Activated Carbon: An Effective and Affordable Solution for Water Purification

Naseer Mukhlis, Meiram Atamanov, Sayed Reza Sarwari, Mohammad Sanayi Haqmal

Article ID: 11130
Vol 8, Issue 4, 2025

VIEWS - 4 (Abstract)

Abstract


Access to clean drinking water is universally recognized as a fundamental human right, yet millions globally still lack safe water. Contaminants such as heavy metals, organic compounds, and microbial pathogens pose significant health risks. Traditional water purification methods, while effective, often come with high costs and may not remove all types of contaminants. There is a need for more accessible and comprehensive solutions to improve drinking water quality. This study aims to explore the efficacy of activated carbon as a viable solution for enhancing drinking water quality and to identify the mechanisms through which it purifies water. The research involved a review of existing literature on activated carbon, including its various forms (powdered, granular, black carbon filters) and sources (coal, coconut shells, wood, peat). The study analyzed the physical and chemical processes of adsorption and the factors influencing these mechanisms. Activated carbon significantly increases surface area and adsorption capacity, enabling effective removal of a diverse range of pollutants, including volatile organic compounds (VOCs), chlorine, heavy metals, and certain harmful microbes. The findings suggest that activated carbon is a promising and cost-effective alternative for improving drinking water quality, with potential applications in various contexts to enhance public health and access to safe water.


Keywords


water purification, contaminants, pollutants, adsorption mechanisms, activation methods.



References

  1. Y. Qi, D. Li, S. Zhang, F. Li, and T. Hua, “Electrochemical filtration for drinking water purification: A review on membrane materials, mechanisms and roles,” J. Environ. Sci., vol. 141, pp. 102–128, Jul. 2024, doi: 10.1016/J.JES.2023.06.033.
  2. M. S. Reza et al., “Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review,” Arab J. Basic Appl. Sci., vol. 27, no. 1, pp. 208–238, 2020, doi: 10.1080/25765299.2020.1766799.
  3. M. K. Nallakaruppan, E. Gangadevi, M. L. Shri, B. Balusamy, S. Bhattacharya, and S. Selvarajan, “Reliable water quality prediction and parametric analysis using explainable AI models,” Sci. Rep., vol. 14, no. 1, pp. 1–24, 2024, doi: 10.1038/s41598-024-56775-y.
  4. E. W. Chu and J. R. Karr, “Environmental Impact: Concept, Consequences, Measurement.,” 2017. doi: 10.1016/B978-0-12-809633-8.02380-3.
  5. M. A. Alkhadra et al., “Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion.,” Chem. Rev., vol. 122, no. 16, pp. 13547–13635, Aug. 2022, doi: 10.1021/acs.chemrev.1c00396.
  6. M. Atabaki, “Performance of activated carbon in water filters,” no. January 2013, pp. 1–19, 2014.
  7. B. Doczekalska, N. Ziemińska, K. Kuśmierek, and A. Świątkowski, “Activated carbons prepared from stump wood of various tree species by chemical activation and their application for water purification,” Eur. J. Wood Wood Prod., pp. 2121–2135, 2024, doi: 10.1007/s00107-024-02148-1.
  8. A. L. Ahmad, M. M. Loh, and J. A. Aziz, “Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption,” Dye. Pigment., vol. 75, no. 2, pp. 263–272, 2007, doi: 10.1016/j.dyepig.2006.05.034.
  9. A. Goi, Advanced oxidation processes for water purification and soil remediation. 2005. [Online]. Available: http://digi.lib.ttu.ee/archives/2005/2005-10/1130345994.PDF
  10. N. Muttil, S. Jagadeesan, A. Chanda, M. Duke, and S. K. Singh, “Production, Types, and Applications of Activated Carbon Derived from Waste Tyres: An Overview,” Appl. Sci., vol. 13, no. 1, 2023, doi: 10.3390/app13010257.
  11. C. Song, S. Wu, M. Cheng, P. Tao, M. Shao, and G. Gao, “Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead(ii) from aqueous solutions,” Sustain., vol. 6, no. 1, pp. 86–98, 2014, doi: 10.3390/su6010086.
  12. K. Y. Foo and B. H. Hameed, “Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance,” Chem. Eng. J., vol. 184, no. January, pp. 57–65, 2012, doi: 10.1016/j.cej.2011.12.084.
  13. A. E. Ogungbenro, D. V. Quang, K. Al-Ali, and M. R. M. Abu-Zahra, “Activated Carbon from Date Seeds for CO2 Capture Applications,” Energy Procedia, vol. 114, no. November 2016, pp. 2313–2321, 2017, doi: 10.1016/j.egypro.2017.03.1370.
  14. L. Largitte, T. Brudey, T. Tant, P. C. Dumesnil, and P. Lodewyckx, “Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors,” Microporous Mesoporous Mater., vol. 219, pp. 265–275, 2016, doi: 10.1016/j.micromeso.2015.07.005.
  15. A. S. Mestre, J. Pires, J. M. F. Nogueira, J. B. Parra, A. P. Carvalho, and C. O. Ania, “Waste-derived activated carbons for removal of ibuprofen from solution: Role of surface chemistry and pore structure,” Bioresour. Technol., vol. 100, no. 5, pp. 1720–1726, 2009, doi: 10.1016/j.biortech.2008.09.039.
  16. M. F. M. Yusop, M. A. Ahmad, N. A. Rosli, and M. E. A. Manaf, “Adsorption of cationic methylene blue dye using microwave-assisted activated carbon derived from acacia wood: Optimization and batch studies,” Arab. J. Chem., vol. 14, no. 6, p. 103122, 2021, doi: 10.1016/j.arabjc.2021.103122.
  17. R. Farma et al., “Corn cob based activated carbon preparation using microwave assisted potassium hydroxide activation for sea water purification,” J. Phys. Conf. Ser., vol. 1120, no. 1, 2018, doi: 10.1088/1742-6596/1120/1/012017.
  18. S. S. Aloud, H. A. Alharbi, B. H. Hameed, J. P. Giesy, S. S. Almady, and K. D. Alotaibi, “Production of activated carbon from date palm stones by hydrothermal carbonization and microwave assisted KOH/NaOH mixture activation for dye adsorption,” Sci. Rep., vol. 13, no. 1, pp. 1–12, 2023, doi: 10.1038/s41598-023-45864-z.
  19. H. Deng, G. Li, H. Yang, J. Tang, and J. Tang, “Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation,” Chem. Eng. J., vol. 163, no. 3, pp. 373–381, 2010, doi: 10.1016/j.cej.2010.08.019.
  20. W. Ao et al., “Microwave assisted preparation of activated carbon from biomass: A review,” Renew. Sustain. Energy Rev., vol. 92, pp. 958–979, Sep. 2018, doi: 10.1016/J.RSER.2018.04.051.
  21. K. Y. Foo and B. H. Hameed, “Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K 2CO 3 activation,” Bioresour. Technol., vol. 104, pp. 679–686, 2012, doi: 10.1016/j.biortech.2011.10.005.
  22. A. K. Singh, L. K. Gupta, and V. K. Singh, “A review of low cost alternative of water treatment in rural area,” Infin. Tech Park Pvt Ltd, no. February, pp. 1–14, 2015.
  23. S. Li et al., “Water Purification: Adsorption over Metal-Organic Frameworks,” Chinese J. Chem., vol. 34, no. 2, pp. 175–185, 2016, doi: 10.1002/cjoc.201500761.
  24. I. Ali and V. K. Gupta, “Advances in water treatment by adsorption technology,” Nat. Protoc., vol. 1, no. 6, pp. 2661–2667, 2006, doi: 10.1038/nprot.2006.370.
  25. T. Oka et al., “Waste water purification by magnetic separation technique using HTS bulk magnet system,” Phys. C Supercond., vol. 469, no. 15–20, pp. 1849–1852, Oct. 2009, doi: 10.1016/J.PHYSC.2009.05.123.
  26. N. S. Zaidi, J. Sohaili, K. Muda, and M. Sillanpää, “Magnetic field application and its potential in water and wastewater treatment systems,” Sep. Purif. Rev., vol. 43, no. 3, pp. 206–240, Jul. 2014, doi: 10.1080/15422119.2013.794148.
  27. Q. Y. Al-Kubaisi and H. A. Ebrahim, “Some Characteristics of Tigris River Pollution for Baghdad City,” Iraqi Natl. J. Earth Sci., vol. 4, no. 2, pp. 76–83, 2004, doi: 10.33899/earth.2004.37740.
  28. V. V. Shakirova, L. A. Dzhigola, and O. S. Sadomtseva, “Effect of adsorption processes on oil-containing water purification by flocculation method,” IOP Conf. Ser. Earth Environ. Sci., vol. 723, no. 5, 2021, doi: 10.1088/1755-1315/723/5/052031.
  29. K. Y. Show and D. J. Lee, “Anaerobic Treatment Versus Aerobic Treatment,” Curr. Dev. Biotechnol. Bioeng. Biol. Treat. Ind. Effluents, pp. 205–230, Jan. 2017, doi: 10.1016/B978-0-444-63665-2.00008-4.
  30. Q. Guo et al., “Enhanced production of methane in anaerobic water treatment as mediated by the immobilized fungi,” Water Res., vol. 190, Feb. 2021, doi: 10.1016/j.watres.2020.116761.
  31. L. Malaeb and G. M. Ayoub, “Reverse osmosis technology for water treatment: State of the art review,” Desalination, vol. 267, no. 1, pp. 1–8, Feb. 2011, doi: 10.1016/J.DESAL.2010.09.001.
  32. Z. Yang, Y. Zhou, Z. Feng, X. Rui, T. Zhang, and Z. Zhang, “A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification,” Polymers (Basel)., vol. 11, no. 8, 2019, doi: 10.3390/polym11081252.
  33. J. Singh, V. Saharan, S. Kumar, P. Gulati, and R. K. Kapoor, “Laccase grafted membranes for advanced water filtration systems: a green approach to water purification technology,” Crit. Rev. Biotechnol., vol. 38, no. 6, pp. 883–901, Aug. 2018, doi: 10.1080/07388551.2017.1417234.
  34. R. Andreozzi, V. Caprio, A. Insola, and R. Marotta, “Advanced oxidation processes (AOP) for water purification and recovery,” Catal. Today, vol. 53, no. 1, pp. 51–59, Oct. 1999, doi: 10.1016/S0920-5861(99)00102-9.
  35. P. K. Amar, “Ensuring safe water in post-chemical, biological, radiological and nuclear emergencies.,” J. Pharm. Bioallied Sci., vol. 2, no. 3, pp. 253–266, Jul. 2010, doi: 10.4103/0975-7406.68508.
  36. I. Skoczko and R. Guminski, “Research on the Development of Technologies for the Production of Granulated Activated Carbons Using Various Binders.,” Mater. (Basel, Switzerland), vol. 13, no. 22, Nov. 2020, doi: 10.3390/ma13225180.
  37. A. Taurbekov et al., “Investigations of Activated Carbon from Different Natural Sources for Preparation of Binder-Free Few-Walled CNTs / Activated Carbon Electrodes,” J. Compos. Sci., vol. 7, no. 453, pp. 1–12, 2023, doi: https://doi.org/10.3390/jcs7110452.
  38. I. Karume, S. Bbumba, S. Tewolde, I. Z. T. Mukasa, and M. Ntale, “Impact of carbonization conditions and adsorbate nature on the performance of activated carbon in water treatment,” BMC Chem., vol. 17, no. 1, p. 162, 2023, doi: 10.1186/s13065-023-01091-1.
  39. M. A. R. Joia, “N-DOPED ACTIVATED CARBON OBTAINED FROM PLANT WASTE BY DIFFERENT PRODUCTION METHODS FOR ADSORPTION OF CO2,” Bull. toraighyrov Univ. Chem. Biol. Ser., vol. 1, no. 1, pp. 52–62, 2024, doi: https://doi.org/10.48081/PTMQ2993.
  40. R. L. Liu, Y. Liu, X. Y. Zhou, Z. Q. Zhang, J. Zhang, and F. Q. Dang, “Biomass-derived highly porous functional carbon fabricated by using a free-standing template for efficient removal of methylene blue,” Bioresour. Technol., vol. 154, pp. 138–147, 2014, doi: 10.1016/j.biortech.2013.12.034.
  41. I. Pet et al., “Review: Recent Developments in the Implementation of Activated Carbon as Heavy Metal Removal Management,” Water Conserv. Sci. Eng., vol. 9, no. 2, p. 62, 2024, doi: 10.1007/s41101-024-00287-3.
  42. R. Joia, M. Atamanov, K. Umbetkaliev, and M. H. Mohammadi, “Exploring the versatile production techniques and applications of nitrogen- doped activated carbon,” Therm. Sci. Eng., vol. 7, no. 1, pp. 1–26, 2024, doi: https://doi.org/10.24294/tse.v7i1.5842.
  43. M. Danish, R. Hashim, M. N. M. Ibrahim, M. Rafatullah, and O. Sulaiman, “Surface characterization and comparative adsorption properties of Cr(VI) on pyrolysed adsorbents of Acacia mangium wood and Phoenix dactylifera L. stone carbon,” J. Anal. Appl. Pyrolysis, vol. 97, pp. 19–28, 2012, doi: 10.1016/j.jaap.2012.06.001.
  44. H. Wang, R. Xie, J. Zhang, and J. Zhao, “Preparation and characterization of distillers’ grain based activated carbon as low cost methylene blue adsorbent: Mass transfer and equilibrium modeling,” Adv. Powder Technol., vol. 29, no. 1, pp. 27–35, 2018, doi: 10.1016/j.apt.2017.09.027.
  45. L. A. Rodrigues, M. L. C. P. da Silva, M. O. Alvarez-Mendes, A. dos R. Coutinho, and G. P. Thim, “Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds,” Chem. Eng. J., vol. 174, no. 1, pp. 49–57, 2011, doi: 10.1016/j.cej.2011.08.027.
  46. P. A. M. Mourão, C. Laginhas, F. Custódio, J. M. V. Nabais, P. J. M. Carrott, and M. M. L. R. Carrott, “Influence of oxidation process on the adsorption capacity of activated carbons from lignocellulosic precursors,” Fuel Process. Technol., vol. 92, no. 2, pp. 241–246, 2011, doi: 10.1016/j.fuproc.2010.04.013.
  47. H. El Bakouri, J. Usero, J. Morillo, R. Rojas, and A. Ouassini, “Drin pesticides removal from aqueous solutions using acid-treated date stones,” Bioresour. Technol., vol. 100, no. 10, pp. 2676–2684, 2009, doi: 10.1016/j.biortech.2008.12.051.
  48. K. Li, Z. Zheng, and Y. Li, “Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4 activation,” J. Hazard. Mater., vol. 181, no. 1–3, pp. 440–447, 2010, doi: 10.1016/j.jhazmat.2010.05.030.
  49. Y. Shen and Y. Fu, “KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption,” Mater. Today Energy, vol. 9, pp. 397–405, 2018, doi: 10.1016/j.mtener.2018.07.005.
  50. T. Otowa, Y. Nojima, and T. Miyazaki, “Development of KOH activated high surface area carbon and its application to drinking water purification,” Carbon N. Y., vol. 35, no. 9, pp. 1315–1319, 1997, doi: 10.1016/S0008-6223(97)00076-6.
  51. I. Kula, M. Uǧurlu, H. Karaoǧlu, and A. Çelik, “Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation,” Bioresour. Technol., vol. 99, no. 3, pp. 492–501, 2008, doi: 10.1016/j.biortech.2007.01.015.
  52. J. R. García, U. Sedran, M. A. A. Zaini, and Z. A. Zakaria, “Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell,” Environ. Sci. Pollut. Res., vol. 25, no. 6, pp. 5076–5085, 2018, doi: 10.1007/s11356-017-8975-8.
  53. A. Bhatnagar, W. Hogland, M. Marques, and M. Sillanpää, “An overview of the modification methods of activated carbon for its water treatment applications,” Chem. Eng. J., vol. 219, pp. 499–511, 2013, doi: 10.1016/j.cej.2012.12.038.
  54. N. A. Rashidi and S. Yusup, “A review on recent technological advancement in the activated carbon production from oil palm wastes,” Chem. Eng. J., vol. 314, pp. 277–290, 2017, doi: 10.1016/j.cej.2016.11.059.
  55. N. G. Guliyev, H. J. Ibrahimov, J. A. Alekperov, F. A. Amirov, and Z. M. Ibrahimova, “Investigation of activated carbon obtained from the liquid products of pyrolysis in sunflower oil bleaching process,” Int. J. Ind. Chem., vol. 9, no. 3, pp. 277–284, 2018, doi: 10.1007/s40090-018-0156-1.
  56. Y. Huang, S. Li, H. Lin, and J. Chen, “Fabrication and characterization of mesoporous activated carbon from Lemna minor using one-step H 3 PO 4 activation for Pb(II) removal,” Appl. Surf. Sci., vol. 317, no. Ii, pp. 422–431, 2014, doi: 10.1016/j.apsusc.2014.08.152.
  57. D. Obregón-Valencia and M. D. R. Sun-Kou, “Comparative cadmium adsorption study on activated carbon prepared from aguaje (Mauritia flexuosa) and olive fruit stones (Olea europaea L.),” J. Environ. Chem. Eng., vol. 2, no. 4, pp. 2280–2288, 2014, doi: 10.1016/j.jece.2014.10.004.
  58. M. Imamoglu and O. Tekir, “Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks,” Desalination, vol. 228, no. 1–3, pp. 108–113, 2008, doi: 10.1016/j.desal.2007.08.011.
  59. A. Zgolli, M. Souissi, and H. Dhaouadi, “Purification of Pesticide-Contaminated Water Using Activated Carbon from Prickly Pear Seeds for Environmentally Friendly Reuse in a Circular Economy,” Sustain., vol. 16, no. 1, 2024, doi: 10.3390/su16010406.
  60. J. J. Gao et al., “Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: Kinetics, equilibrium, and thermodynamics studies,” J. Zhejiang Univ. Sci. B, vol. 14, no. 7, pp. 650–658, 2013, doi: 10.1631/jzus.B12a0225.
  61. M. H. M. Zubir and M. A. A. Zaini, “Twigs-derived activated carbons via H3PO4/ZnCl2 composite activation for methylene blue and congo red dyes removal,” Sci. Rep., vol. 10, no. 1, p. 14050, 2020, doi: 10.1038/s41598-020-71034-6.
  62. K. Phothong, C. Tangsathitkulchai, and P. Lawtae, “The Analysis of Pore Development and Formation of Surface Functional Groups in Bamboo-Based Activated Carbon during CO2 Activation,” Molecules, vol. 26, no. 18, 2021, doi: 10.3390/molecules26185641.
  63. W. H. Chen, S. J. Lin, F. C. Lee, M. H. Chen, T. Y. Yeh, and C. M. Kao, “Comparing volatile organic compound emissions during equalization in wastewater treatment between the flux-chamber and mass-transfer methods,” Process Saf. Environ. Prot., vol. 109, pp. 410–419, 2017, doi: 10.1016/j.psep.2017.04.023.
  64. M. T. Amin and A. A. Alazba, “Comparative study of the absorptive potential of raw and activated carbon Acacia nilotica for Reactive Black 5 dye,” Environ. Earth Sci., vol. 76, no. 16, pp. 1–13, 2017, doi: 10.1007/s12665-017-6927-8.
  65. B. S. Girgis, “Eksi Sozluk,” vol. 52, pp. 105–117, 2002, [Online]. Available: http://eksisozluk.com
  66. J. M. Salman, V. O. Njoku, and B. H. Hameed, “Bentazon and carbofuran adsorption onto date seed activated carbon: Kinetics and equilibrium,” Chem. Eng. J., vol. 173, no. 2, pp. 361–368, 2011, doi: 10.1016/j.cej.2011.07.066.
  67. J. M. Salman and F. H. Hussein, “Batch Adsorber Design for Different Solution Volume/Adsorbate Mass Ratios of Bentazon, Carbofuran and 2,4-D Adsorption on to Date Seeds Activated Carbon,” J. Environ. Anal. Chem., vol. 02, no. 01, 2014, doi: 10.4172/2380-2391.1000120.
  68. W. Ao et al., “Microwave assisted preparation of activated carbon from biomass: A review,” 2018. doi: 10.1016/j.rser.2018.04.051.
  69. V. Lopez-Avila and J. Benedicto, “Microwave-assisted extraction combined with gas chromatography and enzyme-linked immunosorbent assay,” TrAC Trends Anal. Chem., vol. 15, no. 8, pp. 334–341, Sep. 1996, doi: 10.1016/0165-9936(96)00038-6.
  70. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, and T. Alagesan, “Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode,” Ceram. Int., vol. 44, no. 16, pp. 20075–20083, Nov. 2018, doi: 10.1016/j.ceramint.2018.07.282.
  71. S. Muzarpaar, A. M. Leman, K. A. Rahman, and S. Z. A. Rahim, “Reliable Method and Multistage Process Involved in the Production of Activated Carbon Based on Raw Material-A Systematic Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 877, no. 1, 2020, doi: 10.1088/1757-899X/877/1/012030.
  72. A. Jain, R. Balasubramanian, and M. P. Srinivasan, “Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review,” Chem. Eng. J., vol. 283, pp. 789–805, 2016, doi: 10.1016/j.cej.2015.08.014.
  73. L. N. Sklivaniotis, P. Economou, H. K. Karapanagioti, and I. D. Manariotis, “Chlorine Removal from Water by Biochar Derived from Various Food Waste Natural Materials,” Environ. Process., vol. 10, no. 1, pp. 1–14, 2023, doi: 10.1007/s40710-022-00617-4.
  74. Z. Al-Qodah and R. Shawabkah, “Production and characterization of granular activated carbon from activated sludge,” Brazilian J. Chem. Eng., vol. 26, no. 1, pp. 127–136, 2009, doi: 10.1590/S0104-66322009000100012.
  75. P. González-García, “Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications,” Renew. Sustain. Energy Rev., vol. 82, no. xxxx, pp. 1393–1414, 2018, doi: 10.1016/j.rser.2017.04.117.
  76. I. Fatma, H. Assad, A. Kumar, and C. M. Hussain, “Food Industry Applications of Activated Carbon,” in Activated Carbon: Progress and Applications, The Royal Society of Chemistry, 2023. doi: 10.1039/BK9781839169861-00250.
  77. I. Budiman, R. Amirta, Yuliansyah, B. A. Widyaningrum, and W. Fatriasari, “Activated Carbon for Cosmetics Applications,” in Biomass-based Cosmetics: Research Trends and Future Outlook, E. T. Arung, W. Fatriasari, I. W. Kusuma, H. Kuspradini, K. Shimizu, Y. Kim, N. I. W. Azelee, and Z. Edis, Eds., Singapore: Springer Nature Singapore, 2024, pp. 217–237. doi: 10.1007/978-981-97-1908-2_10.
  78. M. J. Sweetman et al., “Activated Carbon, Carbon Nanotubes and Graphene: Materials and Composites for Advanced Water Purification,” C, vol. 3, no. 2, 2017, doi: 10.3390/c3020018.
  79. M. Ahmedna, W. E. Marshall, A. A. Husseiny, I. Goktepe, and R. M. Rao, “The use of nutshell carbons in drinking water filters for removal of chlorination by-products,” J. Chem. Technol. Biotechnol., vol. 79, no. 10, pp. 1092–1097, 2004, doi: 10.1002/jctb.1087.
  80. L. Tartaglione et al., “An aquarium hobbyist poisoning: Identification of new palytoxins in Palythoa cf. toxica and complete detoxification of the aquarium water by activated carbon,” Toxicon, vol. 121, pp. 41–50, 2016, doi: 10.1016/j.toxicon.2016.08.012.
  81. Y. Wang, C. Peng, E. Padilla-Ortega, A. Robledo-Cabrera, and A. López-Valdivieso, “Cr(VI) adsorption on activated carbon: Mechanisms, modeling and limitations in water treatment,” J. Environ. Chem. Eng., vol. 8, no. 4, 2020, doi: 10.1016/j.jece.2020.104031.
  82. B. Zieliński, P. Miądlicki, and J. Przepiórski, “Development of activated carbon for removal of pesticides from water: case study.,” Sci. Rep., vol. 12, no. 1, p. 20869, Dec. 2022, doi: 10.1038/s41598-022-25247-6.
  83. D. J. Smith, P. Pettit, and T. Schofield, “Activated carbon in water treatment,” Water Supply, vol. 14, no. 2, pp. 85–98, 1996.
  84. L. Ji, W. Chen, L. Duan, and D. Zhu, “Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents,” Environ. Sci. Technol., vol. 43, no. 7, pp. 2322–2327, Apr. 2009, doi: 10.1021/es803268b.
  85. E. K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, and S. Ismadji, “Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics,” Water Res., vol. 43, no. 9, pp. 2419–2430, 2009, doi: 10.1016/j.watres.2009.02.039.
  86. A. Rao, A. Kumar, R. Dhodapkar, and S. Pal, “Adsorption of five emerging contaminants on activated carbon from aqueous medium: kinetic characteristics and computational modeling for plausible mechanism,” Environ. Sci. Pollut. Res., vol. 28, no. 17, pp. 21347–21358, 2021, doi: 10.1007/s11356-020-12014-1.
  87. C. Pelekani and V. L. Snoeyink, “Competitive adsorption in natural water: Role of activated carbon pore size,” Water Res., vol. 33, no. 5, pp. 1209–1219, 1999, doi: 10.1016/S0043-1354(98)00329-7.
  88. A. Srivastava, B. Gupta, A. Majumder, A. K. Gupta, and S. K. Nimbhorkar, “A comprehensive review on the synthesis, performance, modifications, and regeneration of activated carbon for the adsorptive removal of various water pollutants,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 106177, Oct. 2021, doi: 10.1016/J.JECE.2021.106177.
  89. M. Rattier, J. Reungoat, and W. Gernjak, “Organic Micropollutant Removal by Biological Activated Carbon Filtration : A Review Urban Water Security Research Alliance Technical Report No . 53,” Urban Water Secur. Res. Alliance Tech. Rep., no. 53, p. 45, 2012.
  90. M. Franz, H. A. Arafat, and N. G. Pinto, “Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon,” Carbon N. Y., vol. 38, no. 13, pp. 1807–1819, 2000, doi: 10.1016/S0008-6223(00)00012-9.
  91. B. L. Rowe, P. L. Toccalino, M. J. Moran, J. S. Zogorski, and C. V. Price, “Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States,” Environ. Health Perspect., vol. 115, no. 11, pp. 1539–1546, 2007, doi: 10.1289/ehp.10253.
  92. V. O. Njoku, M. A. Islam, M. Asif, and B. H. Hameed, “Utilization of sky fruit husk agricultural waste to produce high quality activated carbon for the herbicide bentazon adsorption,” Chem. Eng. J., vol. 251, pp. 183–191, 2014, doi: 10.1016/j.cej.2014.04.015.
  93. M. D. Masekameni, R. Moolla, M. Gulumian, and D. Brouwer, “Risk Assessment of Benzene, Toluene, Ethyl Benzene, and Xylene Concentrations from the Combustion of Coal in a Controlled Laboratory Environment.,” Int. J. Environ. Res. Public Health, vol. 16, no. 1, Dec. 2018, doi: 10.3390/ijerph16010095.
  94. J. H. Lee et al., “Adsorption Phenomenon of VOCs Released from the Fiber-Reinforced Plastic Production onto Carbonaceous Surface.,” Polymers (Basel)., vol. 15, no. 7, Mar. 2023, doi: 10.3390/polym15071640.
  95. M. Köck-Schulmeyer, M. Villagrasa, M. López de Alda, R. Céspedes-Sánchez, F. Ventura, and D. Barceló, “Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact,” Sci. Total Environ., vol. 458–460, pp. 466–476, Aug. 2013, doi: 10.1016/J.SCITOTENV.2013.04.010.
  96. G. Kyriakopoulos, I. Xiarchos, and D. Doulia, “Treatment of contaminated water with pesticides via adsorption,” Int. J. Environ. Technol. Manag., vol. 6, no. 5, pp. 515–524, 2006, doi: 10.1504/IJETM.2006.010482.
  97. X. Li, X. Yang, X. Zheng, M. Bai, and D. Hu, “Review on Structures of Pesticide Targets.,” Int. J. Mol. Sci., vol. 21, no. 19, Sep. 2020, doi: 10.3390/ijms21197144.
  98. S. A. Covert, M. E. Shoda, S. M. Stackpoole, and W. W. Stone, “Pesticide mixtures show potential toxicity to aquatic life in U.S. streams, water years 2013–2017,” Sci. Total Environ., vol. 745, p. 141285, 2020, doi: 10.1016/j.scitotenv.2020.141285.
  99. J. Georgin et al., “Improved Adsorption of the Toxic Herbicide Diuron Using Activated Carbon Obtained from Residual Cassava Biomass (Manihot esculenta).,” Molecules, vol. 27, no. 21, Nov. 2022, doi: 10.3390/molecules27217574.
  100. A. M. Abbas, Firas, H. Abdulrazzak, W. J. Sabbar, R. Abdul, and S. Faraj, “Adsorption of dyes by activated carbon surfaces were prepared from plant residues: Review,” J. Mater. Environ. Sci, vol. 2020, no. 12, pp. 2007–2015, 2020.
  101. R. Sawana, Y. Somasundar, V. S. Iyer, and B. Baruwati, “Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification,” Appl. Water Sci., vol. 7, no. 3, pp. 1223–1230, 2017, doi: 10.1007/s13201-016-0398-z.
  102. M. J. Ahmed, “Preparation of activated carbons from date (Phoenix dactylifera L.) palm stones and application for wastewater treatments: Review,” Process Saf. Environ. Prot., vol. 102, pp. 168–182, 2016, doi: 10.1016/j.psep.2016.03.010.
  103. M. O. Corapcioglu and C. P. Huang, “The adsorption of heavy metals onto hydrous activated carbon,” Water Res., vol. 21, no. 9, pp. 1031–1044, Sep. 1987, doi: 10.1016/0043-1354(87)90024-8.
  104. P. Hadi, M. H. To, C. W. Hui, C. S. K. Lin, and G. McKay, “Aqueous mercury adsorption by activated carbons,” Water Res., vol. 73, pp. 37–55, Apr. 2015, doi: 10.1016/J.WATRES.2015.01.018.
  105. L. Mahardiani, S. Saputro, and N. M. Zinki, “One pot synthesis of carboxylated activated carbon for water purification: A kinetic study,” Moroccan J. Chem., vol. 8, no. 4, pp. 957–964, 2020, doi: 10.48317/IMIST.PRSM/morjchem-v8i4.21727.
  106. A. Bhatnagar and M. Sillanpää, “A review of emerging adsorbents for nitrate removal from water,” Chem. Eng. J., vol. 168, no. 2, pp. 493–504, Apr. 2011, doi: 10.1016/J.CEJ.2011.01.103.
  107. Z. Wang et al., “Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon,” Environ. Sci. Pollut. Res., vol. 19, no. 7, pp. 2908–2917, 2012, doi: 10.1007/s11356-012-0799-y.
  108. M. E. Mahmoud, E. A. Saad, A. M. El-Khatib, M. A. Soliman, and E. A. Allam, “Adsorptive removal of radioactive isotopes of cobalt and zinc from water and radioactive wastewater using TiO2/Ag2O nanoadsorbents,” Prog. Nucl. Energy, vol. 106, pp. 51–63, Jul. 2018, doi: 10.1016/J.PNUCENE.2018.02.021.
  109. S. Khandaker, T. Kuba, S. Kamida, and Y. Uchikawa, “Adsorption of cesium from aqueous solution by raw and concentrated nitric acid–modified bamboo charcoal,” J. Environ. Chem. Eng., vol. 5, no. 2, pp. 1456–1464, Apr. 2017, doi: 10.1016/J.JECE.2017.02.014.
  110. I. A. Katsoyiannis and A. I. Zouboulis, “Removal of uranium from contaminated drinking water: a mini review of available treatment methods,” Desalin. Water Treat., vol. 51, no. 13–15, pp. 2915–2925, Mar. 2013, doi: 10.1080/19443994.2012.748300.
  111. A. Chakraborty, A. Pal, and B. B. Saha, “A Critical Review of the Removal of Radionuclides from Wastewater Employing Activated Carbon as an Adsorbent,” Materials (Basel)., vol. 15, no. 24, 2022, doi: 10.3390/ma15248818.
  112. A. N. Kay Lup, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, “A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds,” J. Ind. Eng. Chem., vol. 56, pp. 1–34, Dec. 2017, doi: 10.1016/j.jiec.2017.06.049.
  113. P. J. Lu, H. C. Lin, W. Te Yu, and J. M. Chern, “Chemical regeneration of activated carbon used for dye adsorption,” J. Taiwan Inst. Chem. Eng., vol. 42, no. 2, pp. 305–311, Mar. 2011, doi: 10.1016/J.JTICE.2010.06.001.
  114. B. Sonmez Baghirzade, Y. Zhang, J. F. Reuther, N. B. Saleh, A. K. Venkatesan, and O. G. Apul, “Thermal Regeneration of Spent Granular Activated Carbon Presents an Opportunity to Break the Forever PFAS Cycle,” Environ. Sci. Technol., vol. 55, no. 9, pp. 5608–5619, May 2021, doi: 10.1021/acs.est.0c08224.
  115. D. Guo, Q. Shi, B. He, and X. Yuan, “Different solvents for the regeneration of the exhausted activated carbon used in the treatment of coking wastewater,” J. Hazard. Mater., vol. 186, no. 2–3, pp. 1788–1793, Feb. 2011, doi: 10.1016/J.JHAZMAT.2010.12.068.
  116. E. Sabio, E. González, J. F. González, C. M. González-García, A. Ramiro, and J. Gañan, “Thermal regeneration of activated carbon saturated with p-nitrophenol,” Carbon N. Y., vol. 42, no. 11, pp. 2285–2293, Jan. 2004, doi: 10.1016/J.CARBON.2004.05.007.
  117. M. Vakili et al., “Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review,” Sep. Purif. Technol., vol. 224, pp. 373–387, Oct. 2019, doi: 10.1016/j.seppur.2019.05.040.


DOI: https://doi.org/10.24294/tse11130

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Naseer Mukhlis, Meiram Atamanov, Sayed Reza Sarwari, Mohammad Sanayi Haqmal

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.