Salinity-gradient solar pond: History and progress review

Khawla Sleiman, Stefan Van Vaerenbergh, Tayssir Hamieh

Article ID: 2568
Vol 6, Issue 2, 2023

VIEWS - 210 (Abstract) 71 (PDF)

Abstract


A salinity gradient solar pond (SGSP) is a large and deep artificial basin of layered brine, which collects and stores-simultaneously-solar energy for use in various applications. Experimental and theoretical studies have been launched to understand the thermal behavior of SGSPs, under different operating conditions. This article then traces the history of SGSPs, from their natural discovery to their current artificial applications and the progress of studies and research, according to their chronological sequence, in terms of determining their physical and dynamic aspects, their operation, management and maintenance. It has extensively covered the theoretical and experimental studies, as well as the direct and laboratory applications of this technology, especially the most famous and influential in this field, classified according to the aspect covered by the study, with a comparison between the different results obtained. In addition, it highlighted the latest methods to improve the performance of an SGSP and facilitate its operation, such as the use of a magnetic field and the adoption of remote data acquisition, in the aim of expanding research and enhancing the benefit of this technology.


Keywords


Solar pond; thermal energy; salt gradient, storage zone; non-convective zone; innovative technology

Full Text:

PDF


References


1. Berkani M, Sissaoui H, Abdelli A, et al. Comparison of three solar ponds with different salts through bi-dimensional modeling. Solar Energy 2015;116: 56–68. doi: 10.1016/j.solener.2015.03.024

2. Karakilcik M, Kıymaç K, Dincer I. Experimental and theoretical temperature distributions in a solar pond. International Journal of Heat and Mass Transfer 2006; 49(5–6): 825–835. doi: 10.1016/j.ijheatmasstransfer.2005.09.026

3. Tundee S, Terdtoon P, Sakulchangsatjatai P, et al. Heat extraction from salinity-gradient solar ponds using heat pipe heat exchangers. Solar Energy 2010; 84(9): 1706–1716. doi: 10.1016/j.solener.2010.04.010

4. Kalecsinsky AV. About the hungarian warm and hot salt lakes as natural heat accumulators, and about the production of warm salt lakes and heat accumulators (German). Annalen der Physik 1902; 312(2): 408–416. doi: 10.1002/andp.19023120212

5. Anderson GC. Limnology of Shallow Saline Mermomistic Lake. Limnology and Oceanography 1958; 3(3): 259–269. doi: 10.4319/lo.1958.3.3.0259

6. Wilson AT, Wellman HW. Lake vanda: An antarctic lake: Lake vanda as a solar energy trap. Nature 1962; 196(4860): 1171–1173. doi: 10.1038/1961171a0

7. Hoare RA. Problems of heat transfer in lake vanda, a density stratified antarctic lake. Nature 1966; 210: 787–786. https://doi.org/10.1038/210787a0

8. Por FD. Solar lake on the shore of the red-sea. Nature 1968; 218: 860–861. doi: 10.1038/218860a0

9. Melack JM, Kilham P. Lake mehage: A mesotropic sulfacto-chloride lake in western Uganda. African Journal of Tropical Hydrobiology and Fisheries 1972; 2: 141.

10. Hudec PP, Sonnenfeld P. Hot brine on Los Roques, Venezuela. Science 1974; 185(4149): 440–442. doi:10.1126/science.185.4149.440

11. Taşdemiroǧlu E. Salt availability in Turkey and its potential use in solar ponds. Resources and Conservation 1987; 15(3): 215–228. doi: 10.1016/0166-3097(87)90004-6

12. Kurt H, Halici F, Binark AK. Solar pond conception—Experimental and theoretical studies. Energy Conversion and Management 2000; 41(9): 939–951. doi: 10.1016/S0196-8904(99)00147-8

13. Angeli C, Leonardi E. The effect of thermodiffusion on the stability of a salinity gradient solar pond. International Journal of Heat and Mass Transfer 2005; 48(21–22): 4633–4639. doi: 10.1016/j.ijheatmasstransfer.2005.05.021

14. Suárez F, Childress AE, Tyler SW. Temperature evolution of an experimental salt-gradient solar pond. Journal of Water and Climate Change 2010; 1(4): 246–250. doi: 10.2166/wcc.2010.101

15. Hanjalić K, Musemić R. Modeling the dynamics of double-diffusive scalar fields at various stability conditions. International Journal of Heat and Fluid Flow 1997; 18(4): 360–367. doi: 10.1016/S0142-727X(97)00018-0

16. Zangrando F. A simple method to establish salt gradient solar ponds. Solar Energy 1980; 25(5): 467–470. doi: 10.1016/0038-092X(80)90456-9

17. Hawlader MNA. The influence of the extinction coefficient on the effectiveness of solar ponds. Solar Energy 1980; 25: 461–464. doi: 10.1016/0038-092X(80)90454-5

18. Hull JR. Method and Means of Preventing Heat Convection in a Solar Pond. U.S. Patent 4,241,724A, 30 December 1980.

19. Beniwal RS, Singh R, Saxena NS, Bhandari RC. Thermal behaviour of salt gradient solar ponds. Journal of Physics D: Applied Physics 1987; 20(8): 1067–1071. doi: 10.1088/0022-3727/20/8/014

20. Newell TA, Cowie RG, Upper JM, et al. Construction and operation activities at the university of Illinois salt gradient solar pond. Solar Energy 1990; 45: 231–239. doi: 10.1016/0038-092X(90)90091-P

21. Alagao FB, Akbarzadeh A, Johnson PW. The Design, Construction, and initial operation of a closed-cycle, salt-gradient solar pond. Solar Energy 1994; 53(4): 343–351. doi: 10.1016/0038-092X(94)90037-X

22. Badran AA, Jubran BA, Qasem EM, Hamdan MA. Numerical model for the behavior of a salt-gradient solar-pond greenhouse-heating system. Applied Energy 1997; 58(1): 57–72. doi: 10.1016/S0306-2619(97)00034-2

23. Jaefarzadeh MR. Thermal behavior of a small salinity-gradient solar pond with wall shading effect. Solar Energy 2004; 77(3): 281–290. doi: 10.1016/j.solener.2004.05.013

24. Ramadan MRI, El-Sebaii AA, Aboul-Enein S, Khallaf AM. Experimental testing of a shallow solar pond with continuous heat extraction. Energy and Buildings 2004; 36(9): 955–964. doi: 10.1016/j.enbuild.2004.03.002

25. Pawar SH, Chapgaon AN. Fertilizer solar ponds as a clean source of energy: Some observations from small scale experiments. Solar Energy 1995; 55(6): 537–542. doi: 10.1016/0038-092X(95)00096-A

26. Dah MMO, Ouni M, Guizani A, Belghith A. Study of temperature and salinity profiles development of solar pond in laboratory. Desalination 2005; 183(1–3): 179–185. doi: 10.1016/j.desal.2005.03.034

27. Kurt H, Ozkaymak M, Binark AK. Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation. Applied Energy 2006; 83(4): 324–342. doi: 10.1016/j.apenergy.2005.03.001

28. Suárez F, Ruskowitz JA, Childress AE, Tyler SW. Understanding the expected performance of large-scale solar ponds from laboratory-scale observations and numerical modeling. Applied Energy 2014; 117: 1–10. doi: 10.1016/j.apenergy.2013.12.005

29. Meyer KA. A numerical model to describe the layer behavior in salt-gradient solar ponds. Journal of Solar Energy Engineering 1983; 105(4): 341–347. doi: 10.1115/1.3266389

30. Atkinson JF, Harleman DRF. A wind-mixed layer model for solar ponds. Solar Energy 1983; 31(3): 243–259. doi: 10.1016/0038-092X(83)90012-9

31. Kaushik ND, Sharma MS. Numerical model of a solar pond. Energy Conversion and Management 1985; 25(4): 459–461. doi: 10.1016/0196-8904(85)90010-X

32. Saleh A. Modeling and performance analysis of a solar pond integrated with an absorption cooling system. Energies 2022; 15(22): 8327. doi: 10.3390/en15228327

33. El-Refaee MM, Al-Marafie AM. Numerical simulation of the performance of the kuwait experimental salt-gradient solar pond (KESGSP). Energy Sources 1993; 15(1): 145–158. doi: 10.1080/00908319308909020

34. Kayali R, Bozdemir S, Kiymac K. A rectangular solar pond model incorporating empirical functions for air and soil temperatures. Solar Energy 1998; 63(6): 345–353. doi: 10.1016/S0038-092X(98)00104-2

35. Ouni M, Guizani A, Lu H, Belghith A. Simulation of the control of a salt gradient solar pond in the south of Tunisia. Solar Energy 2003; 75(2): 95–101. doi: 10.1016/j.solener.2003.07.011

36. Husain M, Patil SR, Patil PS, Samdarshi SK. Simple methods for estimation of radiation flux in solar ponds. Energy Conversion and Management 2004; 45(2): 303–314. doi: 10.1016/S0196-8904(03)00122-5

37. Angeli C, Leonardi E. A one-dimensional numerical study of the salt diffusion in a salinity-gradient solar pond. International Journal of Heat and Mass Transfer 2004; 47(1): 1–10. doi: 10.1016/S0017-9310(03)00410-1

38. Dake JMK, Harleman DRF. Thermal stratification in lakes: Analytical and laboratory studies. Water Resources Research 1969; 5(2): 484–495. doi: 10.1029/wr005i002p00484

39. Akbarzadeh A, Ahmadi G. Computer simulation of the performance of a solar pond in the southern part of Iran. Solar Energy 1980; 24(2): 143–151. doi: 10.1016/0038-092X(80)90388-6

40. Viskanta R, Toor JS. Radiant energy transfer in waters. Water Resources Research 1972; 8(3): 595–608. doi: 10.1029/wr008i003p00595

41. Viskanta R, Toor JS. Effect of multiple scattering on radiant energy transfer in waters. Journal of Geophysical Research 1973; 78(18): 3538–3551. doi: 10.1029/jc078i018p03538

42. Viskanta R, Toor JS. Absorption of solar radiation in ponds. Solar Energy 1978; 21(1): 17–25. doi: 10.1016/0038-092X(78)90112-3

43. Tsilingiris PT. An accurate upper estimate for the transmission of solar radiation in salt gradient ponds. Solar Energy 1988; 40(1): 41–48. doi: 10.1016/0038-092X(88)90070-9

44. Kanayama K, Baba H. Transmittance of distilled water and sodium-chloride-water solutions. Journal of Solar Energy Engineering 1988; 110(2): 113–119. doi: 10.1115/1.3268240

45. Afeef M, Mullett LB. Solar transmission in salt solutions with reference to solar ponds. Solar & Wind Technology 1989; 6(1): 1–9. doi: 10.1016/0741-983X(89)90032-5

46. Eliseev VN, Usmanov YU, Teslenko LN. Theoretical investigation of the thermal regime of a solar pond. Applied Solar Energy 1971; 7(4).

47. Rabl A, Nielsen CE. Solar ponds for space heating. Solar Energy 1975; 17(1): 1–12. doi: 10.1016/0038-092X(75)90011-0

48. Bryant HC, Colbeck I. A solar pond for London? Solar Energy 1977; 19(3): 321–322.

49. Kooi CF. The steady state salt gradient solar pond. Solar Energy 1979; 23(1): 37–45. doi: 10.1016/0038-092X(79)90041-0

50. Sodha MS, Kaushik ND, Rao SK. Thermal analysis of three zone solar pond. International Journal of Energy Research 1981; 5(4): 321–340. doi: 10.1002/er.4440050404

51. Kooi CF. Salt gradient solar pond with reflective bottom: Application to the “saturated” pond. Solar Energy 1981; 26(2): 113–120. doi: 10.1016/0038-092X(81)90073-6

52. Hawlader MNA, Brinkworth BJ. An analysis of the non-convecting solar pond. Solar Energy 1981; 27(3): 195–204. doi: 10.1016/0038-092X(81)90121-3

53. Bansal PK, Kaushik ND. Salt gradient stabilized solar pond collector. Energy Conversion and Management 1981; 21(1): 81–95. doi: 10.1016/0196-8904(81)90010-8

54. Hull JR. Calculation of solar pond thermal efficiency with a diffusely reflecting bottom. Solar Energy 1982; 29(5): 385–389. doi: 10.1016/0038-092X(82)90074-3

55. Srinivasan J, Guha A. The effect of bottom reflectivity on the performance of a solar pond. Solar Energy 1987; 39(4): 361–367. doi: 10.1016/S0038-092X(87)80022-1

56. Sezai I, Taşdemiroğlu E. Effect of bottom reflectivity on ground heat losses for solar ponds. Solar Energy 1995; 55(4): 311–319. doi: 10.1016/0038-092X(95)00054-U

57. Lewis WT, Incropera FP, Viskanta R. Interferometric study of mixing layer development in a laboratory simulation of solar pond conditions. Solar Energy 1982; 28(5): 389–401. doi: 10.1016/0038-092X(82)90257-2

58. Isaac RR, Gupta CL. A parametric design study of solar ponds. Applied Energy 1982; 11(1): 35–49. doi: 10.1016/0306-2619(82)90046-0

59. Wang YF, Akbarzadeh A. A study on the transient behavior of solar ponds. Energy 1982; 7(12): 1005–1017. doi: 10.1016/0360-5442(82)90084-6

60. Wang YF, Akbarzadeh A. A parametric study on solar ponds. Solar Energy 1983; 30(6): 555–562. doi: 10.1016/0038-092X(83)90067-1

61. Cengel YA, Özişik MN. Solar radiation absorption in solar ponds. Solar Energy 1984; 33(6): 581–591. doi: 10.1016/0038-092X(84)90014-8

62. Beniwal RS, Singh RV, Chaudhary DR. Heat losses from a salt-gradient solar pond. Applied Energy 1985; 19(4): 273–285. doi: 10.1016/0306-2619(85)90002-9

63. Ali HM. Mathematical modelling of salt gradient solar pond performance. International Journal of Energy Research 1986; 10(4): 377–384. doi: 10.1002/er.4440100408

64. Ho-Ming Y, Shau-Wei T, Wang-Tang H. Time-temperature variations in the storage zone of salt-gradient solar ponds. Energy 1987; 12(1): 25–31. doi: 10.1016/0360-5442(87)90016-8

65. Ali HM. Potential of solar ponds in hot climates. Solar & Wind Technology 1989; 6(2): 137–141. doi: 10.1016/0741-983X(89)90022-2

66. Muñoz F, Almanza R. A survey of solar pond developments. Energy 1992; 17(10): 927–938. doi: 10.1016/0360-5442(92)90041-W

67. Al-Nimr MA. Solar pond transient behavior—Analytical modeling. International Journal of Solar Energy 1998; 19(4): 275–290. doi: 10.1080/01425919808914342

68. Al-Jamal K, Khashan S. Effect of energy extraction on solar pond performance. Energy Conversion and Management 1998; 39(7): 559–566. doi: 10.1016/S0196-8904(97)00051-4

69. Tahat MA, Kodah ZH, Probert SD, Al-Tahaineh H. Performance of a portable mini solar-pond. Applied Energy 2000; 66(4): 299–310. doi: 10.1016/S0306-2619(00)00021-0

70. Andrews J, Akbarzadeh A. Enhancing the thermal efficiency of solar ponds by extracting heat from the gradient layer. Solar Energy 2005; 78(6): 704–716. doi: 10.1016/j.solener.2004.09.012

71. Karakilcik M, Dincer I, Rosen MA. Performance investigation of a solar pond. Applied Thermal Engineering 2006; 26(7): 727–735. doi: 10.1016/j.applthermaleng.2005.09.003

72. Karakilcik M, Dincer I. Exergetic performance analysis of a solar pond. International Journal of Thermal Sciences 2008; 47(1): 93–102. doi: 10.1016/j.ijthermalsci.2007.01.012

73. Sakhrieh A, Al-Salaymeh A. Experimental and numerical investigations of salt gradient solar pond under Jordanian climate conditions. Energy Conversion and Management 2013; 65: 725–728. doi: 10.1016/j.enconman.2012.01.046

74. Bernad F, Casas S, Gibert O, et al. Salinity gradient solar pond: Validation and simulation model. Solar Energy 2013; 98: 366–374. doi: 10.1016/j.solener.2013.10.004

75. Date A, Yaakob Y, Date A, et al. Heat extraction from non-convective and lower convective zones of the solar pond: A transient study. Solar Energy 2013; 97: 517–528. doi: 10.1016/j.solener.2013.09.013

76. Karakilcik M, Dincer I, Bozkurt I, Atiz A. Performance assessment of a solar pond with and without shading effect. Energy Conversion and Management 2013; 65: 98–107. doi: 10.1016/j.enconman.2012.07.001

77. Dehghan AA, Movahedi A, Mazidi M. Experimental investigation of energy and exergy performance of square and circular solar ponds. Solar Energy 2013; 97: 273–284. doi: 10.1016/j.solener.2013.08.013

78. Bozkurt I, Karakilcik M. The effect of sunny area ratios on the thermal performance of solar ponds. Energy Conversion and Management 2015; 91: 323–332. doi: 10.1016/j.enconman.2014.12.023

79. Liu H, Jiang L, Wu D, Sun W. Experiment and simulation study of a trapezoidal salt gradient solar pond. Solar Energy 2015; 122: 1225–1234. doi: 10.1016/j.solener.2015.09.006

80. Sayer AH, Al-Hussaini H, Campbell AN. New theoretical modeling of heat transfer in solar ponds. Solar Energy 2016; 125: 207–218. doi: 10.1016/j.solener.2015.12.015

81. Abbassi Monjezi A, Campbell AN. A comprehensive transient model for the prediction of the temperature distribution in a solar pond under mediterranean conditions. Solar Energy 2016; 135: 297–307. doi: 10.1016/j.solener.2016.06.011

82. Alcaraz A, Valderrama C, Cortina JL, et al. Enhancing the efficiency of solar pond heat extraction by using both lateral and bottom heat exchangers. Solar Energy 2016; 134: 82–94. doi: 10.1016/j.solener.2016.04.025

83. Aramesh M, Pourfayaz F, Kasaeian A. Transient heat extraction modeling method for a rectangular type salt gradient solar pond. Energy Conversion and Management 2017; 132: 316–326. doi: 10.1016/j.enconman.2016.11.036

84. Njoku HO, Agashi BE, Onyegegbu SO. A numerical study to predict the energy and exergy performances of a salinity gradient solar pond with thermal extraction. Solar Energy 2017; 157: 744–761. doi: 10.1016/j.solener.2017.08.079

85. Khalilian M. Experimental investigation and theoretical modelling of heat transfer in circular solar ponds by lumped capacitance model. Applied Thermal Engineering 2017; 121: 737–749. doi: 10.1016/j.applthermaleng.2017.04.129

86. Torkmahalleh MA, Askari M, Gorjinezhad S, et al. Key factors impacting performance of a salinity gradient solar pond exposed to Mediterranean climate. Solar Energy 2017; 142: 321–329. doi: 10.1016/j.solener.2016.12.037

87. Khalilian M, Pourmokhtar H, Roshan A. Effect of heat extraction mode on the overall energy and exergy efficiencies of the solar ponds: A transient study. Energy 2018; 154: 27–37. doi: 10.1016/j.energy.2018.04.120

88. Amigo J, Suárez F. Ground heat storage beneath salt-gradient solar ponds under constant heat demand. Energy 2018; 144: 657–668. doi: 10.1016/j.energy.2017.12.066

89. Alcaraz A, Montalà M, Valderrama C, et al. Thermal performance of 500 m2 salinity gradient solar pond in Granada, Spain under strong weather conditions. Solar Energy 2018; 171: 223–228. doi: 10.1016/j.solener.2018.06.072

90. Anagnostopoulos A, Sebastia-Saez D, Campbell AN, Arellano-Garcia H. Finite element modelling of the thermal performance of salinity gradient solar ponds. Energy 2020; 203: 117861. doi: 10.1016/j.energy.2020.117861

91. Huppert HE, Moore DR. Nonlinear double-diffusive convection. Journal of Fluid Mechanics 1976; 78(04): 821. doi: 10.1017/s0022112076002759

92. Leshuk JP, Zaworski RJ, Styris DL, Harling OK. Solar pond stability experiments. Solar Energy 1976; 21(3): 237–244. doi: 10.1016/0038-092X(78)90027-0

93. Meyer KA, Grimmer DP, Jones GF. Experimental and theoretical study of salt-gradient pond interface behavior. In: Proceedings of the 1982 American Section of the International Solar Energy Society Conference; 1 June 1982; Houston, TX, USA.

94. Panahi Z, Batty JC, Riley JP. Numerical simulation of the performance of a salt-gradient solar pond. Journal of Solar Energy Engineering 1983; 105(4): 369–374. doi: 10.1115/1.3266393

95. Akbarzadeh A. Effect of sloping walls on salt concentration profile in a solar pond. Solar Energy 1984; 33(2): 137–141. doi: 10.1016/0038-092X(84)90230-5

96. Zangrando F, Bertram LA. The effect of variable stratification on linear doubly diffusive stability. Journal of Fluid Mechanics 1985; 151(1): 55–79. doi: 10.1017/s0022112085000866

97. Akbarzadeh A, Manins P. Convective layers generated by side walls in solar ponds. Solar Energy 1988; 41(6): 521–529. doi: 10.1016/0038-092X(88)90055-2

98. Akbarzadeh A. Convective layers generated by side walls in solar ponds: Observations. Solar Energy 1989; 43(1): 17–43. doi: 10.1016/0038-092X(89)90096-0

99. Nielsen CE. Salinity-gradient solar ponds. In: Böer KW (editor). Advances in Solar Energy. Springer; 2012. Volume 4. pp. 445–498.

100. Al-Jamal K, Khashan S. Parametric study of a solar pond for northern Jordan. Energy 1996; 21(10): 939–946. doi: 10.1016/0360-5442(96)00040-0

101. Giestas M, Pina H, Joyce A. The influence of radiation absorption on solar pond stability. International Journal of Heat and Mass Transfer 1996; 39(18): 3873–3885. doi: 10.1016/0017-9310(96)00052-X

102. Giestas M, Joyce A, Pina H. The influence of non-constant diffusivities on solar ponds stability. International Journal of Heat and Mass Transfer 1997; 40(18): 4379–4391. doi: 10.1016/S0017-9310(97)00050-1

103. Jayaprakash R, Perumal K. The stability of an unsustained salt gradient solar pond. Renewable Energy 1998; 13(4): 543–548. doi: 10.1016/S0960-1481(98)00016-0

104. Abdeljabar R, Safi MJ. Shear flow induced interface instability. Experiments in Fluids 2001; 31(1): 13–18. doi: 10.1007/s003480000253

105. Jubran BA, Al-Abdali H, Al-Hiddabi S, et al. Numerical modelling of convective layers in solar ponds. Solar Energy 2004; 77(3): 339–345. doi: 10.1016/j.solener.2004.04.004

106. Angeli C, Leonardi E, Maciocco L. A computational study of salt diffusion and heat extraction in solar pond plants. Solar Energy 2006; 80(11): 1498–1508. doi: 10.1016/j.solener.2005.10.015

107. Rebaï LK, Mojtabi AK, Safi MJ, Mohamad AA. A linear stability study of the gradient zone of a solar pond. Journal of Solar Energy Engineering 2005; 128(3): 383–393. doi: 10.1115/1.2210498

108. Mansour RB, Nguyen CT, Galanis N. Transient heat and mass transfer and long-term stability of a salt-gradient solar pond. Mechanics Research Communications 2006; 33(2): 233–249. doi: 10.1016/j.mechrescom.2005.06.005

109. Hammami M, Mseddi M, Baccar M. Transient natural convection in an enclosure with vertical solutal gradients. Solar Energy 2007; 81(4): 476–487. doi: 10.1016/j.solener.2006.08.004

110. Giestas MC, Pina HL, Milhazes JP, Tavares C. Solar pond modeling with density and viscosity dependent on temperature and salinity. International Journal of Heat and Mass Transfer 2009; 52(11–12): 2849–2857. doi: 10.1016/j.ijheatmasstransfer.2009.01.003

111. Suárez F, Tyler SW, Childress AE. A fully coupled, transient double-diffusive convective model for salt-gradient solar ponds. International Journal of Heat and Mass Transfer 2010; 53(9–10): 1718–1730. doi: 10.1016/j.ijheatmasstransfer.2010.01.017

112. Choubani K, Jomâa SM, Akbarzadeh A. A laboratory experimental study of mixing the solar pond gradient zone. Solar Energy 2011; 85(2): 404–417. doi: 10.1016/j.solener.2010.10.010

113. Wang H, Xie M, Sun W. Nonlinear dynamic behavior of non-convective zone in salt gradient solar pond. Solar Energy 2011; 85(9): 1745–1757. doi: 10.1016/j.solener.2011.04.034

114. Boudhiaf R, Moussa AB, Baccar M. A two-dimensional numerical study of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond. Energies 2012; 5(10): 3986–4007. doi: 10.3390/en5103986

115. Busquets E, Kumar V, Motta J, et al. Thermal analysis and measurement of a solar pond prototype to study the non-convective zone salt gradient stability. Solar Energy 2012; 86(5): 1366–1377. doi: 10.1016/j.solener.2012.01.029

116. Husain M, Sharma G, Samdarshi SK. Innovative design of non-convective zone of salt gradient solar pond for optimum thermal performance and stability. Applied Energy 2012; 93: 357–363. doi: 10.1016/j.apenergy.2011.12.042

117. Giestas MC, Milhazes JP, Pina HL. Numerical modeling of solar ponds. Energy Procedia 2014; 57: 2416–2425. doi: 10.1016/j.egypro.2014.10.250

118. Boudhiaf R, Baccar M. Transient hydrodynamic, heat and mass transfer in a salinity gradient solar pond: A numerical study. Energy Conversion and Management 2014; 79: 568–580. doi: 10.1016/j.enconman.2013.12.068

119. El Mansouri A, Hasnaoui M, Bennacer R, Amahmid A. Transient thermal performances of a salt gradient solar pond under semi-arid Moroccan climate using a 2D double-diffusive convection model. Energy Conversion and Management 2017; 151: 199–208. doi: 10.1016/j.enconman.2017.08.093

120. Sayer AH, Al-Hussaini H, Campbell AN. An analytical estimation of salt concentration in the upper and lower convective zones of a salinity gradient solar pond with either a pond with vertical walls or trapezoidal cross section. Solar Energy 2017; 158: 207–217. doi: 10.1016/j.solener.2017.09.025

121. Sleiman K, Van Vaerenbergh S, Hamieh T. Study of fluid-thermodynamic transfers in solar ponds: Theoretical approach. Progress in Solar Energy and Engineering Systems 2021; 5(1): 26–34. doi: 10.18280/psees.050105

122. Tian D, Qu ZG, Zhang JF, Ren QL. Enhancement of solar pond stability performance using an external magnetic field. Energy Conversion and Management 2021; 243: 114427. doi: 10.1016/j.enconman.2021.114427

123. El-Refaee MM, Mansour RR, Al-Juwayhel F. Transient performance of a two-dimensional salt gradient solar pond —A numerical study. International Journal of Energy Research 1996; 20(8): 713-731. doi: 10.1002/(SICI)1099-114X(199608)20:8<713::AID-ER185>3.3.CO;2-F

124. Mansour RB, Nguyen CT, Galanis N. Numerical study of transient heat and mass transfer and stability in a salt-gradient solar pond. International Journal of Thermal Sciences 2004; 43(8): 779–790. doi: 10.1016/j.ijthermalsci.2004.02.018

125. Mazidi M, Shojaeefard MH, Mazidi MSh, Shojaeefard H. Two-dimensional modeling of a salt-gradient solar pond with wall shading effect and thermo-physical properties dependent on temperature and concentration. Journal of Thermal Science 2011; 20(4): 362–370. doi: 10.1007/s11630-011-0482-5

126. Akbarzadeh A, Macdonald RWG. Introduction of a passive method for salt replenishment in the operation of solar ponds. Solar Energy 1982; 29(1): 71–76. doi: 10.1016/0038-092X(82)90282-1

127. Kanayama K, Inaba H, Baba H, Fukuda T. Experiment and analysis of practical-scale solar pond stabilized with salt gradient. Solar Energy 1991; 46(6): 353–359. doi: 10.1016/0038-092X(91)90050-7

128. Kho TH, Hawlader MNA, Ho JC, Wijeysundera NE. Design and performance evaluation of a solar pond for industrial process heating. International Journal of Solar Energy 1991; 10(1–2): 83–101. doi: 10.1080/01425919108941453

129. Subhakar D, Murthy SS. Experiments on a magnesium chloride saturated solar pond. Renewable Energy 1991; 1(5–6): 655–660. doi: 10.1016/0960-1481(91)90010-M

130. Subhakar D, Murthy SS. Saturated solar ponds: 2. Parametric studies. Solar Energy 1993; 50(4): 307–319. doi: 10.1016/0038-092X(93)90026-K

131. Subhakar D, Murthy SS. Saturated solar ponds: 3. Experimental verification. Solar Energy 1994; 53(6): 469–472. doi: 10.1016/0038-092X(94)90125-L

132. Banat FA, El-Sayed SE, El-Temtamy SA. Carnalite salt gradient solar ponds: An experimental study. Renewable Energy 1994; 4(2): 265–269. doi: 10.1016/0960-1481(94)90014-0

133. Alagao FB. Simulation of the transient behavior of a closed-cycle salt-gradient solar pond. Solar Energy 1996; 56(3): 245–260. doi: 10.1016/0038-092X(95)00073-Z

134. Murthy GRK, Pandey KP. Scope of fertilizer solar ponds in Indian agriculture. Energy 2002; 27(2): 117–126. doi: 10.1016/S0360-5442(01)00059-7

135. Murthy GRR, Pandey KP. Comparative performance evaluation of fertilizer solar pond under simulated conditions. Renewable Energy 2003; 28(3): 455–466. doi: 10.1016/S0960-1481(02)00046-0

136. Agha KR, Abughres SM, Ramadan AM. Maintenance strategy for a salt gradient solar pond coupled with an evaporation pond. Solar Energy 2004; 77(1): 95–104. doi: 10.1016/j.solener.2004.02.004

137. Valderrama C, Gibert O, Arcal J, et al. Solar energy storage by salinity gradient solar pond: Pilot plant construction and gradient control. Desalination 2011; 279(1–3): 445–450. doi: 10.1016/j.desal.2011.06.035

138. Bozkurt I, Deniz S, Karakilcik M, Dincer I. Performance assessment of a magnesium chloride saturated solar pond. Renewable Energy 2015; 78: 35–41. doi: 10.1016/j.renene.2014.12.060

139. Wang J, Seyed-Yagoobi J. Effect of water turbidity on thermal performance of a salt-gradient solar pond. Solar Energy 1995; 54(5): 301–308. doi: 10.1016/0038-092X(94)00134-Y

140. Gasulla N, Yaakob Y, Leblanc J, et al. Brine clarity maintenance in salinity-gradient solar ponds. Solar Energy 2011; 85(11): 2894–2902. doi: 10.1016/j.solener.2011.08.028

141. Malik N, Date A, Leblanc J, et al. Monitoring and maintaining the water clarity of salinity gradient solar ponds. Solar Energy 2011; 85(11): 2987–2996. doi: 10.1016/j.solener.2011.08.040

142. Atiz A, Bozkurt I, Karakilcik M, Dincer I. Investigation of turbidity effect on exergetic performance of solar ponds. Energy Conversion and Management 2014; 87: 351–358. doi: 10.1016/j.enconman.2014.07.016

143. Li XY, Kanayama K, Baba H. Spectral calculation of the thermal performance of a solar pond and comparison of the results with experiments. Renewable Energy 2000; 20(4): 371–387. doi: 10.1016/S0960-1481(99)00119-6

144. Li XY, Kanayama K, Baba H, Maeda Y. Experimental study about erosion in salt gradient solar pond. Renewable Energy 2001; 23(2): 207–217. doi: 10.1016/S0960-1481(00)00174-9

145. Silva G, Almanza R. Use of clays as liners in solar ponds. Solar Energy 2009; 83(6): 905–919. doi: 10.1016/j.solener.2008.12.008

146. Jaefarzadeh MR, Akbarzadeh AA. Towards the design of low maintenance salinity gradient solar ponds. Solar Energy 2002; 73(5): 375–384. doi: 10.1016/S0038-092X(02)00114-7

147. Bezir NÇ, Dönmez O, Kayali R, Özek N. Numerical and experimental analysis of a salt gradient solar pond performance with or without reflective covered surface. Applied Energy 2008; 85(11): 1102–1112. doi: 10.1016/j.apenergy.2008.02.015

148. Ruskowitz JA, Suárez F, Tyler SW, Childress AE. Evaporation suppression and solar energy collection in a salt-gradient solar pond. Solar Energy 2014; 99: 36–46. doi: 10.1016/j.solener.2013.10.035

149. Hawlader MNA. Performance characteristics of solar ponds operating at different latitudes. Applied Energy 1984; 17(2): 97–115. doi: 10.1016/0306-2619(84)90014-X

150. Sabetta F, Pacetti M, Principi P. An internal heat extraction system for solar ponds. Solar Energy 1985; 34(4–5): 297–302. doi: 10.1016/0038-092X(85)90042-8

151. Jaefarzadeh MR. Heat extraction from a salinity-gradient solar pond using in pond heat exchanger. Applied Thermal Engineering 2006; 26(16): 1858–1865. doi: 10.1016/j.applthermaleng.2006.01.022

152. Dah MMO, Ouni M, Guizani A, Belghith A. The influence of the heat extraction mode on the performance and stability of a mini solar pond. Applied Energy 2010; 87(10): 3005–3010. doi: 10.1016/j.apenergy.2010.04.004

153. Leblanc J, Akbarzadeh A, Andrews J, et al. Heat extraction methods from salinity-gradient solar ponds and introduction of a novel system of heat extraction for improved efficiency. Solar Energy 2011; 85(12): 3103–3142. doi: 10.1016/j.solener.2010.06.005

154. Singh R, Tundee S, Akbarzadeh A. Electric power generation from solar pond using combined thermosyphon and thermoelectric modules. Solar Energy 2011; 85(2): 371–378. doi: 10.1016/j.solener.2010.11.012

155. Abdullah AA, Lindsay KA, AbdelGawad AF. Construction of sustainable heat extraction system and a new scheme of temperature measurement in an experimental solar pond for performance enhancement. Solar Energy 2016; 130: 10–24. doi: 10.1016/j.solener.2016.02.005

156. Abdullah AA, Fallatah HM, Lindsay KA, Oreijah MM. Measurements of the performance of the experimental salt-gradient solar pond at Makkah one year after commissioning. Solar Energy 2017; 150: 212–219. doi: 10.1016/j.solener.2017.04.040

157. Ziapour BM, Shokrnia M, Naseri M. Comparatively study between single-phase and two-phase modes of energy extraction in a salinity-gradient solar pond power plant. Energy 2016; 111: 126–136. doi: 10.1016/j.energy.2016.05.114

158. Ziapour BM, Saadat M, Palideh V, Afzal S. Power generation enhancement in a salinity-gradient solar pond power plant using thermoelectric generator. Energy Conversion and Management 2017; 136: 283–293. doi: 10.1016/j.enconman.2017.01.031

159. Khodabandeh E, Safaei MR, Akbari S, et al. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: Geometric study. Renewable Energy 2018; 122: 1–16. doi: 10.1016/j.renene.2018.01.023

160. Verma S, Das R. Effect of ground heat extraction on stability and thermal performance of solar ponds considering imperfect heat transfer. Solar Energy 2020; 198: 596–604. doi: 10.1016/j.solener.2020.01.085

161. Ibrahim SMA, El-Reidy MK. Performance of a mobile covered shallow solar pond. Renewable Energy 1995; 6(2): 89–100. doi: 10.1016/0960-1481(94)00069-I

162. Arulanantham M, Avanti P, Kaushik ND. Solar pond with honeycomb surface insulation system. Renewable Energy 1997; 12(4): 435–443.

163. El-Sebaii AA. Thermal performance of a shallow solar-pond integrated with a baffle plate. Applied Energy 2005; 81(1): 33–53. doi: 10.1016/j.apenergy.2004.05.003

164. Tundee S, Srihajong N, Charmongkolpradit S. Electric power generation from solar pond using combination of thermosyphon and thermoelectric modules. Energy Procedia 2014; 48: 453–463. doi: 10.1016/j.egypro.2014.02.054

165. Bozkurt I, Karakilcik M. Exergy analysis of a solar pond integrated with solar collector. Solar Energy 2015; 112: 282–289. doi: 10.1016/j.solener.2014.12.009

166. Jubran BA, Badran AA, Hamdan MA. Solar energy augmentation of a carnalite solar pond using inverted trickle collectors. Energy Conversion and Management 1997; 38(3): 245–252. doi: 10.1016/S0196-8904(96)00046-5

167. Rivera W, Cardoso MJ, Romero RJ. Single-stage and advanced absorption heat transformers operating with lithium bromide mixtures used to increase solar pond’s temperature Solar Energy Materials and Solar Cells 2001; 70(3): 321–333. doi: 10.1016/S0927-0248(01)00074-5

168. Aboul-Enein S, El-Sebaii AA, Ramadan MRI, Khallaf AM. Parametric study of a shallow solar-pond under the batch mode of heat extraction. Applied Energy 2004; 78(2): 159–177. doi: 10.1016/j.apenergy.2003.06.001

169. Akbarzadeh A, Johnson P, Singh R. Examining potential benefits of combining a chimney with a salinity gradient solar pond for production of power in salt affected areas. Solar Energy 2009; 83(8): 1345–1359. doi: 10.1016/j.solener.2009.02.010

170. Bozkurt I, Karakilcik M. The daily performance of a solar pond integrated with solar collectors. Solar Energy 2012; 86(5): 1611–1620. doi: 10.1016/j.solener.2012.02.025

171. Al-Nimr MA, Al-Dafaie AMA. Using nanofluids in enhancing the performance of a novel two-layer solar pond. Energy 2014; 68: 318–326. doi: 10.1016/j.energy.2014.03.023

172. Wang H, Zou J, Cortina JL, Kizito J. Experimental and theoretical study on temperature distribution of adding coal cinder to bottom of salt gradient solar pond. Solar Energy 2014; 110: 756–767. doi: 10.1016/j.solener.2014.10.018

173. Wang H, Yu X, Shen F, Zhang L. A Laboratory experimental study on effect of porous medium on salt diffusion of salt gradient solar pond. Solar Energy 2015; 122: 630–639. doi: 10.1016/j.solener.2015.09.005

174. Assari MR, Tabrizi HB, Nejad AK, Parvar M. Experimental investigation of heat absorption of different solar pond shapes covered with glazing plastic. Solar Energy 2015; 122: 569–578. doi: 10.1016/j.solener.2015.09.013

175. Assari MR, Tabrizi HB, Parvar M, et al. Experiment and optimization of mixed medium effect on small-scale salt gradient solar pond. Solar Energy 2017; 151: 102–109. doi: 10.1016/j.solener.2017.04.042

176. Ganguly S, Jain R, Date A, Akbarzadeh A. On the addition of heat to solar pond from external sources. Solar Energy 2017; 144: 111–116. doi: 10.1016/j.solener.2017.01.012

177. Ganguly S, Date A, Akbarzadeh A. Investigation of thermal performance of a solar pond with external heat addition. Journal of Solar Energy Engineering 2018; 140(2): 024501. doi: 10.1115/1.4038788

178. Ganguly S, Date A, Akbarzadeh A. On increasing the thermal mass of a salinity gradient solar pond with external heat addition: A transient study. Energy 2019; 168: 43–56. doi: 10.1016/j.energy.2018.11.090

179. Ali MM, Ahmed OK, Abbas EF. Performance of solar pond integrated with photovoltaic/thermal collectors. Energy Reports 2020; 6: 3200–3211. doi: 10.1016/j.egyr.2020.11.037

180. Simic M, George J. Design of a system to monitor and control solar pond: A review. Energy Procedia 2017; 110: 322–327. doi: 10.1016/j.egypro.2017.03.147

181. Edesess M, Benson D, Henderson J, Jayadev TS. Economic and Performance Comparisons of Salty and Saltless Solar Ponds. National Renewable Energy Lab; 1979.

182. Szacsvay T, Hofer-Noser P, Posnansky M. Technical and economic aspects of small-scale solar-pond-powered seawater desalination systems. Desalination 1999; 122(2–3): 185–193. doi: 10.1016/S0011-9164(99)00040-5

183. Agha KR. The thermal characteristics and economic analysis of a solar pond coupled low temperature multi stage desalination plant. Solar Energy 2009; 83(4): 501–510. doi: 10.1016/j.solener.2008.09.008

184. Parsa SM, Majidniya M, Alawee WH, et al. Thermodynamic, economic, and sensitivity analysis of salt gradient solar pond (SGSP) integrated with a low-temperature multi effect desalination (MED): Case study, Iran. Sustainable Energy Technologies and Assessments 2021; 47: 101478. doi: 10.1016/j.seta.2021.101478

185. Cao Y, Dhahad HA, Parikhani T, et al. Thermo-economic evaluation of a combined Kalina cycle and humidification-dehumidification (HDH) desalination system integrated with thermoelectric generator and solar pond. International Journal of Heat and Mass Transfer 2021; 168: 120844. doi: 10.1016/j.ijheatmasstransfer.2020.120844

186. Garrido F, Vergara J. Design of solar pond for water preheating used in the copper cathodes washing at a mining operation at Sierra Gorda, Chile. Journal of Renewable and Sustainable Energy 2013; 5(4): 043103. doi: 10.1063/1.4812652

187. El-Sebaii AA, Ramadan MRI, Aboul-Enein S, Khallaf AM. History of the solar ponds: A review study. Renewable and Sustainable Energy Reviews 2011; 15(6): 3319–3325. doi: 10.1016/j.rser.2011.04.008

188. Rahaoui K, Ding LC, Tan LP, et al. Sustainable membrane distillation coupled with solar pond. Energy Procedia 2017; 110: 414–419. doi: 10.1016/j.egypro.2017.03.162

189. Liu X, Cao G, Shen S, et al. The research on thermal and economic performance of solar desalination system with salinity-gradient solar pond. Desalination and Water Treatment 2013; 51(19–21): 3735–3742. doi: 10.1080/19443994.2013.795021

190. Garman MA, Muntasserb MA. Sizing and thermal study of salinity gradient solar ponds connecting with the MED desalination unit. Desalination 2008; 222(1–3): 689–695. doi: 10.1016/j.desal.2007.02.074

191. Saleh A, Qudeiri JA, Al-Nimr MA. Performance investigation of a salt gradient solar pond coupled with desalination facility near the Dead Sea. Energy 2011; 36(2): 922–931. doi: 10.1016/j.energy.2010.12.018

192. Salata F, Coppi M. A first approach study on the desalination of sea water using heat transformers powered by solar ponds. Applied Energy 2014; 136: 611–618. doi: 10.1016/j.apenergy.2014.09.079

193. Suárez F, Ruskowitz JA, Tyler SW, Childress AE. Renewable water: Direct contact membrane distillation coupled with solar ponds. Applied Energy 2015; 158: 532–539. doi: 10.1016/j.apenergy.2015.08.110

194. Nakoa K, Rahaoui K, Date A, Akbarzadeh A. An experimental review on coupling of solar pond with membrane distillation. Solar Energy 2015; 119: 319–331. doi: 10.1016/j.solener.2015.06.010

195. Nakoa K, Rahaoui K, Date A, Akbarzadeh A. Sustainable zero liquid discharge desalination (SZLDD). Solar Energy 2016; 135: 337–347. doi: 10.1016/j.solener.2016.05.047

196. Shah SA, Short TH, Fynn RP. Modeling and testing a salt gradient solar pond in northeast Ohio. Solar Energy 1981; 27(5): 393–401. doi: 10.1016/0038-092X(81)90004-9

197. Brown ST, Cambel AB. Net energy analysis of residential solar ponds. Energy 1982; 7(5): 457–463. doi: 10.1016/0360-5442(82)90055-X

198. Tsilingiris PT. Large scale solar cooling design using salt gradient solar ponds. Renewable Energy 1991; 1(2): 309–314. doi: 10.1016/0960-1481(91)90091-3

199. Tsilingiris PT. The absorption chiller in large scale solar pond cooling design with condenser heat rejection in the upper convecting zone. Solar Energy 1992; 49(1): 19–27. doi: 10.1016/0038-092X(92)90122-Q

200. Badran AA, Jubran BA, Qasem EM, Hamdan MA. Numerical Modeling of a Salt Gradient Solar Pond Greenhouse Heating System. In: Proceedings of the First Jordanian Mechanical Engineering Conference; 25–28 June 1995; Amman, Jordan.

201. Jabri JI, Rasheed AM. Investigation of solar pond capability in providing space heating for residential buildings in Baghdad/Iraq. In: Proceedings of the Second Jordanian International Conference for Mechanical Engineering (JIMEC 1997); 1–5 June 1997; Amman, Jordan.

202. Badran AA, Hamdan MA. Comparative study for under-floor heating using solar collectors or solar ponds. Applied Energy 2004; 77(1): 107–117. doi: 10.1016/S0306-2619(03)00012-6

203. Kanan S, Dewsbury J, Lane-Serff GF. Simulation of solar air-conditioning system with salinity gradient solar pond. Energy Procedia 2015; 79: 746–751. doi: 10.1016/j.egypro.2015.11.561

204. Salata F, Tarsitano A, Golasi I, et al. Application of absorption systems powered by solar ponds in warm climates for the air conditioning in residential buildings. Energies 2016; 9(10): 821. doi: 10.3390/en9100821

205. Saleh A. Modeling and performance analysis of a solar pond integrated with an absorption cooling system. Energies 2022; 15(22): 8327. doi: 10.3390/en15228327

206. Nie Z, Bu L, Zheng M, Huang W. Experimental study of natural brine solar ponds in Tibet. Solar Energy 2011; 85(7): 1537–1542. doi: 10.1016/j.solener.2011.04.011

207. Khalil RAH, Jubran BA, Faqir NM. Optimization of solar pond electrical power generation system. Energy Conversion and Management 1997; 38(8): 787–798. doi: 10.1016/S0196-8904(96)00086-6

208. Singh B, Gomes J, Tan L, et al. Small scale power generation using low grade heat from solar pond. Procedia Engineering 2012; 49: 50–56. doi: 10.1016/j.proeng.2012.10.111

209. Ding LC, Akbarzadeh A, Date A. Transient model to predict the performance of thermoelectric generators coupled with solar pond. Energy 2016; 103: 271–289. doi: 10.1016/j.energy.2016.02.124

210. Ding LC, Akbarzadeh A, Singh B, Remeli MF. Feasibility of electrical power generation using thermoelectric modules via solar pond heat extraction. Energy Conversion and Management 2017; 135: 74–83. doi: 10.1016/j.enconman.2016.12.069

211. Ding LC, Akbarzadeh A, Date A. Electric power generation via plate type power generation unit from solar pond using thermoelectric cells. Applied Energy 2016; 183: 61–76. doi: 10.1016/j.apenergy.2016.08.161

212. Kumar A, Singh K, Verma S, Das R. Inverse prediction and optimization analysis of a solar pond powering a thermoelectric generator. Solar Energy 2018; 169: 658–672. doi: 10.1016/j.solener.2018.05.035

213. Kumar A, Kishore VVN. Construction and operational experience of a 6000 m2 solar pond at Kutch, India. Solar Energy 1999; 65(4): 237–249. doi: 10.1016/S0038-092X(98)00134-0

214. Andrews J, Akbarzadeh A. Solar Pond Project: Stage 1: Solar Ponds for Industrial Process Heating, End of Project Report for Project Funded Under Renewable Energy Commercialization Program. Australian Greenhouse Office; 2002.

215. Zhang G, Wu Z, Cheng F, Min Z, Lee DJ. Thermophilic digestion of waste-activated sludge coupled with solar pond. Renewable Energy 2016; 98: 142–147. doi: 10.1016/j.renene.2016.03.052

216. Karakilcik M, Erden M, Cilogulları M, Dincer I. Investigation of hydrogen production performance of a reactor assisted by a solar pond via photoelectrochemical process. International Journal of Hydrogen Energy 2018; 43(23): 10549–10554. doi: 10.1016/j.ijhydene.2018.01.031




DOI: https://doi.org/10.24294/tse.v6i2.2568

Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by-nc/4.0/

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.