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Abstract: We propose a modified relation between heat flux and temperature 

gradient, which leads to a second-order equation describing the evolution of 

temperature in solids with finite rate of propagation. A comparison of the 

temperature field spreading in the framework of Fourier, Cattaneo-Vernotte (CV), 

and modified Cattaneo-Vernotte (MCV) equations is discussed. The comparative 

analysis of MCV and Fourier solutions is carried out on the example of a simple one-

dimensional problem of plate cooling. 
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1. Introduction 

In classical consideration, the process of heat transfer in solids is described by a 

phenomenological equation based on two assumptions [1]. The first is the continuity 

of heat propagation: 

𝑐𝜌
𝜕𝜃

𝜕𝑡
+ 𝛁 ⋅ 𝐪 = 0 (1) 

where 𝑐 is the specific heat capacity, 𝜌 is the mass density, 𝜃 is the temperature, 𝑞 is 

the vector of heat flux. The second assumption is Fourier’s law, which establishes 

the relationship between heat flux and gradient of temperature  

 = −q   (2) 

where𝜅  is the thermal conductivity. Substitution (2) into Equation (1) gives the 

classical equation for the temperature evolution 

0q
t


 


−  =


 (3) 

where 𝛽𝑞 = 𝜅/𝑐𝜌 is the thermal diffusivity, Δ is the Laplace operator.  

The disadvantage of relation (2) is that it leads us to the equation of parabolic 

type (3), which describes the instantaneous propagation of heat [2–4]. However, this 

contradicts the physical nature of the heat transfer process. 

To overcome the drawback in classical heat conduction, the different 

modifications of Fourier’s law were proposed [3,4]. Among them, we can highlight 

“inertial” theories [4,5], nonlinear models [6,7], the dual-phase-lag approach [8], and 

more complicated models based on Oldroyd’s upper-convected derivative [9,10] 

(which are used for the description of non-Fourier heat transfer in fluids [11–13]). 

Some historical considerations on the various hyperbolic heat equations can be found 

in [3,4,14,15]. 

In particular, the simple Fourier’s law modification taking into account “inertia” 

of the heat transfer is formulated as follows [3–6]: 
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where 𝜏𝑞  is a relaxation time depending on material properties. When 𝜏𝑞 = 0 the 

expression (4) is transformed to the Fourier’s law (2). The relation (4) in 

combination with continuity condition (1) leads us to the wave equation of 

hyperbolic type 
2

2
0q q

tt
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+  (5) 

which is widely discussed as Cattaneo-Vernotte (CV) equation [16–31].  

Note that in the limiting case 𝜏𝑞 → ∞, 𝜅 → ∞, 𝛽𝑞 finite the equation (5) turns 

into a wave equation 
2

2

2
0a

t





−  =


 (6) 

describing purely wave propagation of heat at a constant speed  

𝑎 = √
𝜅

𝑐𝜌𝜏𝑞
 (7) 

The parabolic Fourier equation (3) and hyperbolic CV equation (5) describe the 

same stationary states, which are determined by the Laplace operator, but the 

dynamics of relaxation to these stationary states is different. However, eliminating 

the paradox of instantaneous heat propagation [4,20,21], the CV heat equation leads 

to other paradoxical results associated with interference of temperature waves, their 

reflection from the boundaries of the body, and the formation of shock heat waves 

[22–31]. Therefore, discussions about the applicability of the Fourier and CV 

equations continue [32,33]. 

Note also that the processes of diffusion and heat transfer have a similar nature 

[1,34], 34]. Therefore, the telegraph equations of hyperbolic type for diffusion are 

also discussed in the literature [35,36]. 

In this paper, we propose a modification of the CV approach to the description 

of heat transfer, which leads to the alternative equation and describes a different 

dynamics of heat transfer. 

2. Comparison of Fourier equation and Cattaneo-Vernotte 

equation  

Let us compare Fourier and CV equations in detail. The Equation (4) introduces 

a very important parameter 𝜏𝑞 that describes the time scale of heat relaxation and 

allows one to determine the characteristic rate of heat propagation as 

𝑠𝑞
2 =

𝛽𝑞

𝜏𝑞
 (8) 

and the characteristic spatial scale of heat diffusion as 

𝑙𝑞 = √𝛽𝑞𝜏𝑞 = 𝑠𝑞𝜏𝑞 (9) 

This allows one to rewrite Fourier and CV equations in the similar form 
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The Equations (10) and (11) admit the solutions in the form of plane waves  

( )( )expA i t i = + k r  (12) 

where 𝜔 is the frequency, 𝑘is the wave vector. The dispersion relation for parabolic 

Fourier Equation (10) is 
2 2

q qi s k =  (13) 

where 𝑘 is the wave number ( | |k = k ). In this relation, the frequency is an imaginary 

quantity. Thus, the solutions of the Fourier equation are spatial harmonics decaying 

with time. The damping factor is 
2 2

q qi s k = −  (14) 

The dependence of the decrement (14) on the wave number is shown inFigure 

1.  

 

Figure 1. The schematic plot of dispersion dependence for parabolic Fourier 

equation. 

Also, we can introduce the analog of group speed, which is the imaginary value 

22 .F q q

d
i v i s k

dk


= = −  (15) 

This value tends to infinity (
Fiv →− ) when 𝑘 → ∞, that is the reason of the 

infinitely fast scattering of shortwave harmonics. 

On the other hand, the dispersion relation for hyperbolic CV Equation (11) is  

2 2 2 0q

q

i
s k





+ − =  (16) 

From (16) we obtain  

𝜔 = 𝑖 

1 ± √1 − 4𝑙𝑞
2𝑘2

2𝜏𝑞
 

(17) 

The behavior of spatial harmonics essentially depends on their wave number. In 

the region of wave numbers 𝑘 < 𝑘∗ (where 𝑘∗ =
1

2𝑙𝑞
), solutions of CV equation also 

represent damped spatial harmonics. The damping factor is  
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𝑖𝜔 = − 

1 ± √1 − 4𝑙𝑞
2𝑘2

2𝜏𝑞
 

(18) 

Dispersion dependence (18) is shown in Figure 2.  

 

Figure 2. The schematic plot of decrement for hyperbolic CV equation. The solid 

curve corresponds to the “−” sign in expression (18), the dotted curve corresponds to 

the “+” sign. The dash-dotted line in the region 𝑘 > 𝑘∗ represents the decrement in 

expression (19). 

In the region 𝑘 < 𝑘∗ , the decrement has two branches (shown by solid and 

dotted lines in Figure 2) in accordance with the signs in expression (18). At small k  

on the upper branch of the dispersion curve, the decrement is 
2 2

q qi s k  − , that 

coincides with the decrement of the Fourier Equation (14). 

In the region 𝑘 > 𝑘∗, the dispersion dependence (18) has both imaginary and 

real parts 

𝜔 = 𝑖 
1

2𝜏𝑞
±

√4𝑙𝑞
2𝑘2 − 1

2𝜏𝑞
. 

(19) 

The damping factor in this region of wave numbers is equal to 

𝑖𝜔 = − 
1

2𝜏𝑞
 (20) 

It is shown by the dot-dashed line in Figure 2. The real part of the dispersion 

relation (19) is shown in Figure 3.  

 

Figure 3. The schematic plot of the real part of dispersion curves for CV equation. 
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The region of wave numbers 𝑘 > 𝑘∗  corresponds to the spatial harmonics 

propagating in the form of traveling waves. In this region CV equation has the real 

group velocity. 

𝑣𝐶𝑉 =
𝑑𝜔

𝑑𝑘
=

2𝑙𝑞
2

𝜏𝑞

𝑘

√4𝑙𝑞
2𝑘2 − 1

 
(21) 

This value tends to be constant 𝑠𝑞 (𝑣𝐶𝑉 → 𝑠𝑞) when 𝑘 → ∞. However, the group 

velocity of harmonics with 𝑘 near 𝑘∗ still tends to an infinite value. A more extended 

spectral analysis of the CV equation can be found in [37]. 

3. Modified Cattaneo-Vernotte equation of heat transfer 

Evidently, the hyperbolic heat equation is a consequence of the concept of 

“inertia” for heat flow. However, this concept raises doubts since the macroscopic 

transfer of heat is associated not with their directed motion but with chaotic 

vibrations of atoms in the crystal lattice. Here we propose the modification of CV 

condition (4) that leads to an alternative equation describing different dynamics of 

heat propagation. 

Let us first analyze the CV modification of Fourier’s law. It assumes the 

lagging response in time between the heat flux vector and the temperature gradient. 

Mathematically, this can be expressed as: 

( , ) ( , )qt t  + = −q r r  (22) 

where 𝜏𝑞  is the phase-lag in time. Expression (22) shows that the temperature 

gradient established at time t is defined by heat flux vector at a later time 𝑡 + 𝜏𝑞. 

Assuming the smallness of the parameter 𝜏𝑞, we can expand the left side of equation 

(22) into a Taylor series: 

𝐪(𝒓, 𝑡 + 𝜏𝑞) = 𝐪(𝒓, 𝑡) + 𝜏𝑞

𝜕𝐪(𝒓, 𝑡)

𝜕𝑡
+ 𝑂(𝜏𝑞

2) (23) 

Then, keeping only the first-order term in 
q  and substituted into (22), we arrive 

at the expression (4), where the term 𝜏𝑞𝜕𝐪/𝜕𝑡 describes the acceleration of heat 

propagation. 

However, it is natural to assume that the temperature gradient at a given point 

depends not on the heat flow in the future 𝑡 + 𝜏𝑞, but on the flow at the previous 

moment in time 𝑡 − 𝜏𝑞. This is expressed by the following condition:  

( , ) ( , )qt t  − = −q r r  (24) 

Expanding the left side (24) into a Taylor series we get: 

𝐪(𝒓, 𝑡 − 𝜏𝑞) = 𝐪(𝒓, 𝑡) − 𝜏𝑞

𝜕𝐪(𝒓, 𝑡)

𝜕𝑡
+ 𝑂(𝜏𝑞

2) (25) 

Here the term q t−  q/  describes the slowing down of heat propagation. Thus, 

in combination with the continuity Equation (1), we arrive at the following modified 

system describing heat transfer: 

𝑐𝜌
𝜕𝜃

𝜕𝑡
+ 𝛁 ⋅ 𝐪 = 0 (26) 

0q
t

  


− + =


q
q +  (27) 
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The system (26) – (27) is equivalent to the following MCV equation for the 

temperature field: 

𝜕2𝜃

𝜕𝑡2
−

1

𝜏𝑞

𝜕𝜃

𝜕𝑡
+ 𝑠𝑞

2𝛥𝜃 = 0 (28) 

Note that the stationary state of MCV Equation (28) is the same as for the 

Fourier (3) and CV (5) equations, but the time evolution of temperature is different. 

Let us analyze the consequences of the proposed modification. Assuming 

harmonic solutions (12), we have the following dispersion relation for the MCV 

equation: 

2 2 21
0q

q

i s k 


+ + =  (29) 

From (29) we have two roots: 

𝑖𝜔 =

1 ± √1 + 4𝜏𝑞
2𝑠𝑞

2𝑘2

2𝜏𝑞
 

(30) 

The schematic plots of dispersion curves (30) are represented in Figure 4.  

 

Figure 4. The schematic plots of dispersion curves for MCV equation. 

The upper branch of dispersion curve corresponds to: 

𝑖𝜔 =

1 + √1 + 4𝜏𝑞
2𝑠𝑞

2𝑘2

2𝜏𝑞
 

(31) 

and describes the solutions growing in time that contradict the physical picture of the 

heat transfer process and are a consequence of the violation of the causality principle 

[38]. However, on the other hand, the solutions corresponding to the lower branch of 

the dispersion characteristic with describe damped in time spatial harmonics and can 

be used to describe the process of heat propagation. 

𝑖𝜔 =

1 − √1 + 4𝜏𝑞
2𝑠𝑞

2𝑘2

2𝜏𝑞
 

(32) 
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4. Comparison of Fourier equation and modified Cattaneo-

Vernotte equation  

Let us compare Fourier and MCV equations. We write these equations in the 

similar form: 

21
0q

q

s
t







−  =


 (33) 

−
𝜕2𝜃

𝜕𝑡2
+

1

𝜏𝑞

𝜕𝜃

𝜕𝑡
− 𝑠𝑞

2𝛥𝜃 = 0 (34) 

The dispersion relation for Fourier Equation (33) is 
2 2

q qi s k = −  (35) 

The dispersion relation for MCV Equation (34) is  

𝑖𝜔 =

1 − √1 + 4𝜏𝑞
2𝑠𝑞

2𝑘2

2𝜏𝑞
. 

(36) 

The schematic plots of (35) and (36) are represented in Figure 5.  

 

Figure 5. The schematic plot of dispersion curves for Fourier (dashed blue line) and 

MCV (solid red line) equations. The asymptote (37) is shown by dot-dashed line. 

In the region of small k the dependence (36) coincides with dependence (35), 

while at 𝑘 → ∞it tends to the asymptote  

𝑖𝜔 =
1 − 2𝜏𝑞𝑠𝑞𝑘

2𝜏𝑞
 (37) 

The analog of group speed for MCV equation is 
2

2 2 2

2
.

1 4

q q

MCV

q q

s kd
i v i

dk s k




= = −

+
 (38) 

This quantity tends to be constant −𝑠𝑞at 𝑘 → ∞. On the other hand, taking into 

account (12) the analog of group speed for Fourier equation is  

22 .F q q

d
i v i s k

dk


= = −  (39) 
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This quantity tends to infinity at 𝑘 → ∞. 

4.1. The plate cooling 

As an example, let us consider the one-dimensional problem of cooling a plate 

with thickness 2l  uniformly heated to a temperature 
0  and with zero temperature at 

the boundaries x l=  . In this case we have natural spatial scale l  and we introduce 

new dimensionless variables �̃� = 𝑡/𝜏𝑞  and �̃� = 𝑥/𝑙 . Then the Fourier equation is 

represented as 
2

2

2
0

t x

 


 
− =

 
 (40) 

while MCV equation is  

𝜕2𝜃

𝜕�̃�2
−

𝜕𝜃

𝜕�̃�
+ 𝜆2

𝜕2𝜃

𝜕�̃�2
= 0 (41) 

where 𝜆 = 𝑙𝑞/𝑙 is the ratio of the diffusion length to half of the plate thickness. 

Corresponding dispersion relations are 
2 2i k = −  (42) 

and 

𝑖𝜔 =
1 − √1 + 4𝜆2𝑘2

2
. (43) 

The solution to this problem in the frame of Fourier equation (40) is expressed 

by the following Fourier series [1]: 

( )

( )

( ) ( )
22 2

0

0

1 2 1 2 14
cos exp

2 1 2 4

m

F

m

m m
x t

m

  






=

 − + + 
= −  

+     
  (44) 

with decrement of temperature damping  

( )
22 22 1

.
4

F m

m
d

 +
=  (45) 

On the other hand, the solution to this problem in the case of MCV equation (41) 

is expressed by the following series: 

( )

( )

( ) ( )
22 2

0

0

1 1 2 11 2 14
cos exp

2 1 2 2

m

M

m

mm
x t

m

 






=

 − + +− + 
 =  
 +  
 

  (46) 

with damping parameter 

( )
22 21 1 2 1

.
2

M m

m
d

 − + +
=  (47) 

Thus, comparing damping parameters in (45) and (47) one can see that in case 

of MCV equation the higher harmonics decay more slowly than in case of Fourier 

equation in accordance with dispersion dependences (42) and (43).  
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Figure 6. The process of cooling the thick plate with 
ql l  (𝜆2 = 0.01). (a) Time dependences of temperature at the 

point �̃� = 0; (b) Temperature profiles at different time (�̃� = 20, 200, 350, 600). The solutions of Fourier equation are 

indicated by dashed blue lines. Solutions of MCV equation are shown by solid red lines.  

 

Figure 7. The process of cooling the thin plate with 
ql l  (𝜆2 = 10). (a) Time dependences of temperature at the 

point �̃� = 0; (b) Temperature distributions at different time (�̃� = 0.01, 0.03, 0.05, 0.1). The solutions of Fourier 

equation are indicated by dashed blue lines. Solutions of MCV equation are shown by solid red lines.  

The results of numerical calculations for the plates with different thicknesses 

are represented in Figures 6 and 7. It is seen that in the case of thick plates (
ql l ) 

the solution of the MCV equation (red solid curves in Figure 6a,b) coincides with 

the solution of the Fourier equation (blue dashed curves in Figure 6a,b). However, 

for thin plates ( ql l ) the solution to the Fourier equation demonstrates a rapid 

decrease in temperature gradients and faster cooling of the plate (blue dashed curves 

in Figure 7a,b) than in the case of the solution described by the MCV equation (red 

solid curves in Figure 7a,b). 

To clarify the time evolution of Fourier and MCV solutions, we analyze the 

behavior of zero harmonics. Let us consider the cooling a plate (thickness 2l ) with 

𝜃0 𝑐𝑜𝑠(𝜋𝑥/2𝑙)  initial temperature and with zero temperature at the boundaries 

x l=  . In this case,  

2 2

0 cos exp ,
2 4

F x t
  

 
  

= −  
   

 (48) 

and 
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2 2

0

1 1
cos exp .

2 2
M x t

  
 

 − + 
 =       

 (49) 

The dependence of the ratio of damping parameters 𝑑𝑀/𝑑𝐹as the function of 𝜆 

is represented in Figure 8. 

 

Figure 8. The dependence of damping parameters ratio 𝑑𝑀/𝑑𝐹 on the parameter 𝜆. 

For thick plates when 𝜆2𝜋2 ≪ 1 we have  

𝑑𝑀 ≈ −
𝜆2𝜋2

4
= 𝑑𝐹 (50) 

and time behavior of Fourier and MCV solutions is practically the same. The 

temperature profiles at different times and the dependence of temperature at the 

central point of the plate on time are shown in Figure 9.  

In opposite case of thin plate when 𝜆2𝜋2 ≫ 1 we have 

𝑑𝑀 ≈ −
𝜆𝜋

2
< 𝑑𝐹 (51) 

and MCV equation predicts slower cooling than Fourier equation. The corresponding 

temperature profiles and time dependences are shown in Figure 10. 

 

Figure 9. The process of cooling the thick plate with ql l  (𝜆2 = 0.01). (a) Time dependences of temperature at the 

point �̃� = 0; (b) Temperature distributions at different time (�̃� = 1, 15, 30, 60). The solutions of Fourier equation are 

indicated by dashed blue lines. Solutions of MCV equation are shown by solid red lines.  
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Figure 10. The process of cooling the thick plate with 
ql l  (𝜆2 = 0.01). (a) Time dependences of temperature at the 

point �̃� = 0; (b) Temperature distributions at different time (�̃� = 0.001, 0.02, 0.05, 0.1). The solutions of Fourier 

equation are indicated by dashed blue lines. Solutions of MCV equation are shown by solid red lines.  

Thus, it is seen that the differences between solutions of Fourier and MCV 

equations are noticeable only at small spatial scales, when the plate thickness is less 

than the diffusion length. This approach can be applied to describe the non-Fourier 

thermal effects at micro scales [8]. 

5. Conclusion 

We propose an alternative relationship between heat flux and temperature 

gradient, which leads us to the MCV equation describing the evolution of 

temperature with a finite rate. Solutions of MCV equations have the same spatial 

temperature distributions as in the case of Fourier and CV equations but describe a 

different dynamics of heat transfer process. The peculiarities of MCV solutions and 

their comparison with Fourier solutions have been analyzed on the example of the 

simple problem of plate cooling. It was shown that on large spatial scales, when the 

plate thickness is greater than the thermal diffusion length, the differences between 

the solutions of MCV and Fourier equations are insignificant. However, in the case 

when the plate thickness is less than the diffusion length, the MCV equation predicts 

a slower cooling in accordance with a finite heat transfer rate. 

Thus, it has been shown that the MCV equation provides the finite rate of 

transfer processes, but it does not have the disadvantages of a CV equation, which 

predicts many paradoxical results associated with the possible propagation of heat in 

the form of real harmonic waves. The same approach can be applied to describe the 

diffusion processes in solids. 
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