Study of different theories of thermoelasticity under the propagation of Rayleigh waves in thermoelastic medium

Manoj Kumar, Shruti Goel, Vandana Gupta, Puneet Bansal, Pawan Kumar

Article ID: 8297
Vol 7, Issue 3, 2024

VIEWS - 1186 (Abstract) 472 (PDF)

Abstract


The present research is on the propagation of Rayleigh waves in a homogenous thermoelastic solid half-space by considering the compact form of six different theories of thermoelasticity. The medium is subjected to an insulated boundary surface that is free from normal stress, tangential stress, and a temperature gradient normal to the surface. After developing a mathematical model, a dispersion equation is obtained with irrational terms. To apply the algebraic method, this equation must be converted into a rational polynomial equation. From this, only those roots are filtered out, which has satisfied both of the above equations for the propagation of waves decaying with depth. With the help of these roots, different characteristics are computed numerically, like phase velocity, attenuation coefficient, and path of particles. Various particular cases are compared graphically by using phase velocity and attenuation coefficient. The elliptic path of surface particles in Rayleigh wave propagation is also presented for the different theories using physical constants of copper material for different depths and thermal conductivity.


Keywords


coupled model; dual phase lag model; G-N model; three phase lag model; G-L model; L-S model; phase velocity; attenuation coefficient

Full Text:

PDF


References


1. Biot MA. Thermoelasticity and Irreversible Thermodynamics. Journal of Applied Physics. 1956; 27(3): 240–253. doi: 10.1063/1.1722351

2. Green AE, Lindsay KA. Thermoelasticity. Journal of Elasticity. 1972; 2(1): 1–7. doi: 10.1007/bf00045689

3. Lord H, Shulman Y. A generalised dynamical theory of thermoelasticity. J. Mech. Phys. Solids. 1967; 15: 299–309. doi: 10.1016/0022-5096(67)90024-5

4. Green AE, Naghdi PM. Thermoelasticity without energy dissipation. Journal of Elasticity. 1993; 31(3): 189–208. doi: 10.1007/bf00044969

5. Richard B, Hetnarski, JI. Generalized Thermoelasticity. Journal of Thermal Stresses. 1999; 22(4–5): 451–476. doi: 10.1080/014957399280832

6. Ignaczak J and Ostoja-Starzewski M. Thermoelasticity with Finite Wave Speeds. Oxford University Press; 2009.

7. Tzou DY. A Unified Field Approach for Heat Conduction from Macro- to Micro-Scales. Journal of Heat Transfer. 1995; 117(1): 8–16. doi: 10.1115/1.2822329

8. Choudhuri SKR. On A Thermoelastic Three-Phase-Lag Model. Journal of Thermal Stresses. 2007; 30(3): 231–238. doi: 10.1080/01495730601130919

9. Deresiewicz H. Effect of boundaries on waves in a thermo-elastic solid: Reflection of plane waves from plane boundary. J. Mech. Phys. Solids. 1960; 8: 164–172. doi: 10.1016/0022-5096(60)90035-1

10. SInha AN, Sinha SB. Reflection of thermoelastic waves at a solid half-space with thermal relaxation. Journal of Physics of the Earth. 1974; 22(2): 237–244. doi: 10.4294/jpe1952.22.237

11. Sinha SB, Elsibai KA. Reflection of Thermoelastic Waves at A Solid Half-Space with Two Relaxation Times. Journal of Thermal Stresses. 1996; 19(8): 749–762. doi: 10.1080/01495739608946205

12. Sharma JN, Kumar V, Chand D. Reflection of generalized thermoelastic waves from the boundary of a half-space. Journal of Thermal Stresses. 2003; 26(10): 925–942. doi: 10.1080/01495730306342

13. Singh MC, Chakraborty N. Reflection of a plane magneto-thermoelastic wave at the boundary of a solid half-space in presence of initial stress. Applied Mathematical Modelling. 2015; 39(5–6): 1409–1421. doi: 10.1016/j.apm.2014.09.013

14. Wei W, Zheng R, Liu G, et al. Reflection and Refraction of P Wave at the Interface Between Thermoelastic and Porous Thermoelastic Medium. Transport in Porous Media. 2016; 113(1): 1–27. doi: 10.1007/s11242-016-0659-1

15. Li Y, Li L, Wei P, et al. Reflection and refraction of thermoelastic waves at an interface of two couple-stress solids based on Lord-Shulman thermoelastic theory. Applied Mathematical Modelling. 2018; 55: 536–550. doi: 10.1016/j.apm.2017.10.040

16. Rayleigh L. On Waves Propagated along the Plane Surface of an Elastic Solid. Proceedings of the London Mathematical Society. 1885; 17(1): 4–11. doi: 10.1112/plms/s1-17.1.4

17. Lockett FJ. Effect of the thermal properties of a solid on the velocity of Rayleigh waves. J. Mech. Phys. Solids. 1958; 7: 71–75. doi: 10.1016/0022-5096(58)90040-1

18. Flavin JN. Thermo-elastic Rayleigh waves in a prestressed medium. Mathematical Proceedings of the Cambridge Philosophical Society. 1962; 58(3): 532–538. doi: 10.1017/s0305004100036811

19. Chadwick P, Windle DW. Propagation of Rayleigh waves along isothermal and insulated boundaries. Royal Society of London Series A Mathematical and Physical Sciences. 1964; 280(1380): 47–71. doi: 10.1098/rspa.1964.0130

20. Tomita S, Shindo Y. Rayleigh waves in magneto-thermoelastic solids with thermal relaxation. Int. J. Eng. Sci. 1979; 17: 227–232. doi: 10.1016/0020-7225(79)90067-3

21. Dawn NC, Chakraborty SK. On Rayleigh wave in Green-Lindsay’s model of generalized thermoelastic media. Ind. J. Pure Appl. Math. 1988; 20: 273–286.

22. Abd-Alla AM, Ahmed SM. Rayleigh waves in an orthotropic thermoelastic medium under gravity field and initial stress. Earth, Moon, and Planets. 1996; 75(3): 185–197. doi: 10.1007/bf02592996

23. Ahmed SM. Rayleigh waves in a thermoelastic granular medium under initial stress. International Journal of Mathematics and Mathematical Sciences. 2000; 23(9): 627–637. doi: 10.1155/s0161171200002155

24. Sharma JN, Walia V, K Gupta S. Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space. International Journal of Mechanical Sciences. 2008; 50(3): 433–444. doi: 10.1016/j.ijmecsci.2007.10.001

25. Abouelregal AE. Rayleigh waves in a thermoelastic solid half space using dual-phase-lag model. International Journal of Engineering Science. 2011; 49(8): 781–791. doi: 10.1016/j.ijengsci.2011.03.007

26. Mahmoud SR. Influence of rotation and generalized magneto-thermoelastic on Rayleigh waves in a granular medium under effect of initial stress and gravity field. Meccanica. 2012; 47(7): 1561–1579. doi: 10.1007/s11012-011-9535-9

27. Chiriţă S. On the Rayleigh surface waves on an anisotropic homogeneous thermoelastic half space. Acta Mechanica. 2012; 224(3): 657–674. doi: 10.1007/s00707-012-0776-z

28. Bucur AV, Passarella F, Tibullo V. Rayleigh surface waves in the theory of thermoelastic materials with voids. Meccanica. 2013; 49(9): 2069–2078. doi: 10.1007/s11012-013-9850-4

29. Passarella F, Tibullo V, Viccione G. Rayleigh waves in isotropic strongly elliptic thermoelastic materials with microtemperatures. Meccanica. 2016; 52(13): 3033–3041. doi: 10.1007/s11012-016-0591-z

30. Biswas S, Mukhopadhyay B, Shaw S. Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model. Journal of Thermal Stresses. 2017; 40(4): 403–419. doi: 10.1080/01495739.2017.1283971

31. Singh B, Verma S. On Propagation of Rayleigh Type Surface Wave in Five Different Theories of Thermoelasticity. International Journal of Applied Mechanics and Engineering. 2019; 24(3): 661–673. doi: 10.2478/ijame-2019-0041

32. Kumar A, Sangeeta SH. Rayleigh Wave Propagation with The Effect of Initial Stress, Magnetic Field and Two Temperature in The Dual Phase Lag Thermoelasticity. Advances in Mathematics: Scientific Journal. 2020; 9(9): 7535–7545. doi: 10.37418/amsj.9.9.100

33. Kumar R, Gupta V. Rayleigh waves in generalized thermoelastic medium with mass diffusion. Canadian Journal of Physics. 2015; 93(10): 1039–1049. doi: 10.1139/cjp-2014-0681

34. Sharma MD. Rayleigh wave at the surface of a general anisotropic poroelastic medium: derivation of real secular equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2018; 474(2211): 20170589. doi: 10.1098/rspa.2017.0589

35. Sharma MD. Propagation of Rayleigh waves at the boundary of an orthotropic elastic solid: Influence of initial stress and gravity. Journal of Vibration and Control. 2020; 26(21–22): 2070–2080. doi: 10.1177/1077546320912069

36. Haque I, Biswas S. Rayleigh waves in nonlocal porous thermoelastic layer with Green-Lindsay model. Steel and Composite Structures. 2024; 50(2): 123-133.

37. Saeed T, Ali Khan M, Alzahrani ARR, et al. Rayleigh wave through half space semiconductor solid with temperature dependent properties. Physica Scripta. 2024; 99(2): 025208. doi: 10.1088/1402-4896/ad17fe

38. Kumar R, Gupta V. Uniqueness, reciprocity theorems and plane wave propagation in different theories of thermoelasticy. International Journal of Applied Mechanics and Engineering. 2013; 18(4): 1067–1086. doi: 10.2478/ijame-2013-0067

39. Sharma MD. Propagation and attenuation of Rayleigh waves in generalized thermoelastic media. Journal of Seismology. 2013; 18(1): 61–79. doi: 10.1007/s10950-013-9401-4

40. Ewing WM, Jardetzky WS, Press F, et al. Elastic Waves in Layered Media. Physics Today. 1957; 10(12): 27–28. doi: 10.1063/1.3060203




DOI: https://doi.org/10.24294/tse.v7i3.8297

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Manoj Kumar, Shruti Goel, Vandana Gupta, Puneet Bansal, Pawan Kumar

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.