An enthalpy method for heat conduction in tube containing phase change material

G. A. Evangelakis, I. E. Lagaris, D. G. Papageorgiou, C. Prouskas

Article ID: 9781
Vol 8, Issue 1, 2025

(Abstract)

Abstract


We present an innovative enthalpy method for determining the thermal properties of phase change materials (PCM). The enthalpy-temperature relation in the “mushy” zone is modelled by means of a fifth order Obreshkov polynomial with continuous first and second order derivatives at the zone boundaries. The partial differential equation (PDE) for the conduction of heat is rewritten so that the enthalpy variable is not explicitly present, rendering the equation nonlinear. The thermal conductivity of the PCM is assumed to be temperature dependent and is modelled by a fifth order Obreshkov polynomial as well. The method has been applied to lauric acid, a standard prototype. The latent heat and the conductivity coefficient, being the model parameters, were retrieved by fitting the measurements obtained through a simple experimental procedure. Therefore, our proposal may be profitably used for the study of materials intended for heat-storage applications.


Keywords


enthalpy; moving boundaries; phase-change materials; nonlinear optimization; thermal conductivity; latent heat

Full Text:

PDF


References


1. Zhang X, Wu JY, Niu J. PCM-in-water emulsion for solar thermal applications: The effects of emulsifiers and emulsification conditions on thermal performance, stability and rheology characteristics. Solar Energy Materials and Solar Cells. 2016; 147: 211-224. doi: 10.1016/j.solmat.2015.12.022

2. Selvnes H, Allouche Y, Manescu RI, et al. Review on cold thermal energy storage applied to refrigeration systems using phase change materials. Thermal Science and Engineering Progress. 2021; 22: 100807. doi: 10.1016/j.tsep.2020.100807

3. Reji Kumar R, Samykano M, Pandey AK, et al. Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges. Renewable and Sustainable Energy Reviews. 2020; 133: 110341. doi: 10.1016/j.rser.2020.110341

4. D’Oliveira EJ, Pereira SCC, Groulx D, et al. Thermophysical properties of Nano-enhanced phase change materials for domestic heating applications. Journal of Energy Storage. 2022; 46: 103794. doi: 10.1016/j.est.2021.103794

5. Shao J, Darkwa J, Kokogiannakis G. Review of phase change emulsions (PCMEs) and their applications in HVAC systems. Energy and Buildings. 2015; 94: 200-217. doi: 10.1016/j.enbuild.2015.03.003

6. Fatahi H, Claverie J, Poncet S. Thermal Characterization of Phase Change Materials by Differential Scanning Calorimetry: A Review. Applied Sciences. 2022; 12(23): 12019. doi: 10.3390/app122312019

7. Yinping Z, Yi J, Yi J. A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Measurement Science and Technology. 1999; 10(3): 201-205. doi: 10.1088/0957-0233/10/3/015

8. Hong H, Kim SK, Kim YS. Accuracy improvement of T-history method for measuring heat of fusion of various materials. International Journal of Refrigeration. 2004; 27(4): 360-366. doi: 10.1016/j.ijrefrig.2003.12.006

9. Mar n JM, Zalba BN, Cabeza LF, et al. Determination of enthalpy temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties. Measurement Science and Technology. 2003; 14(2): 184-189. doi: 10.1088/0957-0233/14/2/305

10. Gopinathan A, Jerz J, Kováčik J, et al. Implementation of T-history method to determine the thermophysical properties of the phase change materials. Thermochimica Acta. 2023; 723: 179485. doi: 10.1016/j.tca.2023.179485

11. Jansone D, Dzikevics M, Veidenbergs I. Determination of thermophysical properties of phase change materials using T-History method. Energy Procedia. 2018; 147: 488-494. doi: 10.1016/j.egypro.2018.07.057

12. Miyagi S. Measurement method for T-h properties of phase change material. Journal of Asian Architecture and Building Engineering. 2022; 22(4): 2376-2391. doi: 10.1080/13467581.2022.2153062

13. Ye WB, Arıcı M. Redefined interface error, 2D verification and validation for pure solid-gallium phase change modeling by enthalpy-porosity methodology. International Communications in Heat and Mass Transfer. 2023; 147: 106952. doi: 10.1016/j.icheatmasstransfer.2023.106952

14. Obreshkov N. On the Mechanical Quadratures. J. Bulgar. Acad. Sci. and Arts LXV-8. 1942; 191-289.

15. Crank J. Free and Moving Boundary Problems. Oxford Science Publications; 1988.

16. Alexiades V, Solomon AD, Lunardini VJ. Mathematical Modeling of Melting and Freezing Processes. Journal of Solar Energy Engineering. 1993; 115(2): 121-121. doi: 10.1115/1.2930032

17. Hu H, Argyropoulos SA. Mathematical modelling of solidification and melting: a review. Modelling and Simulation in Materials Science and Engineering. 1996; 4(4): 371-396. doi: 10.1088/0965-0393/4/4/004

18. Voller VR, Swaminathan CR, Thomas BG. Fixed grid techniques for phase change problems: A review. International Journal for Numerical Methods in Engineering. 1990; 30(4): 875-898. doi: 10.1002/nme.1620300419

19. Date AW. A strong enthalpy formulation for the Stefan problem. Int. J. Heat mass Transfer. 1991; 34(1991): 2231-2235. doi: 10.1016/0017-9310(91)90049-K

20. Caldwell J, Chan CC. Numerical solutions of Stefan problem in annuli by enthalpy method and heat balance integral method. Communications in Numerical Methods in Engineering. 2001; 17(6): 395-405. doi: 10.1002/cnm.415

21. Idelsohn SR, Storti MA, Crivelli LA. Numerical methods in phase-change problems. Archives of Computational Methods in Engineering. 1994; 1(1): 49-74. doi: 10.1007/bf0273618




DOI: https://doi.org/10.24294/tse9781

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 G. A. Evangelakis, I. E. Lagaris, D. G. Papageorgiou, C. Prouskas

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.