
Maximum output/(tꞏh-1) 76.1 
Minimum output/(tꞏh-1) 19.0 
Guaranteed output/(tꞏh-1) 71.4 
Maximum ventilation/(tꞏh-1) 104.3 
Minimum ventilation volume/(tꞏh-1) 78.2 
Speed of coal mill/(rꞏmin-1) 31.6 
Ventilation resistance/Pa 7,190 
Unit power consumption of coal mill/((kWꞏh)ꞏt-1) 7.89 

According to different load requirements, 
GBDT is used to calculate the characteristic weight 
matrix under high, medium and low loads respec-
tively. The high, medium and low loads mentioned 
in this paper take more than 60% of the rated output 
of the unit for safe operation as the high load, 
30%60% as the medium load, and less than 30% 
as the low load. 

The model in this paper has three outputs, each 
of which has an appropriate feature selection model. 
However, the boiler combustion system model only 
needs one feature selection model under different 
loads. Therefore, under different outputs, the same 
input characteristic weights under different working 

 
conditions are linearly accumulated, and the 
weights are averaged to obtain the input character-
istic weight models under three different outputs, 
and the sum of weights greater than 85% is selected 
as the input characteristics of the boiler combustion 
process model. 

(3) Model construction and training to avoid 
over fitting, the loss rate of the hidden layer of 
Bi-GRU neural network is set to 0.2. The results of 
GBDT model are selected as the model input, and 
its output is the main steam flow, main steam pres-
sure and NOx emission, with mean square error δMSE 
is used as the model loss function, and the initial 
learning rate is set to 0.05 training model. 
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(4) Model validation input 2,500 characteristic 
data in the test data set into the trained Bi-GRU 
neural network model, and output the main steam 
flow, main steam pressure and NOx emission. Three 

criterion functions are introduced to evaluate the 
generalization performance and accuracy of the 
model. 

 

 

 
Figure 3. The weight cumulative bars of GBDT-based input to output features at variable load. 

Note: , , , ( 1,2, ,6),n n n n nA B C D E n    are the coal feeding volume, pulverized coal concentration, grinding fineness, primary air 

volume and secondary air volume of burner layers A, B, C, D, E respectively; 1 2,H H  Are the burnout air volume of the front and rear 

walls respectively; F is feedwater flow; R is the actual water coal ratio; 1 2 3, ,O O O  are the oxygen content of flue gas at the outlet of 

front and rear walls and the oxygen content at the inlet of the reactor respectively; 1 2, T T  are the main steam temperature and flue gas 

temperature of the air preheater respectively; L is the load. 
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4. Experimental analysis and result 
discussion 

4.1 GBDT feature weight result analysis 

Figure 3 is the cumulative bar graph of the 
weight of GBDT input characteristics to output un-
der variable load. Figure 3 shows the change and 
relationship of different load characteristic weights. 
The refined input characteristic division can make 
the selection and control of corresponding charac-
teristic parameters easier in the process of boiler 
load change. It can be seen from Figure 3(a) that 
for the main steam flow, the coal volume, pulver-
ized coal concentration and pulverized coal fineness 
are the main influence characteristics. Except for 
the primary air volume of each layer, the weights of 
other characteristics are almost equal. It can be seen 
from Figure 3(b) that for NOx emission, the main 
influence characteristics are secondary air volume, 
temperature and oxygen content, while other factors 
have less influence. It can be seen from Figure 3(c) 
that load and feedwater are the main characteristics 
affecting steam pressure, while the effects of other 
characteristics can be ignored. At the same time, it 
is further found that for different load characteristic 
models, the influence of primary air volume ac-
counts for a small proportion. This is because rele-
vant characteristics such as coal feeding volume 
already exist, and primary air volume can be ig-
nored to a certain extent. 

As shown in Figure 3, when the load changes 

from low load to medium load, the operator can 
give priority to controlling the amount of pulverized 
coal, pulverized coal concentration and pulverized 
coal fineness of the burners on layer B and E to en-
sure the stability of steam flow and pressure, and 
then control the change of secondary air volume to 
estimate the emission of NOx. Therefore, the feature 
selection model of GBDT is not only to select the 
feature with the largest amount of information, re-
alize the dimensionality reduction of the input fea-
ture matrix, but also provide a theoretical basis for 
the priority of operator control parameters. 

4.2 Experimental results of Bi-GRU neural 
network identification 

Using the feature selection results, the Bi-GRU 
neural network boiler combustion system model is 
constructed. The training and testing identification 
results and errors of main steam flow, NOx emission 
and main steam pressure are shown in Figures 4-9. 
It can be seen from Figure 4 to Figure 9 that the 
deviation between the identified value of main 
steam flow, NOx emission and main steam pressure 
and the actual value is small. Compared with the 
root mean square error and average absolute error 
of main steam flow and pressure, the accuracy of 
NOx emission identification results is much lower. 
This is because the model in this paper must first 
ensure the stability of main steam flow and pres-
sure. 

 
Figure 4. The identification results and errors of main steam flow training set. 
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Figure 5. The identification results and errors of main steam flow testing set. 

 
Figure 6. The identification results and errors of NOx emission training set. 

 
Figure 7. The identification results and errors of NOx emission testing set. 

 
Figure 8. The identification results and errors of main steam pressure training set. 
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Figure 9. The identification results and errors of main steam pressure testing set. 

Table 3 shows the comparison of root mean 
square error, mean absolute error and calculation 

time between GBDT-BiGRU and RNN. 

Table 3. Comparison of δRMSE, δMAE and computation time between GBDT-BiGRU and RNN 
Project Parameter δRMSE δMAE Time/s 
Bi-GRU Main steam flow Training data 10.757 7.051 697 

Test data 16.927 11.974 243 
Main steam pressure Training data 0.267 0.191 697 

Test data 0.327 0.254 243 
NOx emission Training data 12.439 9.169 697 

Test data 14.518 12.359 243 
RNN Main steam flow Training data 12.233 9.836 1161 

Test data 18.431 12.994 431 
Main steam pressure Training data 0.292 0.208 1161 

Test data 0.271 0.187 431 
NOx emission Training data 13.063 10.054 1161 

Test data 15.011 13.026 431 

It can be seen from Table 3 that the results of 
Bi-GRU model are far better than those of tradi-
tional RNN model. The reason why Bi-GRU algo-
rithm has better performance and model accuracy 
than other methods is that it can process a large 
number of time series data and carry important in-
formation of initial learning for a long time. Com-
pared with RNN model, Bi-GRU model has a sim-
pler structure, which can maximize the accuracy of 
the model and greatly reduce the calculation time. 

5. Conclusion 
With the deepening of intelligent power plant, 

the amount of DCS data on industrial site is in-
creasing geometrically, and the traditional 
rough boiler combustion is gradually changing to 
fine combustion. Based on the operation data of a 
660 MW power plant, the boiler combustion system 
is modeled in this paper. In order to obtain a 
high-precision dynamic model, the boiler combus-
tion system model is established by using Bi-GRU. 
Considering the sensitivity of combustion system to 
load changes, three models are established under 

 

low, medium and high loads. The actual data simu-
lation calculation shows that the model in this paper 
can better reflect the change trend of the output of 
the boiler combustion system. Compared with other 
methods, Bi-GRU has more outstanding perfor-
mance and model accuracy. At the same time, the 
model has simple structure and shorter calculation 
time, which provides a basis for further study of 
dynamic control and optimization of boiler com-
bustion system. 
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