Enhancement of solar panel power generation performance with a passive sun tracking system
Vol 7, Issue 1, 2024
VIEWS - 2184 (Abstract) 995 (PDF)
Abstract
In this paper, a solar tracking device that can continuously track the sun by adjusting the direction and angle of the solar panel in real time is designed and fabricated to improve the power generation efficiency of the solar cell panel. The mechanical parts as well as the automatic control part of the passive sun-tracking system are described, and the efficiency enhancement with the sun-tracking solar panel is characterized in comparison with the fixed panel system. The test results show that in the spring season in Qingdao city of eastern China, the sun-tracking system can improve the solar cell power generation efficiency by 28.5%–42.9% when comparing to the direction and elevation angle fixed system in sunny days. Even in partly cloudy days, the PV power output can increased by 37% with using the passive sun-tracking system. Economic analysis results show the cost-benefit period is about 10 years, which indicates that the passive sun tracking device can substantially contribute to the solar energy harvest practices.
Keywords
Full Text:
PDFReferences
1. Wang X, Cui X, Wang F, et al. Miscibility characteristics of the CO2/n-hexadecane system with presence of water component based on the phase equilibrium calculation on the interface region. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021; 629: 127463. doi: 10.1016/j.colsurfa.2021.127463
2. Cui P, Liu Z, Cui X, et al. Impact of water on miscibility characteristics of the CO2/n-hexadecane system using the pendant drop shape analysis method. Arabian Journal of Chemistry. 2023; 16(9): 105038. doi: 10.1016/j.arabjc.2023.105038
3. Cui X, Zheng L, Liu Z, et al. Determination of the minimum miscibility pressure of the CO2/oil system based on quantification of the oil droplet volume reduction behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022; 653: 130058. doi: 10.1016/j.colsurfa.2022.130058
4. Du D, Sun S, Zhang N, et al. Pressure distribution measurements for co2 foam flow in porous media. Journal of Porous Media. 2015; 18(11): 1119-1126. doi: 10.1615/jpormedia.2015012151
5. Du D, Zhang N, Li Y, et al. Parametric studies on foam displacement behavior in a layered heterogeneous porous media based on the stochastic population balance model. Journal of Natural Gas Science and Engineering. 2017; 48: 1-12. doi: 10.1016/j.jngse.2017.08.035
6. Du D, Zheng L, Ma K, et al. Determination of diffusion coefficient of a miscible CO2/n-hexadecane system with Dynamic Pendant Drop Volume Analysis (DPDVA) technique. International Journal of Heat and Mass Transfer. 2019; 139: 982-989. doi: 10.1016/j.ijheatmasstransfer.2019.05.083
7. Du D, Zhang X, Yu K, et al. Parameter Screening Study for Optimizing the Static Properties of Nanoparticle-Stabilized CO2 Foam Based on Orthogonal Experimental Design. ACS Omega. 2020; 5(8): 4014-4023. doi: 10.1021/acsomega.9b03543
8. Li Y, Zhao D, Du D. Computational study on the three phase displacement characteristics of foam fluids in porous media. Journal of Petroleum Science and Engineering. 2022; 215: 110732. doi: 10.1016/j.petrol.2022.110732
9. Liu Z, Cui P, Cui X, et al. Prediction of CO2 solubility in NaCl brine under geological conditions with an improved binary interaction parameter in the Søreide-Whitson model. Geothermics. 2022; 105: 102544. doi: 10.1016/j.geothermics.2022.102544
10. Liu Z, Yan S, Zang H, et al. Quantization of the water presence effect on the diffusion coefficients of the CO2/oil system with the dynamic pendant drop volume analysis technique. Chemical Engineering Science. 2023; 281: 119142. doi: 10.1016/j.ces.2023.119142
11. Song X, Cui X, Jiang L, et al. Multi-parameter screening study on the static properties of nanoparticle-stabilized CO2 foam near the CO2 critical point. Arabian Journal of Chemistry. 2022; 15(3): 103676. doi: 10.1016/j.arabjc.2021.103676
12. Chong Z, Wang Q, Wang L. Is the photovoltaic power generation policy effective in China? A quantitative analysis of policy synergy based on text mining. Technological Forecasting and Social Change. 2023; 195: 122770. doi: 10.1016/j.techfore.2023.122770
13. He YL, Qiu Y, Wang K, et al. Perspective of concentrating solar power. Energy. 2020; 198: 117373. doi: 10.1016/j.energy.2020.117373
14. Li YG, Du DX. Characterization of Amorphous Silicon Thin Films Deposited on Upilex-s Polyimide Substrates for Application in Flexible Solar Cells. Advanced Materials Research. 2009; 87-88: 416-421. doi: 10.4028/www.scientific.net/amr.87-88.416
15. Li G, Li M, Taylor R, et al. Solar energy utilisation: Current status and roll-out potential. Applied Thermal Engineering. 2022; 209: 118285. doi: 10.1016/j.applthermaleng.2022.118285
16. Qiu S, Wang K, Lin B, et al. Economic analysis of residential solar photovoltaic systems in China. Journal of Cleaner Production. 2021; 282: 125297. doi: 10.1016/j.jclepro.2020.125297
17. Russo MA, Carvalho D, Martins N, et al. Future perspectives for wind and solar electricity production under high-resolution climate change scenarios. Journal of Cleaner Production. 2023; 404: 136997. doi: 10.1016/j.jclepro.2023.136997
18. Shahabuddin M, Alim MA, Alam T, et al. A critical review on the development and challenges of concentrated solar power technologies. Sustainable Energy Technologies and Assessments. 2021; 47: 101434. doi: 10.1016/j.seta.2021.101434
19. Tang W, Qi J, Wang Y, et al. Dense station-based potential assessment for solar photovoltaic generation in China. Journal of Cleaner Production. 2023; 414: 137607. doi: 10.1016/j.jclepro.2023.137607
20. Zhang X, Ang YS, Ye Z, et al. Three-terminal heterojunction bipolar transistor solar cells with non-ideal effects: Efficiency limit and parametric optimum selection. Energy Conversion and Management. 2019; 188: 112-119. doi: 10.1016/j.enconman.2019.03.034
21. Zhang X, Li J, Wang J, et al. Three-dimensional Dirac material anode enables concentrated solar thermionic converters. Optics Letters. 2021; 46(18): 4530. doi: 10.1364/ol.434653
22. Zhang X, Rahman E. Solar thermionic energy converters with micro-gap spacers. Optics Letters. 2023; 48(15): 4173. doi: 10.1364/ol.498374
23. García-López M, Montano B, Melgarejo J. The financial competitiveness of photovoltaic installations in water utilities: The case of the Tagus-Segura water transfer system. Solar Energy. 2023; 249: 734-743. doi: 10.1016/j.solener.2022.12.025
24. Palm J. Household installation of solar panels – Motives and barriers in a 10-year perspective. Energy Policy. 2018; 113: 1-8. doi: 10.1016/j.enpol.2017.10.047
25. Yao H, Zhou Q. Research status and application of rooftop photovoltaic Generation Systems. Cleaner Energy Systems. 2023; 5: 100065. doi: 10.1016/j.cles.2023.100065
26. Imteaz MA, Ahsan A. Solar panels: Real efficiencies, potential productions and payback periods for major Australian cities. Sustainable Energy Technologies and Assessments. 2018; 25: 119-125. doi: 10.1016/j.seta.2017.12.007
27. Widodo Besar Riyadi T, Effendy M, Radiant Utomo B, et al. Performance of a photovoltaic-thermoelectric generator panel in combination with various solar tracking systems. Applied Thermal Engineering. 2023; 235: 121336. doi: 10.1016/j.applthermaleng.2023.121336
28. Mamodiya U, Tiwari N. Dual-axis solar tracking system with different control strategies for improved energy efficiency. Computers and Electrical Engineering. 2023; 111: 108920. doi: 10.1016/j.compeleceng.2023.108920
29. Zhu Y, Liu J, Yang X. Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection. Applied Energy. 2020; 264: 114647. doi: 10.1016/j.apenergy.2020.114647
30. Mpodi EK, Tjiparuro Z, Matsebe O. Review of dual axis solar tracking and development of its functional model. Procedia Manufacturing. 2019; 35: 580-588. doi: 10.1016/j.promfg.2019.05.082
31. Josely Jose P, Akbari P, Dhokiya J, et al. Solar tracking: The best alternative to obtain more solar power output. Materials Today: Proceedings. 2022; 67: 921-926. doi: 10.1016/j.matpr.2022.08.065
32. Zaghba L, Khennane M, Mekhilef S, et al. Experimental outdoor performance assessment and energy efficiency of 11.28 kWp grid tied PV systems with sun tracker installed in saharan climate: A case study in Ghardaia, Algeria. Solar Energy. 2022; 243: 174-192. doi: 10.1016/j.solener.2022.07.045
33. Muthukumar P, Manikandan S, Muniraj R, et al. Energy efficient dual axis solar tracking system using IOT. Measurement: Sensors. 2023; 28: 100825. doi: 10.1016/j.measen.2023.100825
34. Ravikiran Ch, Nagaraju S, Akhil D, et al. Design of solar array with sun position tracking system employing refrigerant. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.05.032
35. Awasthi A, Shukla AK, S.R. MM, et al. Review on sun tracking technology in solar PV system. Energy Reports. 2020; 6: 392-405. doi: 10.1016/j.egyr.2020.02.004
36. Boukdir Y, EL Omari H. Novel high precision low-cost dual axis sun tracker based on three light sensors. Heliyon. 2022; 8(12): e12412. doi: 10.1016/j.heliyon.2022.e12412
37. Palomino-Resendiz SI, Flores-Hernández DA, Cantera-Cantera LA, et al. Design and implementation of Model-Based Predictive Control for two-axis Solar Tracker. Solar Energy. 2023; 265: 112080. doi: 10.1016/j.solener.2023.112080
38. Lu W, Ajay P. Solar PV tracking system using arithmetic optimization with dual axis and sensor. Measurement: Sensors. 2024; 33: 101089. doi: 10.1016/j.measen.2024.101089
39. Anshory I, Jamaaluddin J, Fahruddin A, et al. Monitoring solar heat intensity of dual axis solar tracker control system: New approach. Case Studies in Thermal Engineering. 2024; 53: 103791. doi: 10.1016/j.csite.2023.103791
40. Kumar Gupta A, Kumar Chouksey V, Pandey A. Design and study of an autonomous linear welding robot with mechanical referencing system. Materials Today: Proceedings. Published online August 2023. doi: 10.1016/j.matpr.2023.08.111
41. Xu L, Ding P, Zhang Y, et al. Sensitivity analysis of the shading effects from obstructions at different positions on solar photovoltaic panels. Energy. 2024; 290: 130229. doi: 10.1016/j.energy.2023.130229
42. Zhou X, Duan Z. Investigation on the basic principles of human-machine contact force, based on screw theory. Heliyon. 2023; 9(3): e13851. doi: 10.1016/j.heliyon.2023.e13851
43. Alomar OR, Ali OM, Ali BM, et al. Energy, exergy, economical and environmental analysis of photovoltaic solar panel for fixed, single and dual axis tracking systems: An experimental and theoretical study. Case Studies in Thermal Engineering. 2023; 51: 103635. doi: 10.1016/j.csite.2023.103635
DOI: https://doi.org/10.24294/tse.v7i1.7906
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Guoyang Song, Defa Han, Yingge Li, Zhaoming He, Dongxing Du
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.