Wolfram Mathematica, exact solutions for heat transfer methods applied to extrusion processes

Antonio-Jiménez Ramos, Juan Francisco-Puertas Fernández, Margarita J.-Lapido Rodríguez, Julio Rafael-Gómez Sarduy, Yulier-Jiménez Santana, Fidel-Sosa Núñez

Article ID: 1508
Vol 4, Issue 1, 2021

VIEWS - 456 (Abstract) 364 (pdf)

Abstract


Computer programs for the solution of everyday problems are very common because of the speed with which results can be obtained, which by traditional methods would be very laborious and especially those in which the solutions take repeated calculations. The work intends to demonstrate how, through programming, applying the exact solution method, fast and precise results can be obtained on similarities and differences between different geometries in heattransfer, which demonstrate the behavior, according to parameters, under equal conditions (geometric properties, diameters, lengths, thicknesses, volumes) and physical properties (thermal conductivity, specific heat and density), appreciating how they influence results such as cooling times, production according to the physical properties and design of the equipment, consumption rates, core and surface temperatures and others, according to the plastic pipe extrusion method, necessary in production processes that require constant monitoring.

Keywords


Extrusion Processes; Simple Geometries; Modeling; Physical Properties; Heat Transfer; Wolfram Mathematica Software

Full Text:

pdf


References


1. González de Brito F. Condición de Contorno de convección en salidos infinitos (Spanish) [Boundary condition of convection in infinite outflows]. 8th ed. In: Concepción Hernández M (editor). Pedro Fernández Díez, España: Ingeniería Térmica, Universidad de Cantabria; 2003.

2. Mackowski DW. Transient and one dimensional conduction. In: Conduction heat transfer notes for MECH 7210. Auburn: Mechanical Engineering Department, Auburn University; 2011. p. 80–82.

3. Abascal R. Ecuaciones diferenciales de orden superior. Parte 5. Funciones de Bessel (Spanish) [Higher order differential equations. Part 5. Bessel functions]. Argentina: Facultad Regional Avellaneda, Buenos Aires; 2006. p. 1–60.

4. Romero-Ramírez Y. High density polyethylene piping manufacture for water transfer applications in the Holplast facility, Holguin. Ciencia & Futuro 2014; 4(2): 12–42.

5. Suéscum J, Correa C, Rigail-Cedeño A. Mejora de la eficiencia de una extrusora de doble tornillo utilizada en la fabricación de tuberías de PVC (Spanish) [Improving the efficiency of a twin-screw extruder used in PVC pipe manufac-turing]. Revista Tecnológica-ESPOL 2007; 20(1): 25–30.

6. Osswald TA, Aquite W, Ramírez D, et al. Retos en la Industria de procesamiento de plásticos y compuestos (Spanish) [Challenges in the plastics and composites processing industry]. Dyna 2012; 79(175): 20–28.

7. Vargas-Isaza CA, Posada-Correa JC, Jaramillo-Zapata LY, et al. Energy consumption in plastic industry-review of studies developed. Revista CEA 2015; 1(1): 93–107.

8. Jiménez Ramos A, Borroto Nordelo A, Montesino Pérez M, et al. Improve of the energy efficiency in the processes of plastic pipe extrusion. Ingeniería energética 2015; 36(2): 220–229.

9. Holman JP. Transferencia de calor (Spanish) [Heat transfer]. 8th ed. São Paulo: MacGraw-Hill Companies, inc.; 2013. p. 117–130, 175–184.

10. López E, Hernández JB, Solorio G, et al. Mathematical model of heat transfer to predict distribution of hardness through the Jominy bar. Revista de Metalurgia 2013; 49(2): 111–121.

11. Robert K, Saibel R, Ángel D. Formulation of a mathematical model to optimize the time of production in a plant extrusoras of pipes. Universidad, Ciencia y Tecnología 2012; 16(62): 33–41.




DOI: https://doi.org/10.24294/tse.v4i1.1508

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.