Exploring the versatile production techniques and applications of nitrogen-doped activated carbon

Reza Joia, Meiram Atamanov, Kuanysh Umbetkaliev, Mohammad Hamid Mohammadi, Sayed Reza Sarwari, Taibullah Modaqeq

Article ID: 5842
Vol 7, Issue 1, 2024

VIEWS - 2403 (Abstract) 2110 (PDF)

Abstract


Carbon based materials are really an integral component of our lives and widespread research regarding their properties was conducted along this process. The addition of dopants to carbon materials, either during the production process or later on, has been actively investigated by researchers all over the world who are looking into how doping can enhance the performance of materials and how to overcome the current difficulties. This study explores synthesis methods for nitrogen-doped carbon materials, focusing on advancements in adsorption of different pollutants like CO2 from air and organic, inorganic and ions pollutants from water, energy conversion, and storage, offering novel solutions to environmental and energy challenges. It addresses current issues with nitrogen-doped carbon materials, aiming to contribute to sustainable solutions in environmental and energy sciences. Alongside precursor types and synthesis methods, a significant relationship exists between nitrogen content percentage and adsorption capacity in nitrogen-doped activated carbon. Nitrogen content ranges from 0.64% to 11.23%, correlating with adsorption capacities from 0.05 mmol/g to 7.9 mmol/g. Moreover, an electrochemical correlation is observed between nitrogen atom increase and specific capacity in nitrogen-doped activated carbon electrodes. Higher nitrogen percentage corresponds to increased specific capacity and capacity retention. This comprehensive analysis sheds light on the potential of nitrogen-doped carbon materials and highlights their significance in addressing critical environmental and energy challenges.


Keywords


CO2 capture; doping agent; energy conversion; energy storage; raw material; synthesis methods

Full Text:

PDF


References


1. He S, Chen G, Xiao H, et al. Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture. Journal of Colloid and Interface Science. 2021; 582: 90-101. doi: 10.1016/j.jcis.2020.08.021

2. Wang J, Pu Q, Ning P, et al. Activated carbon‐based composites for capturing CO2: a review. Greenhouse Gases: Science and Technology. 2021; 11(2): 377-393. doi: 10.1002/ghg.2051

3. Sivadas DL, Vijayan S, Rajeev R, et al. Nitrogen-enriched microporous carbon derived from sucrose and urea with superior CO2 capture performance. Carbon. 2016; 109: 7-18. doi: 10.1016/j.carbon.2016.07.057

4. Abd AA, Othman MR, Kim J. A review on application of activated carbons for carbon dioxide capture: present performance, preparation, and surface modification for further improvement. Environmental Science and Pollution Research. 2021; 28(32): 43329-43364. doi: 10.1007/s11356-021-15121-9

5. Xu B, Zheng D, Jia M, et al. Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochimica Acta. 2013; 98: 176-182. doi: 10.1016/j.electacta.2013.03.053

6. Wang M, Fan X, Zhang L, et al. Probing the role of O-containing groups in CO2 adsorption of N-doped porous activated carbon. Nanoscale. 2017; 9(44): 17593-17600. doi: 10.1039/c7nr05977a

7. Abuelnoor N, AlHajaj A, Khaleel M, et al. Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere. 2021; 282: 131111. doi: 10.1016/j.chemosphere.2021.131111

8. Malini K, Selvakumar D, Kumar NS. Activated carbon from biomass: Preparation, factors improving basicity and surface properties for enhanced CO2 capture capacity – A review. Journal of CO2 Utilization. 2023; 67: 102318. doi: 10.1016/j.jcou.2022.102318

9. Sharma A, Jindal J, Mittal A, et al. Carbon materials as CO2 adsorbents: a review. Environmental Chemistry Letters. 2021; 19(2): 875-910. doi: 10.1007/s10311-020-01153-z

10. Saha D, Kienbaum MJ. Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in CO2 adsorption: A critical review. Microporous and Mesoporous Materials. 2019; 287: 29-55. doi: 10.1016/j.micromeso.2019.05.051

11. Hassan MF, Sabri MA, Fazal H, et al. Recent trends in activated carbon fibers production from various precursors and applications—A comparative review. Journal of Analytical and Applied Pyrolysis. 2020; 145: 104715. doi: 10.1016/j.jaap.2019.104715

12. Ghosh A, Ghosh S, Seshadhri GM, et al. Green synthesis of nitrogen-doped self-assembled porous carbon-metal oxide composite towards energy and environmental applications. Scientific Reports. 2019; 9(1). doi: 10.1038/s41598-019-41700-5

13. Al-Hajri W, De Luna Y, Bensalah N. Review on Recent Applications of Nitrogen‐Doped Carbon Materials in CO2 Capture and Energy Conversion and Storage. Energy Technology. 2022; 10(12). doi: 10.1002/ente.202200498

14. Heidarinejad Z, Dehghani MH, Heidari M, et al. Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters. 2020; 18(2): 393-415. doi: 10.1007/s10311-019-00955-0

15. Zhou Y, Tan P, He Z, et al. CO2 adsorption performance of nitrogen-doped porous carbon derived from licorice residue by hydrothermal treatment. Fuel. 2022; 311: 122507. doi: 10.1016/j.fuel.2021.122507

16. Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry. 2012; 22(45): 23710. doi: 10.1039/c2jm34066f

17. Tan X, Liu S, Liu Y, et al. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresource Technology. 2017; 227: 359-372. doi: 10.1016/j.biortech.2016.12.083

18. Serafin J, Kishibayev K, Tokpayev R, et al. Functional Activated Biocarbons Based on Biomass Waste for CO2 Capture and Heavy Metal Sorption. ACS Omega. 2023; 8(50): 48191-48210. doi: 10.1021/acsomega.3c07120

19. Wang Y, Hu X, Guo T, et al. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons. Frontiers of Chemical Science and Engineering. 2020; 15(3): 493-504. doi: 10.1007/s11705-020-1967-0

20. Tan Y, Wang X, Song S, et al. Preparation of Nitrogen-Doped Cellulose-Based Porous Carbon and Its Carbon Dioxide Adsorption Properties. ACS Omega. 2021; 6(38): 24814-24825. doi: 10.1021/acsomega.1c03664

21. Laksaci H, Khelifi A, Belhamdi B, et al. Valorization of coffee grounds into activated carbon using physic—chemical activation by KOH/CO2. Journal of Environmental Chemical Engineering. 2017; 5(5): 5061-5066. doi: 10.1016/j.jece.2017.09.036

22. Chang B, Shi W, Yin H, et al. Poplar catkin-derived self-templated synthesis of N-doped hierarchical porous carbon microtubes for effective CO2 capture. Chemical Engineering Journal. 2019; 358: 1507-1518. doi: 10.1016/j.cej.2018.10.142

23. Sattayarut V, Wanchaem T, Ukkakimapan P, et al. Nitrogen self-doped activated carbons via the direct activation of Samanea samanleaves for high energy density supercapacitors. RSC Advances. 2019; 9(38): 21724-21732. doi: 10.1039/c9ra03437d

24. Ruan W, Wang Y, Liu C, et al. One-step fabrication of N-doped activated carbon by NH3 activation coupled with air oxidation for supercapacitor and CO2 capture applications. Journal of Analytical and Applied Pyrolysis. 2022; 168: 105710. doi: 10.1016/j.jaap.2022.105710

25. Fan P, Ren J, Pang K, et al. Cellulose-Solvent-Assisted, One-Step Pyrolysis to Fabricate Heteroatoms-Doped Porous Carbons for Electrode Materials of Supercapacitors. ACS Sustainable Chemistry & Engineering. 2018; 6(6): 7715-7724. doi: 10.1021/acssuschemeng.8b00589

26. Pastor-Villegas J, & Durán-Valle CJ. Pore structure of activated carbons prepared by carbon dioxide and steam activation at different temperatures from extracted rockrose. Carbon N. Y. 2002; 40(3): 397-402. doi: 10.1016/S0008-6223(01)00118-X

27. Lee SK, Han SW, Cha GY, et al. Base-type nitrogen doping in zeolite-templated carbon for enhancement of carbon dioxide sorption. Journal of CO2 Utilization. 2022; 62: 102084. doi: 10.1016/j.jcou.2022.102084

28. Fu N, Wei HM, Lin HL, et al. Iron Nanoclusters as Template/Activator for the Synthesis of Nitrogen Doped Porous Carbon and Its CO2 Adsorption Application. ACS Applied Materials & Interfaces. 2017; 9(11): 9955-9963. doi: 10.1021/acsami.6b15723

29. Varghese SM, Chowdhury AR, Arnepalli DN, et al. Delineating the effects of pore structure and N-doping on CO2 adsorption using coco peat derived carbon. Carbon Trends. 2023; 10: 100250. doi: 10.1016/j.cartre.2023.100250

30. Ouyang L, Xiao J, Jiang H, et al. Nitrogen-Doped Porous Carbon Materials Derived from Graphene Oxide/Melamine Resin Composites for CO2 Adsorption. Molecules. 2021; 26(17): 5293. doi: 10.3390/molecules26175293

31. Qiao Y, Wu C. Nitrogen enriched biochar used as CO2 adsorbents: a brief review. Carbon Capture Science & Technology. 2022; 2: 100018. doi: 10.1016/j.ccst.2021.100018

32. Zhang H, Zheng Y, Cui Y. Melamine assisted preparation of nitrogen doped activated carbon from sustainable biomass for H2 and CO2 storage. International Journal of Hydrogen Energy. 2023; 48(47): 17914-17922. doi: 10.1016/j.ijhydene.2023.01.269

33. Wei Q, Tong X, Zhang G, et al. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions. Catalysts. 2015; 5(3): 1574-1602. doi: 10.3390/catal5031574

34. Chiang YC, Hsu WL, Lin SY, et al. Enhanced CO2 Adsorption on Activated Carbon Fibers Grafted with Nitrogen-Doped Carbon Nanotubes. Materials. 2017; 10(5): 511. doi: 10.3390/ma10050511

35. Jin B, Li J, Wang Y, et al. Nitrogen doping and porous tuning carbon derived from waste biomass boosting for toluene capture: Experimental study and density functional theory simulation. Chemical Engineering Journal Advances. 2022; 10: 100276. doi: 10.1016/j.ceja.2022.100276

36. Liu L, Deng QF, Hou XX, et al. User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture. Journal of Materials Chemistry. 2012; 22(31): 15540. doi: 10.1039/c2jm31441j

37. Rashidi NA, Yusup S. Recent methodological trends in nitrogen–functionalized activated carbon production towards the gravimetric capacitance: A mini review. Journal of Energy Storage. 2020; 32: 101757. doi: 10.1016/j.est.2020.101757

38. Rajak R, Saraf M, Mobin SM. Robust heterostructures of a bimetallic sodium–zinc metal–organic framework and reduced graphene oxide for high-performance supercapacitors. Journal of Materials Chemistry A. 2019; 7(4): 1725-1736. doi: 10.1039/c8ta09528k

39. Wu YF, Liu D, Sung YS, et al. Effects of carbonization temperature on fabricating carbonized Universitetet i Oslo-66 as active materials for supercapacitors. Journal of Solid State Chemistry. 2022; 314: 123439. doi: 10.1016/j.jssc.2022.123439

40. Skorupska M, Ilnicka A, Lukaszewicz JP. N-doped graphene foam obtained by microwave-assisted exfoliation of graphite. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-021-81769-5

41. Jain A, Balasubramanian R, Srinivasan MP. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal. 2016; 283: 789-805. doi: 10.1016/j.cej.2015.08.014

42. Blicher A, Kalish IH, Brennan KF. Field-Effect Transistors. Encyclopedia of Physical Science and Technology. Published online 2003: 831-849. doi: 10.1016/b0-12-227410-5/00242-8

43. Gopalakrishnan A, Badhulika S. Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. Journal of Power Sources. 2020; 480: 228830. doi: 10.1016/j.jpowsour.2020.228830

44. Zhang X, Zhang S, Yang H, et al. Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar. Energy. 2015; 91: 903-910. doi: 10.1016/j.energy.2015.08.028

45. Zhou M, Pu F, Wang Z, et al. Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon. 2014; 68: 185-194. doi: 10.1016/j.carbon.2013.10.079

46. Thote JA, Iyer KS, Chatti R, et al. In situ nitrogen enriched carbon for carbon dioxide capture. Carbon. 2010; 48(2): 396-402. doi: 10.1016/j.carbon.2009.09.042

47. Balou S, Babak SE, Priye A. Synergistic Effect of Nitrogen Doping and Ultra-Microporosity on the Performance of Biomass and Microalgae-Derived Activated Carbons for CO2 Capture. ACS Applied Materials & Interfaces. 2020; 12(38): 42711-42722. doi: 10.1021/acsami.0c10218

48. Wang Y, Xiao J, Wang H, et al. Binary doping of nitrogen and phosphorus into porous carbon: A novel di-functional material for enhancing CO2 capture and super-capacitance. Journal of Materials Science & Technology. 2022; 99: 73-81. doi: 10.1016/j.jmst.2021.05.035

49. Duan H, Zhang S, Chen Z, et al. Self-Formed Channel Boosts Ultrafast Lithium Ion Storage in Fe3O4@Nitrogen-Doped Carbon Nanocapsule. ACS Applied Materials & Interfaces. 2019; 12(1): 527-537. doi: 10.1021/acsami.9b16184

50. Islam MS, Faisal SN, Tong L, et al. N-doped reduced graphene oxide (rGO) wrapped carbon microfibers as binder-free electrodes for flexible fibre supercapacitors and sodium-ion batteries. Journal of Energy Storage. 2021; 37: 102453. doi: 10.1016/j.est.2021.102453

51. Guo T, Zhang Y, Chen J, et al. Investigation of CO2 adsorption on nitrogen-doped activated carbon based on porous structure and surface acid-base sites. Case Studies in Thermal Engineering. 2024; 53: 103925. doi: 10.1016/j.csite.2023.103925

52. Zhang D, Wei Q, Huang H, et al. Ambient‐Condition Strategy for Production of Hollow Ga2O3@rGO Crystalline Nanostructures Toward Efficient Lithium Storage. Energy & Environmental Materials. 2023; 7(2). doi: 10.1002/eem2.12585

53. Liu D, Yuan X, Yu J, et al. Chitosan gel synthesis nitrogen-doped porous carbon as electrode materials for supercapacitors. Journal of Dispersion Science and Technology. 2021; 43(12): 1872-1879. doi: 10.1080/01932691.2021.1880930

54. Xu F, Ding B, Qiu Y, et al. Hollow Carbon Nanospheres with Developed Porous Structure and Retained N Doping for Facilitated Electrochemical Energy Storage. Langmuir. 2019; 35(40): 12889-12897. doi: 10.1021/acs.langmuir.8b03973

55. Liang T, Chen C, Li X, et al. Popcorn-Derived Porous Carbon for Energy Storage and CO2 Capture. Langmuir. 2016; 32(32): 8042-8049. doi: 10.1021/acs.langmuir.6b01953

56. Taurbekov A, Abdisattar A, Atamanov M, et al. Investigations of Activated Carbon from Different Natural Sources for Preparation of Binder-Free Few-Walled CNTs/Activated Carbon Electrodes. Journal of Composites Science. 2023; 7(11): 452. doi: 10.3390/jcs7110452

57. Yang X, He C, Qiu Y, et al. Electrochemical sensing based on biomass-derived, hierarchical, porous carbon for simultaneous detection of dopamine and uric acid. Materials Chemistry and Physics. 2022; 292: 126825. doi: 10.1016/j.matchemphys.2022.126825

58. Parveen N, Al-Jaafari AI, Han JI. Robust cyclic stability and high-rate asymmetric supercapacitor based on orange peel-derived nitrogen-doped porous carbon and intercrossed interlinked urchin-like NiCo2O4@3DNF framework. Electrochimica Acta. 2019; 293: 84-96. doi: 10.1016/j.electacta.2018.08.157

59. Iwanow M, Gärtner T, Sieber V, et al. Activated carbon as catalyst support: precursors, preparation, modification and characterization. Beilstein Journal of Organic Chemistry. 2020; 16: 1188-1202. doi: 10.3762/bjoc.16.104

60. Al-Hajri W, De Luna Y, Bensalah N. Review on Recent Applications of Nitrogen‐Doped Carbon Materials in CO2 Capture and Energy Conversion and Storage. Energy Technology. 2022; 10(12). doi: 10.1002/ente.202200498

61. Gong F, Li H, Wang W, et al. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy. 2019; 58: 322-330. doi: 10.1016/j.nanoen.2019.01.044

62. Yu Q, Bai J, Huang J, et al. One-Pot Synthesis of N-Rich Porous Carbon for Efficient CO2 Adsorption Performance. Molecules. 2022; 27(20): 6816. doi: 10.3390/molecules27206816

63. Mahajan S, Lahtinen M. Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures. Journal of Environmental Chemical Engineering. 2022; 10(6): 108930. doi: 10.1016/j.jece.2022.108930

64. Ouyang T, Cheng K, Gao Y, et al. Molten salt synthesis of nitrogen doped porous carbon: a new preparation methodology for high-volumetric capacitance electrode materials. Journal of Materials Chemistry A. 2016; 4(25): 9832-9843. doi: 10.1039/c6ta02673g

65. Wang Y, Wang J, Ma C, et al. Fabrication of hierarchical carbon nanosheet-based networks for physical and chemical adsorption of CO2. Journal of Colloid and Interface Science. 2019; 534: 72-80. doi: 10.1016/j.jcis.2018.08.063

66. Volperts A, Plavniece A, Kaare K, et al. Influence of Chemical Activation Temperatures on Nitrogen-Doped Carbon Material Structure, Pore Size Distribution and Oxygen Reduction Reaction Activity. Catalysts. 2021; 11(12): 1460. doi: 10.3390/catal11121460

67. Wang S, Nam H, Nam H. Preparation of activated carbon from peanut shell with KOH activation and its application for H2S adsorption in confined space. Journal of Environmental Chemical Engineering. 2020; 8(2): 103683. doi: 10.1016/j.jece.2020.103683

68. Khosrowshahi MS, Abdol MA, Mashhadimoslem H, et al. The role of surface chemistry on CO2 adsorption in biomass-derived porous carbons by experimental results and molecular dynamics simulations. Scientific Reports. 2022; 12(1). doi: 10.1038/s41598-022-12596-5

69. Lin Z, Wang R, Tan S, et al. Nitrogen-doped hydrochar prepared by biomass and nitrogen-containing wastewater for dye adsorption: Effect of nitrogen source in wastewater on the adsorption performance of hydrochar. Journal of Environmental Management. 2023; 334: 117503. doi: 10.1016/j.jenvman.2023.117503

70. Teo EYL, Muniandy L, Ng EP, et al. High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta. 2016; 192: 110-119. doi: 10.1016/j.electacta.2016.01.140

71. Shibuya R, Takeyasu K, Guo D, et al. Chemisorption of CO2 on Nitrogen-Doped Graphitic Carbons. Langmuir. 2022; 38(47): 14430-14438. doi: 10.1021/acs.langmuir.2c01987

72. Kiuchi H, Shibuya R, Kondo T, et al. Lewis Basicity of Nitrogen-Doped Graphite Observed by CO2 Chemisorption. Nanoscale Research Letters. 2016; 11(1). doi: 10.1186/s11671-016-1344-6

73. Ma X, Li L, Chen R, et al. Heteroatom-doped nanoporous carbon derived from MOF-5 for CO2 capture. Applied Surface Science. 2018; 435: 494-502. doi: 10.1016/j.apsusc.2017.11.069

74. To JWF, He J, Mei J, et al. Hierarchical N-Doped Carbon as CO2 Adsorbent with High CO2 Selectivity from Rationally Designed Polypyrrole Precursor. Journal of the American Chemical Society. 2016; 138(3): 1001-1009. doi: 10.1021/jacs.5b11955

75. Liu Y, Wilcox J. Effects of Surface Heterogeneity on the Adsorption of CO2 in Microporous Carbons. Environmental Science & Technology. 2012; 46(3): 1940-1947. doi: 10.1021/es204071g

76. Khosrowshahi MS, Abdol MA, Mashhadimoslem H, et al. The role of surface chemistry on CO2 adsorption in biomass-derived porous carbons by experimental results and molecular dynamics simulations. Scientific Reports. 2022; 12(1). doi: 10.1038/s41598-022-12596-5

77. Ilnicka A, Skorupska M, Szkoda M, et al. Combined effect of nitrogen-doped functional groups and porosity of porous carbons on electrochemical performance of supercapacitors. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-021-97932-x

78. Kishore B, Shanmughasundaram D, Penki TR, et al. Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors. Journal of Applied Electrochemistry. 2014; 44(8): 903-916. doi: 10.1007/s10800-014-0708-9

79. Xiao Y, Cai X, Sun W, et al. Nitrogen-enriched activated carbons via dual N-doping processes: Electrode material for high gravimetric- and volumetric-performance supercapacitor. Journal of Energy Storage. 2022; 56: 106040. doi: 10.1016/j.est.2022.106040

80. Seevakan K, Manikandan A, Devendran P, et al. Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. Journal of Magnetism and Magnetic Materials. 2019; 486: 165254. doi: 10.1016/j.jmmm.2019.165254

81. Liu H, Song H, Chen X, et al. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. Journal of Power Sources. 2015; 285: 303-309. doi: 10.1016/j.jpowsour.2015.03.115

82. Huang X, Kim S, Heo MS, et al. Easy Synthesis of Hierarchical Carbon Spheres with Superior Capacitive Performance in Supercapacitors. Langmuir. 2013; 29(39): 12266-12274. doi: 10.1021/la4026969

83. Zhang S, Shi X, Wróbel R, et al. Low-cost nitrogen-doped activated carbon prepared by polyethylenimine (PEI) with a convenient method for supercapacitor application. Electrochimica Acta. 2019; 294: 183-191. doi: 10.1016/j.electacta.2018.10.111

84. Hulicova D, Yamashita J, Soneda Y, et al. Supercapacitors Prepared from Melamine-Based Carbon. Chemistry of Materials. 2005; 17(5): 1241-1247. doi: 10.1021/cm049337g

85. Hulicova‐Jurcakova D, Fiset E, Lu GQM, et al. Changes in Surface Chemistry of Carbon Materials upon Electrochemical Measurements and their Effects on Capacitance in Acidic and Neutral Electrolytes. ChemSusChem. 2012; 5(11): 2188-2199. doi: 10.1002/cssc.201200376

86. Zdolšek N, Rocha RP, Krstić J, et al. Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer. Electrochimica Acta. 2019; 298: 541-551. doi: 10.1016/j.electacta.2018.12.129

87. Su F, Poh CK, Chen JS, et al. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci. 2011; 4(3): 717-724. doi: 10.1039/c0ee00277a

88. Ejaz A, Jeon S. The individual role of pyrrolic, pyridinic and graphitic nitrogen in the growth kinetics of Pd NPs on N-rGO followed by a comprehensive study on ORR. International Journal of Hydrogen Energy. 2018; 43(11): 5690-5702. doi: 10.1016/j.ijhydene.2017.12.184

89. Chen X, Paul R, Dai L. Carbon-based supercapacitors for efficient energy storage. National Science Review. 2017; 4(3): 453-489. doi: 10.1093/nsr/nwx009

90. Zhou M, Pu F, Wang Z, et al. Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon. 2014; 68: 185-194. doi: 10.1016/j.carbon.2013.10.079

91. Zhu D, Cheng K, Wang Y, et al. Nitrogen-doped porous carbons with nanofiber-like structure derived from poly (aniline-co-p-phenylenediamine) for supercapacitors. Electrochimica Acta. 2017; 224: 17-24. doi: 10.1016/j.electacta.2016.12.023

92. Zheng L, Tang B, Dai X, et al. High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors. Chemical Engineering Journal. 2020; 399: 125671. doi: 10.1016/j.cej.2020.125671

93. Hao J, Wang X, Wang Y, et al. Hierarchical structure N, O-co-doped porous carbon/carbon nanotube composite derived from coal for supercapacitors and CO2 capture. Nanoscale Advances. 2020; 2(2): 878-887. doi: 10.1039/c9na00761j

94. Kwiatkowski M, Hu X, Pastuszyński P. Analysis of the Influence of Activated Carbons’ Production Conditions on the Porous Structure Formation on the Basis of Carbon Dioxide Adsorption Isotherms. Materials. 2022; 15(22): 7939. doi: 10.3390/ma15227939

95. Chen LF, Zhang XD, Liang HW, et al. Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors. ACS Nano. 2012; 6(8): 7092-7102. doi: 10.1021/nn302147s

96. Lin X, Yin S, Zhang W, et al. N/P/O doped porous carbon materials for supercapacitor with high performance. Diamond and Related Materials. 2022; 125: 109025. doi: 10.1016/j.diamond.2022.109025

97. Han X, Jiang H, Zhou Y, et al. A high performance nitrogen-doped porous activated carbon for supercapacitor derived from pueraria. Journal of Alloys and Compounds. 2018; 744: 544-551. doi: 10.1016/j.jallcom.2018.02.078

98. Zhong Z, Mahmoodi S, Li D, et al. Electrochemical Performance and Conductivity of N-Doped Carbon Nanotubes Annealed under Various Temperatures as Cathode for Lithium-Ion Batteries. Metals. 2022; 12(12): 2166. doi: 10.3390/met12122166

99. Zou K, Deng Y, Chen J, et al. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. Journal of Power Sources. 2018; 378: 579-588. doi: 10.1016/j.jpowsour.2017.12.081

100. Olejniczak A, Leżańska M, Pacuła A, et al. Nitrogen-containing mesoporous carbons with high capacitive properties derived from a gelatin biomolecule. Carbon. 2015; 91: 200-214. doi: 10.1016/j.carbon.2015.04.025

101. Lee YH, Chang KH, Hu CC. Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. Journal of Power Sources. 2013; 227: 300-308. doi: 10.1016/j.jpowsour.2012.11.026

102. Li Z, Zhang L, Amirkhiz BS, et al. Carbonized Chicken Eggshell Membranes with 3D Architectures as High‐Performance Electrode Materials for Supercapacitors (Adv. Energy Mater. 4/2012). Advanced Energy Materials. 2012; 2(4): 430-430. doi: 10.1002/aenm.201290018

103. Yan Y, Kuila T, Kim NH, et al. N-doped carbon layer coated thermally exfoliated graphene and its capacitive behavior in redox active electrolyte. Carbon. 2015; 85: 60-71. doi: 10.1016/j.carbon.2014.12.069

104. Pan Q, Ding Y, Yan Z, et al. Designed synthesis of Fe3O4@NC yolk-shell hollow spheres as high performance anode material for lithium-ion batteries. Journal of Alloys and Compounds. 2020; 821: 153569. doi: 10.1016/j.jallcom.2019.153569

105. Wang J, Hu Q, Hu W, et al. Preparation of Hollow Core–Shell Fe3O4/Nitrogen-Doped Carbon Nanocomposites for Lithium-Ion Batteries. Molecules. 2022; 27(2): 396. doi: 10.3390/molecules27020396

106. Guo X, Ding Y, Xue L, et al. A Self‐Healing Room‐Temperature Liquid‐Metal Anode for Alkali‐Ion Batteries. Advanced Functional Materials. 2018; 28(46). doi: 10.1002/adfm.201804649

107. Liu J, Zhao H, Zhu F, et al. Nitrogen‐doped Porous Carbon Obtained from Silk Cocoon for High Performance Li‐O2 Batteries. ChemistrySelect. 2019; 4(25): 7602-7608. doi: 10.1002/slct.201901524

108. Xu F, Ding B, Qiu Y, et al. Hollow Carbon Nanospheres with Developed Porous Structure and Retained N Doping for Facilitated Electrochemical Energy Storage. Langmuir. 2019; 35(40): 12889-12897. doi: 10.1021/acs.langmuir.8b03973

109. Shaker M, Ghazvini AAS, Shahalizade T, et al., A review of nitrogen-doped carbon materials for lithium-ion battery anodes. New Carbon Materials. 2023; 38(2): 247-282. doi: 10.1016/S1872-5805(23)60724-3

110. Zhang W, Wu J, Li Y, et al. High stability and high performance nitrogen doped carbon containers for lithium-ion batteries. Journal of Colloid and Interface Science. 2022; 625: 692-699. doi: 10.1016/j.jcis.2022.06.062




DOI: https://doi.org/10.24294/tse.v7i1.5842

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Reza Joia, Meiram Atamanov, Kuanysh Umbetkaliev, Mohammad Hamid Mohammadi, Sayed Reza Sarwari, Taibullah Modaqeq

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.