Theoretical investigation on Rh(III)-catalyzed switchable C–H alkenylation of enamide with enone and Rh(I)-catalyzed decarbonylative version of 1,2,3,4-tetrahydroquinoline with anhydride

Nan Lu, Chengxia Miao, Xiaozheng Lan

Article ID: 6267
Vol 7, Issue 1, 2024

VIEWS - 3 (Abstract) 2 (PDF)

Abstract


The mechanism is investigated for Rh(III)-catalyzed C-H alkenylation of enamide with enone and Rh(I)-catalyzed decarbonylative version of 1,2,3,4-tetrahydroquinoline with anhydride. The former contains β-C(sp2)−H activation of enamide, 1,2-migratory insertion of enone, β-hydride elimination or protodemetalation with additional HCl. The diastereoselectivity is kinetically controlled favoring alkenylation N-(2Z,4E)-butadiene while the regio-divergence is switchable to alkylation. The latter is composed of rate-limiting oxidative addition of anhydride to Rh(I), C8-selective C–H activation after ligand exchange producing tBuCO2H and six-membered rhodacycle, decarbonylation releasing CO as new carboxylate ligand and reductive elimination of Rh-alkenyl precursor leading to C8-alkenylated product. The whole process with huge heat release is favorable thermodynamically and all barriers capable to overcome under microwave assistance. The positive solvation effect is suggested by decreased absolute and activation energies in solution compared with in gas. These results are supported by Multiwfn analysis on FMO composition of specific TSs, and MBO value of vital bonding, breaking.


Keywords


C–H alkenylation; regioselectivity; decarbonylation; 1,2-migratory insertion; rhodacyclic

Full Text:

PDF


References


1. Guo JY, Zhang ZY, Guan T, et al. Photoredox-catalyzed stereoselective alkylation of enamides with N-hydroxyphthalimide esters via decarboxylative cross-coupling reactions. Chemical Science. 2019; 10(38): 8792-8798. doi: 10.1039/c9sc03070k

2. Guo JY, Guan T, Tao JY, et al. Stereoselective C(sp2)–H Alkylation of Enamides with Unactivated Aliphatic Carboxylic Acids via Decarboxylative Cross-Coupling Reactions. Organic Letters. 2019; 21(20): 8395-8399. doi: 10.1021/acs.orglett.9b03169

3. Zhang X, Yang TM, Hu LM, et al. Stereoselective Iron-Catalyzed Alkylation of Enamides with Cyclopropanols via Oxidative C(sp2)–H Functionalization. Organic Letters. 2022; 24(47): 8677-8682. doi: 10.1021/acs.orglett.2c03563

4. Gigant N, Gillaizeau I. Palladium(II)-Catalyzed Direct Alkenylation of Nonaromatic Enamides. Organic Letters. 2012; 14(13): 3304-3307. doi: 10.1021/ol301249n

5. Rej S, Chatani N. Rhodium‐Catalyzed C(sp2)‐ or C(sp3)−H Bond Functionalization Assisted by Removable Directing Groups. Angewandte Chemie International Edition. 2019; 58(25): 8304-8329. doi: 10.1002/anie.201808159

6. Li X, Sun K, Shen W, et al. Rhodium(III)-Catalyzed Direct C–H Arylation of Various Acyclic Enamides with Arylsilanes. Organic Letters. 2020; 23(1): 31-36. doi: 10.1021/acs.orglett.0c03578

7. Singh D, Kumar GS, Kapur M. Oxazolinyl-Assisted Ru(II)-Catalyzed C–H Allylation with Allyl Alcohols and Synthesis of 4-Methyleneisochroman-1-ones. The Journal of Organic Chemistry. 2019; 84(20): 12881-12892. doi: 10.1021/acs.joc.9b01536

8. Kumar GS, Chand T, Singh D, et al. Ruthenium-Catalyzed C–H Functionalization of Benzoic Acids with Allyl Alcohols: A Controlled Reactivity Switch between C–H Alkenylation and C–H Alkylation Pathways. Organic Letters. 2018; 20(16): 4934-4937. doi: 10.1021/acs.orglett.8b02064

9. Nipate DS, Meena N, Swami PN, et al. Rh(iii)-catalyzed oxidative [4+2] annulation of 2-arylquinoxalines and 2-aryl-2H-indazoles with allyl alcohols. Chemical Communications. 2024; 60(3): 344-347. doi: 10.1039/d3cc04600a

10. Khake SM, Chatani N. Rhodium(III)-Catalyzed Oxidative C–H Alkylation of Aniline Derivatives with Allylic Alcohols To Produce β-Aryl Ketones. ACS Catalysis. 2022; 12(8): 4394-4401. doi: 10.1021/acscatal.2c00854

11. Shi Z, Li B, Wan X, et al. Suzuki–Miyaura Coupling Reaction by PdII‐Catalyzed Aromatic C–H Bond Activation Directed by an N‐Alkyl Acetamino Group. Angewandte Chemie International Edition. 2007; 46(29): 5554-5558. doi: 10.1002/anie.200700590

12. Jiang Z, Zhang L, Dong C, et al. Direct synthesis of 8-aryl tetrahydroquinolines via pd-catalyzed ortho-arylation of arylureas in water. RSC Adv. 2013; 3(4): 1025-1028. doi: 10.1039/c2ra22901c

13. Wang Q, Shi L, Liu S, et al. Solvent-free and room temperature microwave-assisted direct C7 allylation of indolines via sequential C–H and C–C activation. RSC Advances. 2020; 10(18): 10883-10887. doi: 10.1039/d0ra02016h

14. Yang J, Chen C, Zhao H, et al. Rhodium(III‐Catalyzed C8‐Selective C−H Alkenylation and Alkylation of 1, 2, 3, 4‐Tetrahydroquinolines with Styrenes and Allylic Alcohols. Advanced Synthesis & Catalysis. 2023; 365(7): 1027-1035. doi: 10.1002/adsc.202300074

15. Zhang L, Chen C, Han J, et al. Ru-Catalyzed selective C–H oxidative olefination with N-heteroarenes directed by pivaloyl amide. Organic Chemistry Frontiers. 2016; 3(10): 1271-1275. doi: 10.1039/c6qo00327c

16. Mohit Kumar R, Khan AA, et al. Ru(II)‐Catalyzed Regioselective Hydroarylative Coupling of Indolines with Internal Alkynes by C−H Activation. European Journal of Organic Chemistry. 2021; 2021(14): 2107-2113. doi: 10.1002/ejoc.202100085

17. Wei Y, Hu P, Zhang M, et al. Metal-Catalyzed Decarboxylative C–H Functionalization. Chemical Reviews. 2017; 117(13): 8864-8907. doi: 10.1021/acs.chemrev.6b00516

18. Schwarz J, König B. Decarboxylative reactions with and without light – a comparison. Green Chemistry. 2018; 20(2): 323-361. doi: 10.1039/c7gc02949g

19. Dzik WI, Lange PP, Gooßen LJ. Carboxylates as sources of carbon nucleophiles and electrophiles: comparison of decarboxylative and decarbonylative pathways. Chemical Science. 2012; 3(9): 2671. doi: 10.1039/c2sc20312j

20. Li X, Luo H, Song R, et al. Selective Cross-Dehydrogenative Coupling of Various Acyclic Enamides with Heteroarenes via Rh(III)-Catalyzed C–H Activation. Organic Letters. 2023; 25(28): 5262-5267. doi: 10.1021/acs.orglett.3c01786

21. Pradhan S, Mishra M, De PB, et al. Weak Coordination Enabled Switchable C4-Alkenylation and Alkylation of Indoles with Allyl Alcohols. Organic Letters. 2020; 22(5): 1720-1725. doi: 10.1021/acs.orglett.9b04612

22. Li X, Liu J, Song R, et al. Rhodium(III)-Catalyzed Switchable β-C(sp2)–H Alkenylation and Alkylation of Acyclic Enamides with Allyl Alcohols. Organic Letters. 2024; 26(17): 3673-3678. doi: 10.1021/acs.orglett.4c01234

23. Zhao H, Luo Z, Yang J, et al. Ligand‐Promoted RhI‐Catalyzed C2‐Selective C−H Alkenylation and Polyenylation of Imidazoles with Alkenyl Carboxylic Acids. Chemistry – A European Journal. 2022; 28(36). doi: 10.1002/chem.202200441

24. Zhao H, Zeng Q, Yang J, et al. Rhodium(i)-catalyzed directed trideuteromethylation of (hetero)arene C–H bonds with CD3CO2D. Organic & Biomolecular Chemistry. 2022; 20(38): 7645-7649. doi: 10.1039/d2ob01581a

25. Zhao H, Zeng Q, Yang J, et al. Microwave‐assisted Rhodium(I)‐Catalyzed C8‐Regioselective C−H Alkenylation and Arylation of 1,2,3,4‐Tetrahydroquinolines with Alkenyl and Aryl Carboxylic Acids. Advanced Synthesis & Catalysis. 2024; 366(8): 1820-1826. doi: 10.1002/adsc.202400053

26. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09 (Revision B.01). Gaussian Inc; 2010.

27. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations-potentials for the transition-metal atoms Sc to Hg. The Journal of Chemical Physics. 1985; 82: 270-283.

28. Lv H, Han F, Wang N, et al. Ionic Liquid‐Catalyzed C−C Bond Formation for the Synthesis of Polysubstituted Olefins. European Journal of Organic Chemistry. 2022; 2022(45). doi: 10.1002/ejoc.202201222

29. Zhuang H, Lu N, Ji N, et al. Bu4NHSO4‐Catalyzed Direct N‐Allylation of Pyrazole and its Derivatives with Allylic Alcohols in Water: A Metal‐Free, Recyclable and Sustainable System. Advanced Synthesis & Catalysis. 2021; 363(24): 5461-5472. doi: 10.1002/adsc.202100864

30. Lu N, Lan X, Miao C, et al. Theoretical investigation on transformation of Cr(II) to Cr(V) complexes bearing tetra‐N‐heterocyclic carbene and group transfer reactivity. International Journal of Quantum Chemistry. 2020; 120(18). doi: 10.1002/qua.26340

31. Lu N, Liang H, Qian P, et al. Theoretical investigation on the mechanism and enantioselectivity of organocatalytic asymmetric Povarov reactions of anilines and aldehydes. International Journal of Quantum Chemistry. 2020; 120: e26574.

32. Lu N, Wang Y. Alloy and Media Effects on the Ethanol Partial Oxidation Catalyzed by Bimetallic Pt6M (M = Co, Ni, Cu, Zn, Ru, Rh, Pd, Sn, Re, Ir, and Pt). Computational and Theoretical Chemistry. 2023; 1228: 114252.

33. Becke AD. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. The Journal of Chemical Physics. 1996; 104(3): 1040-1046. doi: 10.1063/1.470829

34. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B. 1988; 37(2): 785-789. doi: 10.1103/physrevb.37.785

35. Catellani M, Mealli C, Motti E, et al. Palladium−Arene Interactions in Catalytic Intermediates: An Experimental and Theoretical Investigation of the Soft Rearrangement between η1 and η2 Coordination Modes. Journal of the American Chemical Society. 2002; 124(16): 4336-4346. doi: 10.1021/ja016587e

36. Zicovich‐Wilson CM, Pascale F, Roetti C, et al. Calculation of the vibration frequencies of α‐quartz: The effect of Hamiltonian and basis set. Journal of Computational Chemistry. 2004; 25(15): 1873-1881. doi: 10.1002/jcc.20120

37. Nielsen RJ, Goddard WA. Mechanism of the Aerobic Oxidation of Alcohols by Palladium Complexes of N-Heterocyclic Carbenes. Journal of the American Chemical Society. 2006; 128(30): 9651-9660. doi: 10.1021/ja060915z

38. Zandler ME, D’Souza F. The remarkable ability of B3LYP/3-21G(*) calculations to describe geometry, spectral and electrochemical properties of molecular and supramolecular porphyrin–fullerene conjugates. Comptes Rendus Chimie. 2006; 9(7-8): 960-981. doi: 10.1016/j.crci.2005.12.008

39. Marenich AV, Cramer CJ, Truhlar DG. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B. 2009; 113: 6378-6396. doi: 10.1021/jp810292n

40. Tapia O. Solvent effect theories: Quantum and classical formalisms and their applications in chemistry and biochemistry. Journal of Mathematical Chemistry. 1992; 10: 139-181.

41. Tomasi J, Persico M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chemical Reviews. 1994; 94: 2027-2094.

42. Tomasi J, Mennucci B, Cammi R. Quantum Mechanical Continuum Solvation Models. Chemical Reviews. 2005; 105: 2999-3093.

43. Reed AE, Weinstock RB, Weinhold F. Natural population analysis. The Journal of Chemical Physics. 1985; 83: 735-746.

44. Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital donor-acceptor view point. Chemical Reviews. 1988; 88: 899-926.

45. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry. 2012; 33: 580-592.




DOI: https://doi.org/10.24294/tse.v7i1.6267

Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/4.0/

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.