References
He S, Chen G, Xiao H, et al. Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture. Journal of Colloid and Interface Science. 2021; 582: 90-101. doi: 10.1016/j.jcis.2020.08.021
Wang J, Pu Q, Ning P, et al. Activated carbon‐based composites for capturing CO2: a review. Greenhouse Gases: Science and Technology. 2021; 11(2): 377-393. doi: 10.1002/ghg.2051
Sivadas DL, Vijayan S, Rajeev R, et al. Nitrogen-enriched microporous carbon derived from sucrose and urea with superior CO2 capture performance. Carbon. 2016; 109: 7-18. doi: 10.1016/j.carbon.2016.07.057
Abd AA, Othman MR, Kim J. A review on application of activated carbons for carbon dioxide capture: present performance, preparation, and surface modification for further improvement. Environmental Science and Pollution Research. 2021; 28(32): 43329-43364. doi: 10.1007/s11356-021-15121-9
Xu B, Zheng D, Jia M, et al. Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochimica Acta. 2013; 98: 176-182. doi: 10.1016/j.electacta.2013.03.053
Wang M, Fan X, Zhang L, et al. Probing the role of O-containing groups in CO2 adsorption of N-doped porous activated carbon. Nanoscale. 2017; 9(44): 17593-17600. doi: 10.1039/c7nr05977a
Abuelnoor N, AlHajaj A, Khaleel M, et al. Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere. 2021; 282: 131111. doi: 10.1016/j.chemosphere.2021.131111
Malini K, Selvakumar D, Kumar NS. Activated carbon from biomass: Preparation, factors improving basicity and surface properties for enhanced CO2 capture capacity – A review. Journal of CO2 Utilization. 2023; 67: 102318. doi: 10.1016/j.jcou.2022.102318
Sharma A, Jindal J, Mittal A, et al. Carbon materials as CO2 adsorbents: a review. Environmental Chemistry Letters. 2021; 19(2): 875-910. doi: 10.1007/s10311-020-01153-z
Saha D, Kienbaum MJ. Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in CO2 adsorption: A critical review. Microporous and Mesoporous Materials. 2019; 287: 29-55. doi: 10.1016/j.micromeso.2019.05.051
Hassan MF, Sabri MA, Fazal H, et al. Recent trends in activated carbon fibers production from various precursors and applications—A comparative review. Journal of Analytical and Applied Pyrolysis. 2020; 145: 104715. doi: 10.1016/j.jaap.2019.104715
Ghosh A, Ghosh S, Seshadhri GM, et al. Green synthesis of nitrogen-doped self-assembled porous carbon-metal oxide composite towards energy and environmental applications. Scientific Reports. 2019; 9(1). doi: 10.1038/s41598-019-41700-5
Al-Hajri W, De Luna Y, Bensalah N. Review on Recent Applications of Nitrogen‐Doped Carbon Materials in CO2 Capture and Energy Conversion and Storage. Energy Technology. 2022; 10(12). doi: 10.1002/ente.202200498
Heidarinejad Z, Dehghani MH, Heidari M, et al. Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters. 2020; 18(2): 393-415. doi: 10.1007/s10311-019-00955-0
Zhou Y, Tan P, He Z, et al. CO2 adsorption performance of nitrogen-doped porous carbon derived from licorice residue by hydrothermal treatment. Fuel. 2022; 311: 122507. doi: 10.1016/j.fuel.2021.122507
Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry. 2012; 22(45): 23710. doi: 10.1039/c2jm34066f
Tan X, Liu S, Liu Y, et al. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresource Technology. 2017; 227: 359-372. doi: 10.1016/j.biortech.2016.12.083
Serafin J, Kishibayev K, Tokpayev R, et al. Functional Activated Biocarbons Based on Biomass Waste for CO2 Capture and Heavy Metal Sorption. ACS Omega. 2023; 8(50): 48191-48210. doi: 10.1021/acsomega.3c07120
Wang Y, Hu X, Guo T, et al. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons. Frontiers of Chemical Science and Engineering. 2020; 15(3): 493-504. doi: 10.1007/s11705-020-1967-0
Tan Y, Wang X, Song S, et al. Preparation of Nitrogen-Doped Cellulose-Based Porous Carbon and Its Carbon Dioxide Adsorption Properties. ACS Omega. 2021; 6(38): 24814-24825. doi: 10.1021/acsomega.1c03664
Laksaci H, Khelifi A, Belhamdi B, et al. Valorization of coffee grounds into activated carbon using physic—chemical activation by KOH/CO2. Journal of Environmental Chemical Engineering. 2017; 5(5): 5061-5066. doi: 10.1016/j.jece.2017.09.036
Chang B, Shi W, Yin H, et al. Poplar catkin-derived self-templated synthesis of N-doped hierarchical porous carbon microtubes for effective CO2 capture. Chemical Engineering Journal. 2019; 358: 1507-1518. doi: 10.1016/j.cej.2018.10.142
Sattayarut V, Wanchaem T, Ukkakimapan P, et al. Nitrogen self-doped activated carbons via the direct activation of Samanea samanleaves for high energy density supercapacitors. RSC Advances. 2019; 9(38): 21724-21732. doi: 10.1039/c9ra03437d
Ruan W, Wang Y, Liu C, et al. One-step fabrication of N-doped activated carbon by NH3 activation coupled with air oxidation for supercapacitor and CO2 capture applications. Journal of Analytical and Applied Pyrolysis. 2022; 168: 105710. doi: 10.1016/j.jaap.2022.105710
Fan P, Ren J, Pang K, et al. Cellulose-Solvent-Assisted, One-Step Pyrolysis to Fabricate Heteroatoms-Doped Porous Carbons for Electrode Materials of Supercapacitors. ACS Sustainable Chemistry & Engineering. 2018; 6(6): 7715-7724. doi: 10.1021/acssuschemeng.8b00589
Pastor-Villegas J, & Durán-Valle CJ. Pore structure of activated carbons prepared by carbon dioxide and steam activation at different temperatures from extracted rockrose. Carbon N. Y. 2002; 40(3): 397-402. doi: 10.1016/S0008-6223(01)00118-X
Lee SK, Han SW, Cha GY, et al. Base-type nitrogen doping in zeolite-templated carbon for enhancement of carbon dioxide sorption. Journal of CO2 Utilization. 2022; 62: 102084. doi: 10.1016/j.jcou.2022.102084
Fu N, Wei HM, Lin HL, et al. Iron Nanoclusters as Template/Activator for the Synthesis of Nitrogen Doped Porous Carbon and Its CO2 Adsorption Application. ACS Applied Materials & Interfaces. 2017; 9(11): 9955-9963. doi: 10.1021/acsami.6b15723
Varghese SM, Chowdhury AR, Arnepalli DN, et al. Delineating the effects of pore structure and N-doping on CO2 adsorption using coco peat derived carbon. Carbon Trends. 2023; 10: 100250. doi: 10.1016/j.cartre.2023.100250
Ouyang L, Xiao J, Jiang H, et al. Nitrogen-Doped Porous Carbon Materials Derived from Graphene Oxide/Melamine Resin Composites for CO2 Adsorption. Molecules. 2021; 26(17): 5293. doi: 10.3390/molecules26175293
Qiao Y, Wu C. Nitrogen enriched biochar used as CO2 adsorbents: a brief review. Carbon Capture Science & Technology. 2022; 2: 100018. doi: 10.1016/j.ccst.2021.100018
Zhang H, Zheng Y, Cui Y. Melamine assisted preparation of nitrogen doped activated carbon from sustainable biomass for H2 and CO2 storage. International Journal of Hydrogen Energy. 2023; 48(47): 17914-17922. doi: 10.1016/j.ijhydene.2023.01.269
Wei Q, Tong X, Zhang G, et al. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions. Catalysts. 2015; 5(3): 1574-1602. doi: 10.3390/catal5031574
Chiang YC, Hsu WL, Lin SY, et al. Enhanced CO2 Adsorption on Activated Carbon Fibers Grafted with Nitrogen-Doped Carbon Nanotubes. Materials. 2017; 10(5): 511. doi: 10.3390/ma10050511
Jin B, Li J, Wang Y, et al. Nitrogen doping and porous tuning carbon derived from waste biomass boosting for toluene capture: Experimental study and density functional theory simulation. Chemical Engineering Journal Advances. 2022; 10: 100276. doi: 10.1016/j.ceja.2022.100276
Liu L, Deng QF, Hou XX, et al. User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture. Journal of Materials Chemistry. 2012; 22(31): 15540. doi: 10.1039/c2jm31441j
Rashidi NA, Yusup S. Recent methodological trends in nitrogen–functionalized activated carbon production towards the gravimetric capacitance: A mini review. Journal of Energy Storage. 2020; 32: 101757. doi: 10.1016/j.est.2020.101757
Rajak R, Saraf M, Mobin SM. Robust heterostructures of a bimetallic sodium–zinc metal–organic framework and reduced graphene oxide for high-performance supercapacitors. Journal of Materials Chemistry A. 2019; 7(4): 1725-1736. doi: 10.1039/c8ta09528k
Wu YF, Liu D, Sung YS, et al. Effects of carbonization temperature on fabricating carbonized Universitetet i Oslo-66 as active materials for supercapacitors. Journal of Solid State Chemistry. 2022; 314: 123439. doi: 10.1016/j.jssc.2022.123439
Skorupska M, Ilnicka A, Lukaszewicz JP. N-doped graphene foam obtained by microwave-assisted exfoliation of graphite. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-021-81769-5
Jain A, Balasubramanian R, Srinivasan MP. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal. 2016; 283: 789-805. doi: 10.1016/j.cej.2015.08.014
Blicher A, Kalish IH, Brennan KF. Field-Effect Transistors. Encyclopedia of Physical Science and Technology. Published online 2003: 831-849. doi: 10.1016/b0-12-227410-5/00242-8
Gopalakrishnan A, Badhulika S. Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. Journal of Power Sources. 2020; 480: 228830. doi: 10.1016/j.jpowsour.2020.228830
Zhang X, Zhang S, Yang H, et al. Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar. Energy. 2015; 91: 903-910. doi: 10.1016/j.energy.2015.08.028
Zhou M, Pu F, Wang Z, et al. Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon. 2014; 68: 185-194. doi: 10.1016/j.carbon.2013.10.079
Thote JA, Iyer KS, Chatti R, et al. In situ nitrogen enriched carbon for carbon dioxide capture. Carbon. 2010; 48(2): 396-402. doi: 10.1016/j.carbon.2009.09.042
Balou S, Babak SE, Priye A. Synergistic Effect of Nitrogen Doping and Ultra-Microporosity on the Performance of Biomass and Microalgae-Derived Activated Carbons for CO2 Capture. ACS Applied Materials & Interfaces. 2020; 12(38): 42711-42722. doi: 10.1021/acsami.0c10218
Wang Y, Xiao J, Wang H, et al. Binary doping of nitrogen and phosphorus into porous carbon: A novel di-functional material for enhancing CO2 capture and super-capacitance. Journal of Materials Science & Technology. 2022; 99: 73-81. doi: 10.1016/j.jmst.2021.05.035
Duan H, Zhang S, Chen Z, et al. Self-Formed Channel Boosts Ultrafast Lithium Ion Storage in Fe3O4@Nitrogen-Doped Carbon Nanocapsule. ACS Applied Materials & Interfaces. 2019; 12(1): 527-537. doi: 10.1021/acsami.9b16184
Islam MS, Faisal SN, Tong L, et al. N-doped reduced graphene oxide (rGO) wrapped carbon microfibers as binder-free electrodes for flexible fibre supercapacitors and sodium-ion batteries. Journal of Energy Storage. 2021; 37: 102453. doi: 10.1016/j.est.2021.102453
Guo T, Zhang Y, Chen J, et al. Investigation of CO2 adsorption on nitrogen-doped activated carbon based on porous structure and surface acid-base sites. Case Studies in Thermal Engineering. 2024; 53: 103925. doi: 10.1016/j.csite.2023.103925
Zhang D, Wei Q, Huang H, et al. Ambient‐Condition Strategy for Production of Hollow Ga2O3@rGO Crystalline Nanostructures Toward Efficient Lithium Storage. Energy & Environmental Materials. 2023; 7(2). doi: 10.1002/eem2.12585
Liu D, Yuan X, Yu J, et al. Chitosan gel synthesis nitrogen-doped porous carbon as electrode materials for supercapacitors. Journal of Dispersion Science and Technology. 2021; 43(12): 1872-1879. doi: 10.1080/01932691.2021.1880930
Xu F, Ding B, Qiu Y, et al. Hollow Carbon Nanospheres with Developed Porous Structure and Retained N Doping for Facilitated Electrochemical Energy Storage. Langmuir. 2019; 35(40): 12889-12897. doi: 10.1021/acs.langmuir.8b03973
Liang T, Chen C, Li X, et al. Popcorn-Derived Porous Carbon for Energy Storage and CO2 Capture. Langmuir. 2016; 32(32): 8042-8049. doi: 10.1021/acs.langmuir.6b01953
Taurbekov A, Abdisattar A, Atamanov M, et al. Investigations of Activated Carbon from Different Natural Sources for Preparation of Binder-Free Few-Walled CNTs/Activated Carbon Electrodes. Journal of Composites Science. 2023; 7(11): 452. doi: 10.3390/jcs7110452
Yang X, He C, Qiu Y, et al. Electrochemical sensing based on biomass-derived, hierarchical, porous carbon for simultaneous detection of dopamine and uric acid. Materials Chemistry and Physics. 2022; 292: 126825. doi: 10.1016/j.matchemphys.2022.126825
Parveen N, Al-Jaafari AI, Han JI. Robust cyclic stability and high-rate asymmetric supercapacitor based on orange peel-derived nitrogen-doped porous carbon and intercrossed interlinked urchin-like NiCo2O4@3DNF framework. Electrochimica Acta. 2019; 293: 84-96. doi: 10.1016/j.electacta.2018.08.157
Iwanow M, Gärtner T, Sieber V, et al. Activated carbon as catalyst support: precursors, preparation, modification and characterization. Beilstein Journal of Organic Chemistry. 2020; 16: 1188-1202. doi: 10.3762/bjoc.16.104
Al-Hajri W, De Luna Y, Bensalah N. Review on Recent Applications of Nitrogen‐Doped Carbon Materials in CO2 Capture and Energy Conversion and Storage. Energy Technology. 2022; 10(12). doi: 10.1002/ente.202200498
Gong F, Li H, Wang W, et al. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy. 2019; 58: 322-330. doi: 10.1016/j.nanoen.2019.01.044
Yu Q, Bai J, Huang J, et al. One-Pot Synthesis of N-Rich Porous Carbon for Efficient CO2 Adsorption Performance. Molecules. 2022; 27(20): 6816. doi: 10.3390/molecules27206816
Mahajan S, Lahtinen M. Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures. Journal of Environmental Chemical Engineering. 2022; 10(6): 108930. doi: 10.1016/j.jece.2022.108930
Ouyang T, Cheng K, Gao Y, et al. Molten salt synthesis of nitrogen doped porous carbon: a new preparation methodology for high-volumetric capacitance electrode materials. Journal of Materials Chemistry A. 2016; 4(25): 9832-9843. doi: 10.1039/c6ta02673g
Wang Y, Wang J, Ma C, et al. Fabrication of hierarchical carbon nanosheet-based networks for physical and chemical adsorption of CO2. Journal of Colloid and Interface Science. 2019; 534: 72-80. doi: 10.1016/j.jcis.2018.08.063
Volperts A, Plavniece A, Kaare K, et al. Influence of Chemical Activation Temperatures on Nitrogen-Doped Carbon Material Structure, Pore Size Distribution and Oxygen Reduction Reaction Activity. Catalysts. 2021; 11(12): 1460. doi: 10.3390/catal11121460
Wang S, Nam H, Nam H. Preparation of activated carbon from peanut shell with KOH activation and its application for H2S adsorption in confined space. Journal of Environmental Chemical Engineering. 2020; 8(2): 103683. doi: 10.1016/j.jece.2020.103683
Khosrowshahi MS, Abdol MA, Mashhadimoslem H, et al. The role of surface chemistry on CO2 adsorption in biomass-derived porous carbons by experimental results and molecular dynamics simulations. Scientific Reports. 2022; 12(1). doi: 10.1038/s41598-022-12596-5
Lin Z, Wang R, Tan S, et al. Nitrogen-doped hydrochar prepared by biomass and nitrogen-containing wastewater for dye adsorption: Effect of nitrogen source in wastewater on the adsorption performance of hydrochar. Journal of Environmental Management. 2023; 334: 117503. doi: 10.1016/j.jenvman.2023.117503
Teo EYL, Muniandy L, Ng EP, et al. High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta. 2016; 192: 110-119. doi: 10.1016/j.electacta.2016.01.140
Shibuya R, Takeyasu K, Guo D, et al. Chemisorption of CO2 on Nitrogen-Doped Graphitic Carbons. Langmuir. 2022; 38(47): 14430-14438. doi: 10.1021/acs.langmuir.2c01987
Kiuchi H, Shibuya R, Kondo T, et al. Lewis Basicity of Nitrogen-Doped Graphite Observed by CO2 Chemisorption. Nanoscale Research Letters. 2016; 11(1). doi: 10.1186/s11671-016-1344-6
Ma X, Li L, Chen R, et al. Heteroatom-doped nanoporous carbon derived from MOF-5 for CO2 capture. Applied Surface Science. 2018; 435: 494-502. doi: 10.1016/j.apsusc.2017.11.069
To JWF, He J, Mei J, et al. Hierarchical N-Doped Carbon as CO2 Adsorbent with High CO2 Selectivity from Rationally Designed Polypyrrole Precursor. Journal of the American Chemical Society. 2016; 138(3): 1001-1009. doi: 10.1021/jacs.5b11955
Liu Y, Wilcox J. Effects of Surface Heterogeneity on the Adsorption of CO2 in Microporous Carbons. Environmental Science & Technology. 2012; 46(3): 1940-1947. doi: 10.1021/es204071g
Khosrowshahi MS, Abdol MA, Mashhadimoslem H, et al. The role of surface chemistry on CO2 adsorption in biomass-derived porous carbons by experimental results and molecular dynamics simulations. Scientific Reports. 2022; 12(1). doi: 10.1038/s41598-022-12596-5
Ilnicka A, Skorupska M, Szkoda M, et al. Combined effect of nitrogen-doped functional groups and porosity of porous carbons on electrochemical performance of supercapacitors. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-021-97932-x
Kishore B, Shanmughasundaram D, Penki TR, et al. Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors. Journal of Applied Electrochemistry. 2014; 44(8): 903-916. doi: 10.1007/s10800-014-0708-9
Xiao Y, Cai X, Sun W, et al. Nitrogen-enriched activated carbons via dual N-doping processes: Electrode material for high gravimetric- and volumetric-performance supercapacitor. Journal of Energy Storage. 2022; 56: 106040. doi: 10.1016/j.est.2022.106040
Seevakan K, Manikandan A, Devendran P, et al. Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. Journal of Magnetism and Magnetic Materials. 2019; 486: 165254. doi: 10.1016/j.jmmm.2019.165254
Liu H, Song H, Chen X, et al. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. Journal of Power Sources. 2015; 285: 303-309. doi: 10.1016/j.jpowsour.2015.03.115
Huang X, Kim S, Heo MS, et al. Easy Synthesis of Hierarchical Carbon Spheres with Superior Capacitive Performance in Supercapacitors. Langmuir. 2013; 29(39): 12266-12274. doi: 10.1021/la4026969
Zhang S, Shi X, Wróbel R, et al. Low-cost nitrogen-doped activated carbon prepared by polyethylenimine (PEI) with a convenient method for supercapacitor application. Electrochimica Acta. 2019; 294: 183-191. doi: 10.1016/j.electacta.2018.10.111
Hulicova D, Yamashita J, Soneda Y, et al. Supercapacitors Prepared from Melamine-Based Carbon. Chemistry of Materials. 2005; 17(5): 1241-1247. doi: 10.1021/cm049337g
Hulicova‐Jurcakova D, Fiset E, Lu GQM, et al. Changes in Surface Chemistry of Carbon Materials upon Electrochemical Measurements and their Effects on Capacitance in Acidic and Neutral Electrolytes. ChemSusChem. 2012; 5(11): 2188-2199. doi: 10.1002/cssc.201200376
Zdolšek N, Rocha RP, Krstić J, et al. Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer. Electrochimica Acta. 2019; 298: 541-551. doi: 10.1016/j.electacta.2018.12.129
Su F, Poh CK, Chen JS, et al. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci. 2011; 4(3): 717-724. doi: 10.1039/c0ee00277a
Ejaz A, Jeon S. The individual role of pyrrolic, pyridinic and graphitic nitrogen in the growth kinetics of Pd NPs on N-rGO followed by a comprehensive study on ORR. International Journal of Hydrogen Energy. 2018; 43(11): 5690-5702. doi: 10.1016/j.ijhydene.2017.12.184
Chen X, Paul R, Dai L. Carbon-based supercapacitors for efficient energy storage. National Science Review. 2017; 4(3): 453-489. doi: 10.1093/nsr/nwx009
Zhou M, Pu F, Wang Z, et al. Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon. 2014; 68: 185-194. doi: 10.1016/j.carbon.2013.10.079
Zhu D, Cheng K, Wang Y, et al. Nitrogen-doped porous carbons with nanofiber-like structure derived from poly (aniline-co-p-phenylenediamine) for supercapacitors. Electrochimica Acta. 2017; 224: 17-24. doi: 10.1016/j.electacta.2016.12.023
Zheng L, Tang B, Dai X, et al. High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors. Chemical Engineering Journal. 2020; 399: 125671. doi: 10.1016/j.cej.2020.125671
Hao J, Wang X, Wang Y, et al. Hierarchical structure N, O-co-doped porous carbon/carbon nanotube composite derived from coal for supercapacitors and CO2 capture. Nanoscale Advances. 2020; 2(2): 878-887. doi: 10.1039/c9na00761j
Kwiatkowski M, Hu X, Pastuszyński P. Analysis of the Influence of Activated Carbons’ Production Conditions on the Porous Structure Formation on the Basis of Carbon Dioxide Adsorption Isotherms. Materials. 2022; 15(22): 7939. doi: 10.3390/ma15227939
Chen LF, Zhang XD, Liang HW, et al. Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors. ACS Nano. 2012; 6(8): 7092-7102. doi: 10.1021/nn302147s
Lin X, Yin S, Zhang W, et al. N/P/O doped porous carbon materials for supercapacitor with high performance. Diamond and Related Materials. 2022; 125: 109025. doi: 10.1016/j.diamond.2022.109025
Han X, Jiang H, Zhou Y, et al. A high performance nitrogen-doped porous activated carbon for supercapacitor derived from pueraria. Journal of Alloys and Compounds. 2018; 744: 544-551. doi: 10.1016/j.jallcom.2018.02.078
Zhong Z, Mahmoodi S, Li D, et al. Electrochemical Performance and Conductivity of N-Doped Carbon Nanotubes Annealed under Various Temperatures as Cathode for Lithium-Ion Batteries. Metals. 2022; 12(12): 2166. doi: 10.3390/met12122166
Zou K, Deng Y, Chen J, et al. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. Journal of Power Sources. 2018; 378: 579-588. doi: 10.1016/j.jpowsour.2017.12.081
Olejniczak A, Leżańska M, Pacuła A, et al. Nitrogen-containing mesoporous carbons with high capacitive properties derived from a gelatin biomolecule. Carbon. 2015; 91: 200-214. doi: 10.1016/j.carbon.2015.04.025
Lee YH, Chang KH, Hu CC. Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. Journal of Power Sources. 2013; 227: 300-308. doi: 10.1016/j.jpowsour.2012.11.026
Li Z, Zhang L, Amirkhiz BS, et al. Carbonized Chicken Eggshell Membranes with 3D Architectures as High‐Performance Electrode Materials for Supercapacitors (Adv. Energy Mater. 4/2012). Advanced Energy Materials. 2012; 2(4): 430-430. doi: 10.1002/aenm.201290018
Yan Y, Kuila T, Kim NH, et al. N-doped carbon layer coated thermally exfoliated graphene and its capacitive behavior in redox active electrolyte. Carbon. 2015; 85: 60-71. doi: 10.1016/j.carbon.2014.12.069
Pan Q, Ding Y, Yan Z, et al. Designed synthesis of Fe3O4@NC yolk-shell hollow spheres as high performance anode material for lithium-ion batteries. Journal of Alloys and Compounds. 2020; 821: 153569. doi: 10.1016/j.jallcom.2019.153569
Wang J, Hu Q, Hu W, et al. Preparation of Hollow Core–Shell Fe3O4/Nitrogen-Doped Carbon Nanocomposites for Lithium-Ion Batteries. Molecules. 2022; 27(2): 396. doi: 10.3390/molecules27020396
Guo X, Ding Y, Xue L, et al. A Self‐Healing Room‐Temperature Liquid‐Metal Anode for Alkali‐Ion Batteries. Advanced Functional Materials. 2018; 28(46). doi: 10.1002/adfm.201804649
Liu J, Zhao H, Zhu F, et al. Nitrogen‐doped Porous Carbon Obtained from Silk Cocoon for High Performance Li‐O2 Batteries. ChemistrySelect. 2019; 4(25): 7602-7608. doi: 10.1002/slct.201901524
Xu F, Ding B, Qiu Y, et al. Hollow Carbon Nanospheres with Developed Porous Structure and Retained N Doping for Facilitated Electrochemical Energy Storage. Langmuir. 2019; 35(40): 12889-12897. doi: 10.1021/acs.langmuir.8b03973
Shaker M, Ghazvini AAS, Shahalizade T, et al., A review of nitrogen-doped carbon materials for lithium-ion battery anodes. New Carbon Materials. 2023; 38(2): 247-282. doi: 10.1016/S1872-5805(23)60724-3
Zhang W, Wu J, Li Y, et al. High stability and high performance nitrogen doped carbon containers for lithium-ion batteries. Journal of Colloid and Interface Science. 2022; 625: 692-699. doi: 10.1016/j.jcis.2022.06.062
Copyright (c) 2024 Reza Joia, Meiram Atamanov, Kuanysh Umbetkaliev, Mohammad Hamid Mohammadi, Sayed Reza Sarwari, Taibullah Modaqeq