Abstract
Numerical study of subcooled and saturated flow boiling in the curved and helically coiled tubes in presence of phase change is one of the challenging area of CFD studies. In this paper, the CFD modeling of the nucleate and convective flow boiling in the small helically coiled tube at low vapor quality (up to the 18.93 percent) region is studied. A proper Eulerian-based mathematical model is used for interphase exchange forces and heat transfer between two phases in CFD modeling using Bulk boiling model. The results show that, the inner and the bottom wall of the helically coiled tube have the lowest and the highest heat transfer coefficient, respectively. The effect of change in coil diameter, helical pitch and tube diameter is investigated on the counters of vapor volume fraction. It is seen that at low vapor quality flows, the heat transfer coefficient is enhanced by decreasing in coil diameter, tube diameter and increasing in coil pitch of helically coiled tube.
Keywords
Computational fluid dynamic (CFD); helically coiled tube; boiling heat transfer coefficient; void fraction; pressure drop
References
Vashisth S, Nigam KDP (2009) Prediction of flow profiles and interfacial phenomena for two-phase flow in coiled tubes. Chem Eng Process Process Intensif 48:452–463. doi: 10.1016/j.cep.2008.06.006
Xia GD, Liu XF, Zhai YL, Cui ZZ (2014) Single-phase and two-phase flows through helical rectangular channels in single screw expander prototype. J Hydrodyn 26:114–121. doi: 10.1016/S1001-6058(14)60013-5
Durst F, Germany W (1984) Eulerian and Lagrangian predictions of particulate two- phase flows : a numerical study. Appl Math Model 8:101–115.
Gouesbet G, Berlemont a. (1998) Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. Prog Energy Combust Sci 25:133–159. doi: 10.1016/S0360-1285(98)00018-5
Zhang Z, Chen Q (2007) Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos Environ 41:5236–5248. doi: 10.1016/j.atmosenv.2006.05.086
Kurul N, Podowski MZ (1990) Multidimensional effects in forced convection subcooled boiling. In: Proc. Ninth Int. Heat Transf. Conf. Jerusalem, Israel, pp 21–26
Končar B, Kljenak I, Mavko B (2004) Modelling of local two-phase flow parameters in upward subcooled flow boiling at low pressure. Int J Heat Mass Transf 47:1499–1513. doi: 10.1016/j.ijheatmasstransfer.2003.09.021
Bartel M. (1999) Experimental investigation of subcooled boiling. Master Thesis, Purdue University, West Lafayette, Indiana, USA
Li X, Wang R, Huang R, Shi Y (2006) Numerical investigation of boiling flow of nitrogen in a vertical tube using the two-fluid model. Appl Therm Eng 26:2425–2432.
Chen E, Li Y, Cheng X (2009) CFD simulation of upward subcooled boiling flow of refrigerant-113 using the two-fluid model. Appl Therm Eng 29:2508–2517. doi: 10.1016/j.applthermaleng.2008.12.022
Kang S, Roy RP (2002) Vapor Phase Measurements in Subcooled Boiling Flow. J Heat Transfer 124:1207. doi: 10.1115/1.1517269
Roy RP, Kang S, Zarate J a., Laporta a. (2002) Turbulent Subcooled Boiling Flow—Experiments and Simulations. J Heat Transfer 124:73. doi: 10.1115/1.1418698
Končar B, Krepper E (2008) CFD simulation of convective flow boiling of refrigerant in a vertical annulus. Nucl Eng Des 238:693–706. doi: 10.1016/j.nucengdes.2007.02.035
Abishek S, King AJC, Narayanaswamy R (2017) Computational analysis of two-phase flow and heat transfer in parallel and counter flow double-pipe evaporators. Int J Heat Mass Transf 104:615–626. doi: 10.1016/j.ijheatmasstransfer.2016.08.089
Zeitoun O, Shoukri M (1997) Axial void fraction profile in low pressure subcooled flow boiling. Int J Heat Mass Transf 40:869–879. doi: 10.1016/0017-9310(96)00164-0
Kommer E. (2013) Forced Convective Boiling Via Infrared Thermography. Ph.D. Thesis,The University of Maryland, USA
Sun DL, Xu JL, Wang L (2012) Development of a vapor-liquid phase change model for volume-of-fluid method in FLUENT. Int Commun Heat Mass Transf 39:1101–1106. doi: 10.1016/j.icheatmasstransfer.2012.07.020
Sun D, Xu J, Chen Q (2014) Modeling of the Evaporation and Condensation Phase-Change Problems with FLUENT. Numer Heat Transf Part B Fundam 66:326–342. doi: 10.1080/10407790.2014.915681
Welch SWJ, Wilson J (2000) A Volume of Fluid Based Method for Fluid Flows with Phase Change. J Comput Phys 160:662–682. doi: 10.1006/jcph.2000.6481
Guo DZ, Sun DL, Li ZY, Tao WQ (2011) Phase Change Heat Transfer Simulation for Boiling Bubbles Arising from a Vapor Film by the VOSET Method. Numer Heat Transf Part A Appl 59:857–881. doi: 10.1080/10407782.2011.561079
Son G, Dhir VK (1998) Numerical Simulation of Film Boiling Near Critical Pressures With a Level Set Method. J Heat Transfer 120:183–192. doi: 10.1115/1.2830042
Klimenko V V. (1981) Film boiling on a horizontal plate - new correlation. Int J Heat Mass Transf 24:69–79. doi: 10.1016/0017-9310(81)90094-6
Nichita B, Thome J (2010) A level set method and a heat transfer model implemented into FLUENT for modeling of microscale two phase flows. … 178 Spec Meet Syst Lev … 1–15.
Mao W. (2009) Numerical Simulation of Vapor–liquid Phase Change Heat Transfer and Micromixing in Microfluidic Systems. Master’s thesis, Guangzhou Institute of Energy Conversion Chinese Academy of Sciences, China
Zhang R, Cong T, Tian W, et al (2015) Effects of turbulence models on forced convection subcooled boiling in vertical pipe. Ann Nucl Energy 80:293–302. doi: 10.1016/j.anucene.2015.01.039
Bartolemei G., Chanturiya V. (1967) Experimental study of true void fraction when boiling subcooled water in vertical tubes. Therm Eng 14:123–128.
Bartolemei G., Brantov V., Molochnikov Y., et al (1982) An experimental investigation of true volumetric vapor content with subcooled boiling in tubes. Therm Eng 29:132–135.
Yang Z, Peng XF, Ye P (2008) Numerical and experimental investigation of two phase flow during boiling in a coiled tube. Int J Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.05.025
Nadim N (2012) Fluid and thermal behavior of multi-phase flow through curved ducts. PhD Thesis, Curtin University, School of Civil and Mechanical Engineering, Department of Mechanical Engineering, Bentley, Perth, Western Australia
St. Pierre CC, Bankoff SG (1967) Vapor Volume Profiles in Developing Two-Phase Flow. Int J Heat Mass Transf 10:237–249.
Wu HL, Peng XF, Ye P, Eric Gong Y (2007) Simulation of refrigerant flow boiling in serpentine tubes. Int J Heat Mass Transf 50:1186–1195. doi: 10.1016/j.ijheatmasstransfer.2006.10.013
Aminfar H, Mohammadporfard M, Maroofiazar R (2013) Eulerian simulation of subcooled boiling flow in straight and curved annuli. J Mech Sci Technol. doi: 10.1007/s12206-013-0501-4
Lee TH, Park GC, Lee DJ (2002) Local flow characteristics of subcooled boiling flow of water in a vertical concentric annulus. Int J Multiph Flow 28:1351–1368.
Jo JC, Kim WS, Choi C-Y, Lee YK (2009) Numerical Simulation of Subcooled Flow Boiling Heat Transfer in Helical Tubes. J Press Vessel Technol 131:011305. doi: 10.1115/1.3028022
Owhadi A (1968) Forced convection boiling inside helically-coiled tubes. Int J Hear Mass Transf 11:1779–1793.
Colorado D, Papini D, Hernández J a., et al (2011) Development and experimental validation of a computational model for a helically coiled steam generator. Int J Therm Sci 50:569–580. doi: 10.1016/j.ijthermalsci.2010.10.018
Colorado-Garrido D, Santoyo-Castelazo E, Hernández JA, et al (2009) Heat transfer of a helical double-pipe vertical evaporator: Theoretical analysis and experimental validation. Appl Energy 86:1144–1153. doi: 10.1016/j.apenergy.2008.08.015
Santini L Thermalhydraulic issues of IRIS nuclear reactor helicallyly coiled steam generator and emergency heat removal system. Ph.D Thesis, Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Milan, Italy
Santoyo-Castelazo E, Siqueiros J (2007) Estudio experimental de un sistema de purificaciَn de agua integrado a un transformador térmico. Memorias del. In: XXVIII Encuentro Nac. la AMIDIQ. Mexico, pp 4072–4085
Cioncolini A, Santini L, Ricotti ME (2008) Subcooled and saturated water flow boiling pressure drop in small diameter helical coils at low pressure. Exp Therm Fluid Sci 32:1301–1312. doi: 10.1016/j.expthermflusci.2008.03.002
Clift R, Grace R, Weber M. (1978) Bubbles, Drops, and Particles. Technical Report, Academic Press
Antal SP, Lahey RT, Flaherty JE (1991) Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int J Multiph Flow 17:635–652. doi: 10.1016/0301-9322(91)90029-3
Moraga FJ, Bonetto FJ, Lahey RT (1999) Lateral forces on spheres in turbulent uniform shear flow. Int J Multiph Flow 25:1321–1372. doi: 10.1016/S0301-9322(99)00045-2
de Bertodano M. (1991) Turbulent Bubbly Flow in a Triangular Duct. Ph.D. thesis, Rensselaer Polytechnic Institute, USA
Kurul N, Podowski M. (1991) on the modeling of multidimensional in boiling channels. Proc. 27th Natl. heat Transf. Conf. Minneap.
Ranz W., Marshall Jr W. (1952) Evaporation from drops. In: Part 1 Part 2, Chem. Eng. Prog. pp 173–180
Lee W. (1980) A pressure iteration scheme for two-phase flow modeling. T.N. Veziroglu (Ed.), Multiph. Transp. Fundam. React. Safety, Appl.
Kandlikar SG (1990) A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. J Heat Transfer 112:219–228. doi: 10.1115/1.2910348
Copyright (c) 2018 Mohammad Ali Abdous, Shahriyar Ghazanfari Holagh, Hamid Saffar