Computer-assisted thermochemical study for biodiesel production

Jeffrey Leon-Pulido, William Steve Fajardo-Moreno, Mary Judith Arias-Tapia, Angel Dario Gonzalez-Delgado, Viktor Oswaldo Cárdenas-Concha, José Roberto Nunhez

Article ID: 1541
Vol 5, Issue 2, 2022

VIEWS - 2873 (Abstract)

Abstract


The importance of improving industrial transformation processes for more efficient ones is part of the current challenges. Specifically, the development of more efficient processes in the production of biofuels, where the reaction and separation processes can be intensified, is of great interest to reduce the energy consumption associated with the process. In the case of Biodiesel, the process is defined by a chemical reaction and by the components associated to the process, where the thermochemical study seeks to develop calculations for the subsequent understanding of the reaction and purification process. Thus, the analysis of the mixture of the components using the process simulator Aspen Plus V9® unravels the thermochemical study. The UNIFAC-DMD thermodynamic method was used to estimate the binary equilibrium parameters of the reagents using the simulator. The analyzed aspects present the behavior of the components in different temperature conditions, the azeotropic behavior and the determined thermochemical conditions.


Keywords


UNIFAC-DMD; Thermochemistry; Equilibrium; Simulation; Biodiesel; Biodiesel.

Full Text:

pdf


References


1. Gebremariam SN, Marchetti JM. Economics of biodiesel production. Energy Conversion and Management 2018; 168: 7484.

2. Meng K, Wu Y, Lin Q, et al. Microexplosion and ignition of biodiesel/ethanol blends droplets in oxygenated hot co-flow. Journal of the Energy Institute 2019; 92(5): 15271536.

3. Chen J, Li J, Dong W, et al. The potential of microalgae in biodiesel production. Renewable and Sustainable Energy Reviews 2018; 90: 336346.

4. Zhang Y, Huang R, Huang Y, et al. Experimental study on combustion characteristics of an n-butanolbiodiesel droplet. Energy 2018; 160: 490499.

5. Ambat I, Srivastava V, Sillanpää M. Recent advancement in biodiesel production methodologies using various feedstock: A review. Renewable and Sustainable Energy Review S 2018; 90: 356369.

6. Baldea M, Edgar TF. Dynamic process intensification. Current Opinion in Chemical Engineering 2018; 22: 4853.

7. Selaimia R, Beghiel A, Oumeddour R. The synthesis of biodiesel from vegetable oil. Procedia-Social and Behavioral Sciences 2015; 195: 16331638.

8. Deng Y, Hu X, Cheng L, et al. Zirconocene-catalysed biodiesel synthesis from vegetable oil with high free fatty acid contents. Journal of Organometallic Chemistry 2018; 870: 116120.

9. Humphrey JL, Seibert AF, Koort RA. Separation technologies: Advances and priorities. United States of America: Humphrey (JL) and Associates; 1991.

10. Wright RO (inventor). Fractionation apparatus. US Patent. 2,471,134. 1949 May 24.

11. Romagnoli ÉS, Borsato D, Silva LRC, et al. Kinetic parameters of the oxidation reaction of commercial biodiesel with natural antioxidant additives. Industrial Crops and Products 2018; 125: 5964.

12. Xuan J, Leung MKH, Leung YCD, et al. A review of biomass-derived fuel processors for fuel cell systems. Renewable and Sustainable Energy Reviews 2008; 13(7-8): 113.

13. Demirbas A. Progress and recent trends in biodiesel fuels. Energy Conversion and Management 2009; 50(1): 1434.

14. Gmehling J, Jiding L, Schriller M. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. I & EC Research 1993; 32(1): 17893.

15. Gmehling J, Li J, Schiller M. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Industrial & Engineering Chemistry Research 1993; 32(1): 178193.

16. Wittig R, Lohmann J, Gmehling J. Prediction of phase equilibria and excess properties for systems with sulfones. Aiche Journal 2003; 49(2): 530537.

17. Jakob A, Grensemann H, Lohmann J, et al. Further development of modified UNIFAC (dortmund): Revision and Extension 5. Industrial & Engineering Chemistry Research 2006; 45(23): 79247933.

18. Narvaez PC, Rincon SM, Sanchez FJ. Kinetics of palm oil methanolysis. Journal of American Oil Chemical Society 2007; 84: 971977.

19. Fredenslud A, Gmehling J, Rasmussen P. Vapor-liquid equilibria using UNIFAC. A group contribution model. The Netherlands: Elsevier Science Publishers B.V; 1977.

20. Pulido JL, Maciel MRW, Filho RM. Nuevas Perspectivas en Procesos de Separación: Simulación Columna de Destilación con Integración Interna de Calor (CDIIC) (Spanish) [New perspectives in separation processes: Distillation column simulation with internal heat integration (CDIIC)]. Revista ION 2010; 23(1): 712.

21. Pulido JL, Cespedes IDS, Delgado ADG, et al. Estudo Termoquímico na Produção de Aditivo de Gasolina Tert-Amyl-Methyl-Ether (TAME) (Portuguese) [Thermochemical study in the production of Tert-Amyl-Methyl-Ether (TAME) Gasoline Additive]. Revita ION 2019; 32(1): 8795.




DOI: https://doi.org/10.24294/tse.v5i2.1541

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jeffrey Leon-Pulido, William Steve Fajardo-Moreno, Mary Judith Arias-Tapia, Angel Dario Gonzalez-Delgado, Viktor Oswaldo Cárdenas-Concha, José Roberto Nunhez

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.