Thermal radiation and MHD effect on the double-diffusive convective flow of second-grade fluid over a stretching sheet

K. G. Chandan, B. Patil Mallikarjun

Article ID: 6036
Vol 7, Issue 1, 2024

VIEWS - 2331 (Abstract) 1751 (PDF)

Abstract


An investigation is conducted into how radiation affects the non-Newtonian second-grade fluid in double-diffusive convection over a stretching sheet. When fluid is flowing through a porous material, the Lorentz force and viscous dissipation are also taken into account. The flow equations are coupled partial differential equations that can be solved by MATLAB’s built-in bvp4c algorithm after being transformed into ODEs using appropriate similarity transformations. Utilizing graphs and tables, the impact of a flow parameter on a fluid is displayed. On velocity, temperature, and concentration profiles, the effects of the magnetic field, Eckert number, and Schmidt number have been visually represented. Calculate their inaccuracy by comparing the Nusselt number and Sherwood number values to those from earlier investigations.


Keywords


magnetic field; double diffusion; porous medium; second-grade fluid; stretching sheet

Full Text:

PDF


References


1. Misra J, Patra M, Misra S. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions. Journal of biomechanics. 1993; 26(9): 1129-1141. doi: 10.1016/S0021-9290(05)80011-9

2. Jacobson BO, Hamrock BJ. Non-Newtonian Fluid Model Incorporated into Elastohydrodynamic Lubrication of Rectangular Contacts. Journal of Tribology. 1984; 106(2): 275-282. doi: 10.1115/1.3260901

3. Crane LJ. Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP. 1970; 21(4): 645-647. doi: 10.1007/bf01587695

4. Sakiadis BC. Boundary‐layer behavior on continuous solid surfaces: I. Boundary‐layer equations for two‐dimensional and axisymmetric flow. AIChE Journal. 1961; 7(1): 26-28. doi: 10.1002/aic.690070108

5. Sakiadis BC. Boundary‐layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AIChE Journal. 1961; 7(2): 221-225. doi: 10.1002/aic.690070211

6. Hamad MAA. Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field. International Communications in Heat and Mass Transfer. 2011; 38(4): 487-492. doi: 10.1016/j.icheatmasstransfer.2010.12.042

7. Wang CY. Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Analysis: Real World Applications. 2009; 10(1): 375-380. doi: 10.1016/j.nonrwa.2007.09.013

8. Khan JA, Mustafa M, Hayat T, et al. On Three-Dimensional Flow and Heat Transfer over a Non-Linearly Stretching Sheet: Analytical and Numerical Solutions. Rao Z, ed. PLoS ONE. 2014; 9(9): e107287. doi: 10.1371/journal.pone.0107287

9. Hayat T, Muhammad T, Shehzad SA, et al. An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. International Journal of Thermal Sciences. 2017; 111: 274-288. doi: 10.1016/j.ijthermalsci.2016.08.009

10. Tzirtzilakis EE, Tanoudis GB. Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer. International Journal of Numerical Methods for Heat & Fluid Flow. 2003; 13(7): 830-848. doi: 10.1108/09615530310502055

11. Datti PS, Prasad KV, Subhas Abel M, et al. MHD visco-elastic fluid flow over a non-isothermal stretching sheet. International Journal of Engineering Science. 2004; 42(8-9): 935-946. doi: 10.1016/j.ijengsci.2003.09.008

12. Schmitt RW. Double Diffusion in Oceanography. Annual Review of Fluid Mechanics. 1994; 26(1): 255-285. doi: 10.1146/annurev.fl.26.010194.001351

13. Turner JS. Double-Diffusive Phenomena. Annual Review of Fluid Mechanics. 1974; 6(1): 37-54. doi: 10.1146/annurev.fl.06.010174.000345

14. Turner JS. Double‐diffusive intrusions into a density gradient. Journal of Geophysical Research: Oceans. 1978; 83(C6): 2887-2901. doi: 10.1029/jc083ic06p02887

15. Hayat T, Ahmed N, Sajid M, et al. On the MHD flow of a second grade fluid in a porous channel. Computers & Mathematics with Applications. 2007; 54(3): 407-414. doi: 10.1016/j.camwa.2006.12.036

16. Vajravelu K, Rollins D. Hydromagnetic flow of a second grade fluid over a stretching sheet. Applied Mathematics and Computation. 2004; 148(3): 783-791. doi: 10.1016/S0096-3003(02)00942-6

17. Bafakeeh OT, Raghunath K, Ali F, et al. Hall Current and Soret Effects on Unsteady MHD Rotating Flow of Second-Grade Fluid through Porous Media under the Influences of Thermal Radiation and Chemical Reactions. Catalysts. 2022; 12(10): 1233. doi: 10.3390/catal12101233

18. Massoudi M, Vaidya A. On some generalizations of the second grade fluid model. Nonlinear Analysis: Real World Applications. 2008; 9(3): 1169-1183. doi: 10.1016/j.nonrwa.2007.02.008

19. Gowda RP, Baskonus HM, Naveen Kumar R, et al. Computational Investigation of Stefan Blowing Effect on Flow of Second-Grade Fluid Over a Curved Stretching Sheet. International Journal of Applied and Computational Mathematics. 2021; 7(3). doi: 10.1007/s40819-021-01041-2

20. Awan AU, Abid S, Ullah N, et al. Magnetohydrodynamic oblique stagnation point flow of second grade fluid over an oscillatory stretching surface. Results in Physics. 2020; 18: 103233. doi: 10.1016/j.rinp.2020.103233

21. Khan Y, Akram S, Razia A, et al. Effects of Double Diffusive Convection and Inclined Magnetic Field on the Peristaltic Flow of Fourth Grade Nanofluids in a Non-Uniform Channel. Nanomaterials. 2022; 12(17): 3037. doi: 10.3390/nano12173037

22. Kotnurkar AS, Giddaiah S. Double diffusion on peristaltic flow of nanofluid under the influences of magnetic field, porous medium, and thermal radiation. Engineering Reports. 2020; 2(2). doi: 10.1002/eng2.12111

23. Asha SK, Sunitha G. Influence of thermal radiation on peristaltic blood flow of a Jeffrey fluid with double diffusion in the presence of gold nanoparticles. Informatics in Medicine Unlocked. 2019; 17: 100272. doi: 10.1016/j.imu.2019.100272

24. Asha SK, Sunitha G. Thermal radiation and Hall effects on peristaltic blood flow with double diffusion in the presence of nanoparticles. Case Studies in Thermal Engineering. 2020; 17: 100560. doi: 10.1016/j.csite.2019.100560

25. Akbar N, Khan z, Nadeem S, et al. Double-diffusive natural convective boundary-layer flow of a nanofluid over a stretching sheet with magnetic field. International Journal of Numerical Methods for Heat & Fluid Flow. 2016; 26(1): 108-121. doi: 10.1108/hff-01-2015-0019

26. Dey D, Borah R. Stability analysis on dual solutions of second- grade fluid flow with heat and mass transfers over a stretching sheet. International Journal of Thermofluid Science and Technology. 2021; 8(2). doi: 10.36963/ijtst.2021080203

27. Ghadikolaei SS, Hosseinzadeh Kh, Yassari M, et al. Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet. Thermal Science and Engineering Progress. 2018; 5: 309-316. doi: 10.1016/j.tsep.2017.12.010

28. Endalew MF, Sarkar S. Capturing the Transient Features of Double Diffusive Thin Film Flow of a Second Grade Fluid Through a Porous Medium. International Journal of Applied and Computational Mathematics. 2019; 5(6). doi: 10.1007/s40819-019-0743-7.




DOI: https://doi.org/10.24294/tse.v7i1.6036

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 K. G. Chandan, B. Patil Mallikarjun

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.