Experimental designs applied to a direct expansion heat pump with solar energy

Francis B. Gorozabel-Chata, Tania Carbonell-Morales

Article ID: 1540
Vol 5, Issue 2, 2022

VIEWS - 220 (Abstract) 120 (PDF)

Abstract


The direct expansion heat pump with solar energy is an energy conversion system used for water heating applications, air heating for air conditioning buildings, water desalination, solar drying, among others. This paper reviews the main designs and analysis of experiments in order to identify the fundamental objectives of any experiment which may be: to determine the factors that have a significant influence, to obtain a mathematical model and/or to optimize performance. To achieve this task, the basic and advanced configuration of this system is described in detail in order to characterize its thermal performance by means of energy analysis and/or exergy-based analysis. This review identifies possible lines of research in the area of design and analysis of experiments to develop this water heating technology for industrial applications.


Keywords


Heat Pump; Solar Energy; Direct Expansion; Exoergic Analysis; Design of Experiments

Full Text:

PDF


References


1. Omojaro P, Breitkopf C. Direct expansion solar assisted heat pumps: A review of applications and recent research. Renewable and Sustainable Energy Reviews 2013; 22: 33–45.

2. Chaturvedi SK, Gagrani VD, Abdel-Salam TM. Solar-assisted heat pump—A sustainable system for low-temperature water heating applications. Energy Conversion and Management 2014; 77: 550–557.

3. Gorozabel Chata FB, Carbonell Morales T. Actualidad y perspectivas de una bomba de calor de expansión directa con energía solar (Spanish) [Current situation and prospect of solar direct expansion heat pump]. Ingeniería Mecánica 2016; 19(1): 49–58.

4. Raisul Islam M, Sumathy K, Ullah Khan S. Solar water heating systems and their market trends. Renewable and Sustainable Energy Reviews 2013; 17: 1–25.

5. Buker Mahmut S, Riffat SB. Solar assisted heat pump systems for low temperature water heating applications: A systematic review. Renewable and Sustainable Energy Reviews 2016; 3(55): 399–413.

6. Amin ZM, Hawlader MNA, Shaochum Y. Analysis and modeling of solar evaporator-collector. IIUM Engineering 2015; 16(2): 13–29.

7. Gorozabel Chata FB, Carbonell Morales T. Análisis del Coeficiente de Desempeño de una Bomba de Calor de Expansión Directa con Energía Solar (Spanish) [Analysis of the performance coefficient of a direct expansion heat pump with solar energy]. In: XVIII Convención Científica de Ingeniería y Arquitectura. Havana: Universidad Tecnológica de La Habana; 2016.

8. Molinaroli L, Joppolo CM, De Antonellis S. Numerical analysis of the use of R-407C in direct expansion solar assisted heat pump. Energy Procedia 2014; 48: 938–945.

9. Kong X, Li Y, Lin L, et al. Modeling evaluation of a direct-expansion solar-assisted heat pump water heater using R410A. International Journal of Refrigeration 2017; 76: 136–146.

10. Amin ZM, Hawlader MNA. Analysis of solar desalination system using heat pump. Renewable Energy 2015; 74: 116–123.

11. Starke AR, Cardemil JM, Escobar R, et al. Thermal analysis of solar-assisted heat pumps for swimming pool heating. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2017; 39(6): 2289–2306.

12. Scarpa F, Tagliafico LA, Bianco V. A novel steady-state approach for the analysis of gas-burner supplemented direct expansion solar assisted heat pumps. Solar Energy 2013; 96: 227–238.

13. Tagliafico LA, Scarpa F, Valsuani F. Direct expansion solar assisted heat pumps—A clean steady state approach for overall performance analysis. Applied Thermal Engineering 2014; 66(1-2): 216–226.

14. Chaturvedi SK, Abdel-Salam TM, Sreedharan SS, et al. Two-stage direct expansion solar-assisted heat pump for high temperature applications. Applied Thermal Engineering 2009; 29(10): 2093–2099.

15. Tsatsaronis G, Morosuk T. Understanding and improving energy conversion systems with the aid of exergy-based methods. International Journal of Exergy 2012; 11(4): 518–542.

16. Lazzaretto A, Tsatsaronis G. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy 2006; 31(8-9): 1257–1289.

17. Meyer L, Tsatsaronis G, Buchgeister J, et al. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy International Journal 2009; 34: 75–89.

18. Tsatsaronis G. Recent developments in exergy analysis and exergoeconomics. Exergy 2008; 5(5-6): 489–499.

19. Gungor A, Erbay Z, Hepbasli A, et al. Splitting the exergy destruction into avoidable and unavoidable parts of a gas engine heat pump (GEHP) for food drying processes based on experimental values. Energy Conversion and Management 2013; 73: 309–316.

20. Gungor A, Tsatsaronis G, Gunerhan H, et al. Advanced exergoeconomic analysis of a gas engine heat pump (GEHP) for food drying processes. Energy Conversion and Management 2015; 91: 132–139.

21. Montgomery DC. Design and analysis of experiments. 8th ed. New Jersey: John Wiley & Sons; 2013.

22. Kush EA. Performance of heat pumps at elevated evaporating temperatures with applications to solar input. Journal of Solar Energy 1980; 102: 203–210.

23. Chaturvedi SK, Shen JY. Thermal performance of a direct expansion solar-assisted heat pump. Solar Energy 1984; 33(2): 155–162.

24. Chaturvedi SK, Chen DT, Kheireddine A. Thermal performance of a variable capacity direct expansion solar-assisted heat pump. Energy Conversion and Management 1998; 39(3-4): 181–191.

25. Ito S, Miura N, Wang K. Performance of a heat pump using direct expansion solar collectors. Solar Energy 1999; 65(3): 189–196.

26. Hawlader MNA, Chou SK, Ullah MZ. The performance of solar assisted heat pump water heating system. Applied Thermal Engineering 2001; 21(10): 1049–1065.

27. Kuang YH, Sumathy K, Wang RZ. Study on a direct-expansion solar-assisted heat pump water heating system. International Journal of Energy Research 2003; 27(5): 531–548.

28. Soldo V, Curko T, Balem I. Thermal Performance of a direct expansion solar assisted heat pump. International Refrigeration and Air Conditioning Conference; 2004 Jul 12-15; Indiana. 2004.

29. Li Y, Wang R, Wu J, et al. Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater. Applied Thermal Engineering 2007; 27(17/18): 2858–2868.

30. Mohanraj M, Jayaraj S, Muraleedharan C. Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks. Applied Energy 2009; 86(9): 1442–1449.

31. Mohanraj M, Jayaraj S, Muraleedharan C. A comparison of the performance of a direct expansion solar assisted heat pump working with R22 and a mixture of R407C-liquefied petroleum gas. Journal of Power and Energy 2009; 223(7): 821–833.

32. Fernández-Seara J, Piñeiro C, Alberto Dopazo J, et al. Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions. Energy Conversion and Management 2012; 59: 1–8.

33. Moreno-Rodríguez A, González-Gil A, Izquierdo M, et al. Theoretical model and experimental validation of a direct-expansion solar assisted heat pump for domestic hot water applications. Energy 2012; 45(1): 704–715.

34. Moreno-Rodríguez A, García-Hernando N, González-Gil A, et al. Experimental validation of a theoretical model for a direct-expansion solar-assisted heat pump applied to heating. Energy 2013; 60: 242–253.

35. Zhu M, Xie H, Zhang B, et al. The characteristics of the evaporator/evaporator for direct expansion solar assisted heat pump system. Journal of Power and Energy Engineering 2013; 1: 73–76.

36. Garg R, Kumar A, Kapoor N. An experimental thermal performance analysis & comparison of a direct expansion solar assisted heat pump water heater with unglazed and single glazed collector. IJRMET 2014; 4(2): 7–10.

37. Sun X, Wu J, Dai Y, et al. Experimental study on roll-bond collector/evaporator with optimized-channel used in direct expansion solar assisted heat pump water heating system. Applied Thermal Engineering 2014; 66(1-2): 571–579.

38. Sun X, Dai Y, Novakovic V, et al. Performance comparison of direct expansion solar-assisted heat pump and conventional air source heat pump for domestic hot water. Energy Procedia 2015; 70: 394–401.

39. Torres-Reyes E, Pico Núñez M, Cervantes JG. Exergy analysis and optimization of a solar assisted heat pump. Energy 1998; 23: 337–344.

40. Torres-Reyes E, Cervantes JG. Optimal performance of an irreversible solar assisted heat pump. Exergy 2001; 1: 107–111.

41. Cervantes JG, Torres-Reyes E. Experiments on a solar-assisted heat pump and an exergy analysis of the system. Applied Thermal Engineering 2002; 22: 1289–1297.

42. Li Y, Wang R, Wu J, et al. Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater. Energy 2007; 32(8): 1361–1374.

43. Kara O, Ulgen K, Hepbasli A. Exergetic assessment of direct-expansion solar-assisted heat pump systems: Review and modeling. Renewable and Sustainable Energy Reviews 2008; 12(5): 1383-–1401.

44. Mohanraj M, Jayaraj S, Muraleedharan C. Exergy analysis of direct expansion solar-assisted heat pumps using artificial neural networks. International Journal of Energy Research 2009; 33(11): 1005–1020.

45. Mohanraj M, Jayaraj S, Muraleedharan C. Exergy assessment of a direct expansion solar-assisted heat pump working with R22 and R407C/LPG mixture. International Journal of Green Energy 2010; 7(1): 65–83.

46. Yousefi M, Moradali M. Thermodynamic analysis of a direct expansion solar assisted heat pump water heater. Journal of Energy in Southern Africa 2015; 26: 110–117.

47. Kumar KV, Paradeshi L, Srinivas M, et al. Parametric studies of a simple direct expansion solar assisted heat pump using ANN and GA. Energy Procedia 2016; 90: 625–634.

48. Paradeshi L, Srinivas M, Jayaraj S. Parametric studies of a simple direct expansion solar assisted heat pump operating in a hot and humid environment. Energy Procedia 2016; 90: 635–644.

49. Malali PD, Chaturvedi SK, Abdel-Salam TM. An approximate method for prediction of thermal performance of direct expansion-solar assisted heat pump (DX-SAHP) systems for water heating applications. Energy Conversion and Management 2016; 127: 416–423.

50. Holman JP. Experimental methods for engineers. 8th ed. New York: Mc Graw Hill; 2012.




DOI: https://doi.org/10.24294/tse.v5i2.1540

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.