Experiment and characterization of dynamic thermal storage characteristics of porous media thermal storage system
Vol 4, Issue 1, 2021
VIEWS - 640 (Abstract) 415 (pdf)
Abstract
Keywords
Full Text:
pdfReferences
1. Cheng L, Cen K, Zhou S, et al. Duokong jiezhi ranshao lilun yu jishu (Chinese) [Combustion theory of porous media and technology]. Beijing: Chemical Industry Press; 2013. p. 199.
2. Blasiak W, Yang W, Rafidi N. Physical properties of a LPG flame with high-temperature air on a regenerative burner. Combustion and Flame 2004; 136(4): 567–569.
3. Nishimura M, Suzuki T, Nakanishi R, et al. Low-NOx combustion under high preheated air temperature condition in an industrial furnace. Energy Conversion and Management 1997; 38 (10–13): 1353–1363.
4. Hanamura K, Echigo R, Zhdanok SA. Superadiabatic combustion in a porous-medium. International Journal of Heat and Mass Transfer 1993; 36(13): 3201–3209.
5. Mitra HK. Tinkering-to-grip with problems, industrial. Transactions of the Indian Ceramic Society 1982; 41(5): 115–124.
6. Jia C, Xie Z, Sun J, et al. Fengwo taoci xureti de yanjiu xianzhuang (Chinese) [Research on honeycomb ceramic heat accumulator Research on the Status quo]. Refractory Materials 2009; 43(1): 64–68.
7. Yuan W. Experimental study on heat transfer and resistance characteristics of honeycomb heat accumulator [MSc thesis]. Hangzhou: Zhejiang University; 2013.
8. Zhang Z, Liu Y, Gao Z, et al. Simulation study of flow and heat transfer in ceramic regenerator. Internal Combustion Engine & Powerplant 2010; (2): 18–22.
9. Meng X. Research of Ceramics heat regenerator’s heat transfer [MSc thesis]. Wuhan: Wuhan University of Technology; 2012.
10. Srikanth O, Khivsara SD, Aswathi R, et al. Numerical and experimental evaluation of ceramic honeycombs for thermal energy storage. Transactions-Indian Ceramic Society 2017; 76(2): 1–6.
11. Wen T, Tian J, Lu TJ, et al. Forced convection in metallic honeycomb structures. International Journal of Heat and Mass Transfer 2006; 49(19–20): 3313–3324.
12. Luo Z, Wang C, Xiao G, et al. Simulation and experimental study on honeycomb-ceramic thermal energy storage for solar thermal systems. Ap-plied Thermal Engineering 2014; 73(1): 622–628.
13. Duprat F, Lopez GL. Comparison of performance of heat regenerators: Relation between heat transfer efficiency and pressure drop. International Journal of Energy Research 2001; 25(4): 319–329.
14. Rafidi N, Blasiak W. Thermal performance analysis on a two composite material honeycomb heat regenerators used for HiTAC burners. Applied Thermal Engineering 2005; 25(17–18): 2966–2982.
15. Noh DS, Hong SK, Ryou HS, et al. An experimental and numerical study on thermal performance of a regenerator system with ceramic hon-eycomb. KSME International Journal 2001; 15(3): 357–365.
16. Kang K, Hong S, Noh D, et al. Heat transfer characteristics of a ceramic honeycomb regenerator for an oxy-fuel combustion furnace. Applied Thermal Engineering 2014; 70(1): 494–500.
17. Hong SK, Noh DS, Lee EK. Improvement in thermal efficiency of regenerator system by using oxy-fuel combustion. Applied Thermal Engineering 2015; 87: 648–654.
18. You Y, Huang H, Shao G, et al. A three-dimensional numerical model of unsteady flow and heat transfer in ceramic honeycomb regenerator. Applied Thermal Engineering 2016; 108: 1243–1250.
19. Wang J, Qi H, Li Y, et al. Experimental study on heat transfer performance of honeycomb heat regenerator. Journal of Engineering Thermophysics 2003; 24(5): 897–899.
20. Lu TJ. Heat transfer efficiency of metal honeycombs. International Journal of Heat and Mass Transfer 1999; 42(11): 2031–2040.
21. Liu H, Yu QN, Zhang ZC, et al. Two-equation method for heat transfer efficiency in metal honeycombs: An analytical solution. International Journal of Heat and Mass Transfer 2016; 97: 201–210.
22. Liu S, Zhang Y, Liu P. New analytical model for heat transfer efficiency of metallic honeycomb structures. International Journal of Heat and Mass Transfer 2008; 51(25–26): 6254–6258.
23. Gu S, Lu TJ, Evans AG. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. International Journal of Heat and Mass Transfer 2001; 44(11): 2163–2175.
24. Assunta A, Buonomo B, Manca O, et al. Thermal energy storages analysis for high temperature in air solar systems. Applied Thermal Engineering 2014; 71(1): 130–141.
25. Cadavid Y, Amell A, Cadavid F. Heat transfer model in recuperative compact heat exchanger type honeycomb: Experimental and numerical analysis. Applied Thermal Engineering 2013; 57(1–2): 50–56.
26. Yuan F, Wang H, Zhou P, et al. Heat transfer performances of honeycomb regenerators with square or hexagon cell opening. Applied Thermal Engineering 2017; 125: 790–798.
27. Zheng Z, Qiu X, Qi F, et al. Experimental study of heat transfer and resistance characteristics on honeycomb ceramic regenerator. Petro-Chemical Equipment 2013; 42(1): 9–13.
28. Miao J, Cheng L, Zhang J, et al. Experimental study on pressure drop profiles of one-way flow and reciprocal flow in honeycomb regenerator system. Energy Engineering 2013(1): 12–16.
29. Gao Y, Yong H, Xu Z, et al. Thermal state exper-iment research on the heat transfer and resistance characters of honeycomb ceramic regenerator. Energy for Metallurgical Industry 2008; 27(5): 25–27.
30. Liu YQ, Chen XC, Liu RX. Numerical simulation of heat transfer and gas flow characteristics in honeycomb ceramics. Advanced Materials Re-search 2011; 156–157: 984–987.
DOI: https://doi.org/10.24294/tse.v4i1.1512
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Ke Yan, Leming Cheng, Weiguo Zhang, Zhengzhan Shi, Kunzan Qiu
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.