Numerical investigation of flow boiling heat transfer in helically coiled tube under constant heat flux
Vol 1, Issue 2, 2018
(Abstract)
Abstract
Numerical study of subcooled and saturated flow boiling in the curved and helically coiled tubes in presence of phase change is one of the challenging area of CFD studies. In this paper, the CFD modeling of the nucleate and convective flow boiling in the small helically coiled tube at low vapor quality (up to the 18.93 percent) region is studied. A proper Eulerian-based mathematical model is used for interphase exchange forces and heat transfer between two phases in CFD modeling using Bulk boiling model. The results show that, the inner and the bottom wall of the helically coiled tube have the lowest and the highest heat transfer coefficient, respectively. The effect of change in coil diameter, helical pitch and tube diameter is investigated on the counters of vapor volume fraction. It is seen that at low vapor quality flows, the heat transfer coefficient is enhanced by decreasing in coil diameter, tube diameter and increasing in coil pitch of helically coiled tube.
Keywords
Full Text:
PDFReferences
1. Vashisth S, Nigam KDP (2009) Prediction of flow profiles and interfacial phenomena for two-phase flow in coiled tubes. Chem Eng Process Process Intensif 48:452–463. doi: 10.1016/j.cep.2008.06.006
2. Xia GD, Liu XF, Zhai YL, Cui ZZ (2014) Single-phase and two-phase flows through helical rectangular channels in single screw expander prototype. J Hydrodyn 26:114–121. doi: 10.1016/S1001-6058(14)60013-5
3. Durst F, Germany W (1984) Eulerian and Lagrangian predictions of particulate two- phase flows : a numerical study. Appl Math Model 8:101–115.
4. Gouesbet G, Berlemont a. (1998) Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. Prog Energy Combust Sci 25:133–159. doi: 10.1016/S0360-1285(98)00018-5
5. Zhang Z, Chen Q (2007) Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos Environ 41:5236–5248. doi: 10.1016/j.atmosenv.2006.05.086
6. Kurul N, Podowski MZ (1990) Multidimensional effects in forced convection subcooled boiling. In: Proc. Ninth Int. Heat Transf. Conf. Jerusalem, Israel, pp 21–26
7. Končar B, Kljenak I, Mavko B (2004) Modelling of local two-phase flow parameters in upward subcooled flow boiling at low pressure. Int J Heat Mass Transf 47:1499–1513. doi: 10.1016/j.ijheatmasstransfer.2003.09.021
8. Bartel M. (1999) Experimental investigation of subcooled boiling. Master Thesis, Purdue University, West Lafayette, Indiana, USA
9. Li X, Wang R, Huang R, Shi Y (2006) Numerical investigation of boiling flow of nitrogen in a vertical tube using the two-fluid model. Appl Therm Eng 26:2425–2432.
10. Chen E, Li Y, Cheng X (2009) CFD simulation of upward subcooled boiling flow of refrigerant-113 using the two-fluid model. Appl Therm Eng 29:2508–2517. doi: 10.1016/j.applthermaleng.2008.12.022
11. Kang S, Roy RP (2002) Vapor Phase Measurements in Subcooled Boiling Flow. J Heat Transfer 124:1207. doi: 10.1115/1.1517269
12. Roy RP, Kang S, Zarate J a., Laporta a. (2002) Turbulent Subcooled Boiling Flow—Experiments and Simulations. J Heat Transfer 124:73. doi: 10.1115/1.1418698
13. Končar B, Krepper E (2008) CFD simulation of convective flow boiling of refrigerant in a vertical annulus. Nucl Eng Des 238:693–706. doi: 10.1016/j.nucengdes.2007.02.035
14. Abishek S, King AJC, Narayanaswamy R (2017) Computational analysis of two-phase flow and heat transfer in parallel and counter flow double-pipe evaporators. Int J Heat Mass Transf 104:615–626. doi: 10.1016/j.ijheatmasstransfer.2016.08.089
15. Zeitoun O, Shoukri M (1997) Axial void fraction profile in low pressure subcooled flow boiling. Int J Heat Mass Transf 40:869–879. doi: 10.1016/0017-9310(96)00164-0
16. Kommer E. (2013) Forced Convective Boiling Via Infrared Thermography. Ph.D. Thesis,The University of Maryland, USA
17. Sun DL, Xu JL, Wang L (2012) Development of a vapor-liquid phase change model for volume-of-fluid method in FLUENT. Int Commun Heat Mass Transf 39:1101–1106. doi: 10.1016/j.icheatmasstransfer.2012.07.020
18. Sun D, Xu J, Chen Q (2014) Modeling of the Evaporation and Condensation Phase-Change Problems with FLUENT. Numer Heat Transf Part B Fundam 66:326–342. doi: 10.1080/10407790.2014.915681
19. Welch SWJ, Wilson J (2000) A Volume of Fluid Based Method for Fluid Flows with Phase Change. J Comput Phys 160:662–682. doi: 10.1006/jcph.2000.6481
20. Guo DZ, Sun DL, Li ZY, Tao WQ (2011) Phase Change Heat Transfer Simulation for Boiling Bubbles Arising from a Vapor Film by the VOSET Method. Numer Heat Transf Part A Appl 59:857–881. doi: 10.1080/10407782.2011.561079
21. Son G, Dhir VK (1998) Numerical Simulation of Film Boiling Near Critical Pressures With a Level Set Method. J Heat Transfer 120:183–192. doi: 10.1115/1.2830042
22. Klimenko V V. (1981) Film boiling on a horizontal plate - new correlation. Int J Heat Mass Transf 24:69–79. doi: 10.1016/0017-9310(81)90094-6
23. Nichita B, Thome J (2010) A level set method and a heat transfer model implemented into FLUENT for modeling of microscale two phase flows. … 178 Spec Meet Syst Lev … 1–15.
24. Mao W. (2009) Numerical Simulation of Vapor–liquid Phase Change Heat Transfer and Micromixing in Microfluidic Systems. Master’s thesis, Guangzhou Institute of Energy Conversion Chinese Academy of Sciences, China
25. Zhang R, Cong T, Tian W, et al (2015) Effects of turbulence models on forced convection subcooled boiling in vertical pipe. Ann Nucl Energy 80:293–302. doi: 10.1016/j.anucene.2015.01.039
26. Bartolemei G., Chanturiya V. (1967) Experimental study of true void fraction when boiling subcooled water in vertical tubes. Therm Eng 14:123–128.
27. Bartolemei G., Brantov V., Molochnikov Y., et al (1982) An experimental investigation of true volumetric vapor content with subcooled boiling in tubes. Therm Eng 29:132–135.
28. Yang Z, Peng XF, Ye P (2008) Numerical and experimental investigation of two phase flow during boiling in a coiled tube. Int J Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.05.025
29. Nadim N (2012) Fluid and thermal behavior of multi-phase flow through curved ducts. PhD Thesis, Curtin University, School of Civil and Mechanical Engineering, Department of Mechanical Engineering, Bentley, Perth, Western Australia
30. St. Pierre CC, Bankoff SG (1967) Vapor Volume Profiles in Developing Two-Phase Flow. Int J Heat Mass Transf 10:237–249.
31. Wu HL, Peng XF, Ye P, Eric Gong Y (2007) Simulation of refrigerant flow boiling in serpentine tubes. Int J Heat Mass Transf 50:1186–1195. doi: 10.1016/j.ijheatmasstransfer.2006.10.013
32. Aminfar H, Mohammadporfard M, Maroofiazar R (2013) Eulerian simulation of subcooled boiling flow in straight and curved annuli. J Mech Sci Technol. doi: 10.1007/s12206-013-0501-4
33. Lee TH, Park GC, Lee DJ (2002) Local flow characteristics of subcooled boiling flow of water in a vertical concentric annulus. Int J Multiph Flow 28:1351–1368.
34. Jo JC, Kim WS, Choi C-Y, Lee YK (2009) Numerical Simulation of Subcooled Flow Boiling Heat Transfer in Helical Tubes. J Press Vessel Technol 131:011305. doi: 10.1115/1.3028022
35. Owhadi A (1968) Forced convection boiling inside helically-coiled tubes. Int J Hear Mass Transf 11:1779–1793.
36. Colorado D, Papini D, Hernández J a., et al (2011) Development and experimental validation of a computational model for a helically coiled steam generator. Int J Therm Sci 50:569–580. doi: 10.1016/j.ijthermalsci.2010.10.018
37. Colorado-Garrido D, Santoyo-Castelazo E, Hernández JA, et al (2009) Heat transfer of a helical double-pipe vertical evaporator: Theoretical analysis and experimental validation. Appl Energy 86:1144–1153. doi: 10.1016/j.apenergy.2008.08.015
38. Santini L Thermalhydraulic issues of IRIS nuclear reactor helicallyly coiled steam generator and emergency heat removal system. Ph.D Thesis, Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Milan, Italy
39. Santoyo-Castelazo E, Siqueiros J (2007) Estudio experimental de un sistema de purificaciَn de agua integrado a un transformador térmico. Memorias del. In: XXVIII Encuentro Nac. la AMIDIQ. Mexico, pp 4072–4085
40. Cioncolini A, Santini L, Ricotti ME (2008) Subcooled and saturated water flow boiling pressure drop in small diameter helical coils at low pressure. Exp Therm Fluid Sci 32:1301–1312. doi: 10.1016/j.expthermflusci.2008.03.002
41. Clift R, Grace R, Weber M. (1978) Bubbles, Drops, and Particles. Technical Report, Academic Press
42. Antal SP, Lahey RT, Flaherty JE (1991) Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int J Multiph Flow 17:635–652. doi: 10.1016/0301-9322(91)90029-3
43. Moraga FJ, Bonetto FJ, Lahey RT (1999) Lateral forces on spheres in turbulent uniform shear flow. Int J Multiph Flow 25:1321–1372. doi: 10.1016/S0301-9322(99)00045-2
44. de Bertodano M. (1991) Turbulent Bubbly Flow in a Triangular Duct. Ph.D. thesis, Rensselaer Polytechnic Institute, USA
45. Kurul N, Podowski M. (1991) on the modeling of multidimensional in boiling channels. Proc. 27th Natl. heat Transf. Conf. Minneap.
46. Ranz W., Marshall Jr W. (1952) Evaporation from drops. In: Part 1 Part 2, Chem. Eng. Prog. pp 173–180
47. Lee W. (1980) A pressure iteration scheme for two-phase flow modeling. T.N. Veziroglu (Ed.), Multiph. Transp. Fundam. React. Safety, Appl.
48. Kandlikar SG (1990) A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. J Heat Transfer 112:219–228. doi: 10.1115/1.2910348
DOI: https://doi.org/10.24294/tse.v1i2.375
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Mohammad Ali Abdous, Shahriyar Ghazanfari Holagh, Hamid Saffar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.