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ABSTRACT 

The current study provides a comprehensive analysis of MHD hybrid nanofluids and stagnation point flow toward a 

porous stretched cylinder in the presence of thermal radiation. Here, alumina (Al2O3) and copper (Cu) are considered the 

hybrid nanoparticles, while water (H2O) is the base fluid. To begin, the required similarity transformations are applied to 

transform the nonlinear coupled PDEs into nonlinear coupled ODEs. The obtained highly nonlinear sets of ODEs are then 

solved analytically by using the HAM procedure. The calculations of the thermal radiation term in the energy equation 

are done based on the Roseland approximation. The result of various embedded variables on temperature and velocity 

profiles is drawn and explained briefly. Aside from that, the numerical solution of well-known physical quantities, like 

skin friction and the Nusselt number, is computed by means of tables for the modification of the relevant parameter. The 

analysis shows that the magnetic field has opposite behavior on θ(η) and f'(η) profiles. It is seen that more magnetic factors 

M decline f'(η) and upsurge θ(η). Moreover, the behavior of skin friction and the Nusselt number are the same for the 

magnetic parameter M. Meanwhile, a higher Reynolds number Re declines temperature profile and skin friction while 

upsurging the local Nusselt number. There are many applications of this study that are not limited to engineering and 

manufacturing, such as polymer industry, crystal growth, tumor therapy, plasma, fusing metal in electric heaters, nuclear 

reactors, asthma treatment, gastric medication, cooling of atomic systems, electrolytic biomedicine, helical coil heat 

exchangers, axial fan design, polymer industry, plane counter jets, and solar collectors. 
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1. Introduction and motivation 
Many scientists and researchers have long been interested in the 

work of heat transfer improvement due to boundary layer flow and its 
impact on thermal conductivities, heat capacities, and other physical 
characteristics. Nanofluids have drawn significant interest from 
scientists owing to their ability to motivate heat transfer in a variety of 
engineering and manufacturing applications. Water, motor oils, and 
ethylene glycol are examples of traditional working fluids with a low 
thermal conductivity that limits their usage in modern cooling 
applications. Nanofluids are made up of nanoparticles, including metal 
oxide, carbon nanotubes, copper, alumina, and carbides, that enhance 
the thermal capacity of the base fluid. These nanofluids are utilized in 
contemporary cooling and heating systems, solar panels, cancer 
therapy, and drug delivery systems. First, in 1995, Choi and Eastman[1] 
developed the nanofluid term and discovered that nanofluids have 
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greater thermal conductivity than base fluid. Sheikholeslami et al.[2] explore the behavior of hydrothermal 
nanofluid with an electric field effect toward a complicated geometry. Hamad et al.[3] investigated the free 
convective flow of a nanofluid through vertical semi-infinite flat plates with the impact of magnetic fields. 
MHD is the study of the magnetic impact of an electrically conducted incompressible fluid; it has received 
attention because of its major applications in different areas, such as X-ray radiation, crystal growth, asthma 
treatment, tumor therapy, plasma, fusing metal in electric heaters, nuclear reactors, gastric medication, and 
electrolytic biomedicine. MHD fluid can also be used to manage cooling rates in certain industrial processes. 
Khan et al.[4] discussed the analysis of steady 2D boundary layer MHD nanofluid flow toward a thin needle. 
After the Huminic[5] study, hybrid nanofluids, which contain very small particles with a size of less than 100 
nm, have emerged as a new class of working fluid and are useful in applications such as air conditioner units, 
microchannels, drug reduction, helical coil heat exchangers, cooling of the atomic system, mini channel heat 
sinks, and cooling of the transformer. The literature contains a wealth of information on hybrid nanofluid. For 

example, Gabli et al.[6] investigate the influence of FeଷOସ nanoparticles in non-Newtonian fluids to improve 
heat transmission. Sundar et al.[7] examine the higher temperature conversion and friction characteristics of the 
hybrid nano-liquid. The different features of convective hybrid nano liquids for laminar flow in a tending 
cylinder are analytically studied by Momin[8]. Later on, many researchers[9–16] discussed the impact of various 
nanoparticles on different models of fluid. 

Stagnation point flow is an essential and important aspect of fluid mechanics. The stagnation point 
generally occurs in both engineering and science flow fields. The stagnation point region offers the highest 
mass deposition, pressure, and heat transfer rates. A stagnation point in a flow stream is a position in which 
the velocity of the fluid is zero while the pressure gradients are large. As a result, it has a variety of applications, 
including cooling electronic devices, nuclear reactor cooling, polymer extrusion, axial fan design, the polymer 
industry, plane counter jets, and plastic sheet drawing. Oztop and Abu-Nada[17] were the first researchers to 
suggest the concept of stagnation flow, where they simplified the Navier-Stokes equation into nonlinear ODEs 
by using the similarity transformation. After that, in 1936, Homann[18] found the exact solutions of 
axisymmetric stagnation point flow. The Homann problem toward incompressible viscous fluids approaching 
the rigid surface for a non-axisymmetric flow is generalized by Weidman[19]. Jawad et al.[20] examined the 
analysis of hybrid nanofluid and stagnation point flow across a stretching sheet along with melting heat transfer. 
The Darcy-Forchheimer laminar thin film flow with heat transfer and MHD flow toward an unsteady stretching 
surface has been analyzed by Khan et al.[21]. The effect of buoyancy on 3D stagnation point flow has been 
deliberated by Borrelli et al.[22]. According to them, buoyancy forces favor an opposing flow. The numerical 
solution of nonlinear coupled ODEs using the Runge Kutta 4th order (RK4) method for a steady viscous fluid 
toward a stagnation point is investigated by Grosan et al.[23]. Wang[24–26] examines the 3D stagnation point flow 
in the presence of MHD and nanofluid toward a flat plate, rotating, and shrinking disk. Ahmad et al.[27] study 
the radiation heat transfer influence of copper and alumina nanoparticles toward a stagnation region. The result 
of homo-heterogeneous reactions and magnetic field toward a stagnation point MHD flow past a shrinking or 
stretching sheet is considered by Anuar et al.[28]. They observed that two solutions are visible for shrinking 
sheets, and one of them is stable based on the analysis of stability. Sreekala et al.[29] explore the numerical 
solution of steady 2D MHD nanofluids and viscous flow toward a stretched surface in the presence of partial 
slip and thermal radiation. Jawad et al.[30] have reported a 3D electrically incompressible, unsteady rotating 
single-wall carbon nanotube with thermal radiation. They also examine the numerical results of MHD Darcy-
Forchheimer laminar flow toward a permeable surface in the presence of short and Dufour impacts[31]. Many 
researchers[32–38] perform research on MHD stagnation point flow for different fluids modeled. 

Many engineering functions of convection flow in a porous medium have been deliberated in the last few 
years, including building construction, temperature exchangers, solar collectors, ventilation, and heat removal 
from nuclear reactors. The heat transfer rate of radiation and buoyancy effect on free convection boundary 
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layer MHD flow toward a porous stretching sheet have been studied by Srivastava et al.[39]. The continuous 
flow of fluids across a stretched cylinder as an outer surface was predicted by Wang[40]. Butt et al.[41] studied 
the combined impact of entropy-generating flow across a stretched cylinder in the continuations of a porous 
medium; they found that the rise in permeability and magnetic parameters diminishes the thickness of 
momentum boundary layers. More recently, the researchers[42] discussed the solution of hydrodynamic force 
in a grooved channel with two partially heated circular cylinders. Many researchers have investigated the 
deformable cylinder, either shrinking or stretching, because of its extensive application in the engineering area. 
Abbas et al.[43] calculated the heat transmission rate of viscous fluid in an unstable shrinking/stretching cylinder. 
Abaszadeh et al.[44,45] analyzed the radiative heat transfer rate in 2-dimensional irregular geometries by 
applying the direct forcing immersed boundary lattice Boltzmann method. Atashafrooz et al.[46] simulated the 
combined convective radiative heat transfer for MHD hybrid nanofluid flow. Al Sakkaf et al.[47] developed a 
computational approach for solving nonlinear BVPs involving fluid flow across a shrinking, porous, 
unbounded cylinder. The impact of rotation and transpiration on stagnation flow toward a circular cylinder has 
been examined in the work of Cunning et al.[48]. Wan Zaimi et al.[49] examined an unsteady flow toward a 
shrinking cylinder and discovered that two solutions exist for a particular range of unsteadiness and suction 
parameters. 

The objective of the current study is motivated by the above-mentioned inquiry as well as the wide range 
of industrial and engineering applications. It has been discovered that heat transfer studies in the past have 
been done toward a porous cylinder stretching. However, no attempt has yet been made for the stretching of 
porous cylinders with hybrid nanoparticles and thermal radiation for MHD and stagnation point flow. 
Therefore, in this study, we have investigated a steady 2D MHD and stagnation point flow toward a stretched 
porous cylinder with hybrid nanoparticles and thermal radiation. The governing PDEs have been obtained and 
then transformed into an arrangement of nonlinearly coupled ODEs by using an appropriate similarity 
transformation. The corresponding ODEs are then solved through HAM in Mathematica software. Results are 
graphically demonstrated and enlisted in tabular form to report the influence of the involved parameters on the 
flow field and heat transfer rate. The originality of the model is pointed out as follows: 

1) When compared to individual nanofluids, hybrid nanofluids have higher thermal conductivity, 
mechanical resistance, chemical stability, and physical strength. Therefore, in this study, the 

(AlଶOଷ + Cu/HଶO) hybrid nanofluids flow toward a stretching porous cylinder for heat transfer is 
considered. 

2) The study of magnetic fields has extensive applications in physics, chemistry, and engineering. 
Therefore, in the current work, the magnetic fields are imposed on the flow pattern, while the 
previous work[50] was without the magnetic field. 

3) Thermal radiation is an important characteristic in numerous engineering applications, like advanced 
types of power plants for nuclear rockets, reentry vehicles, and higher-speed flight. Therefore, in this 
study, the energy equation is extended with the radiation parameter. 

4) Unlike any other analytic approach, the HAM allows us a suitable method to achieve the 
convergence of the solution series, so we applied the HAM approach to the solutions of highly 
nonlinear equations. 

5) By adding the above-mentioned properties, we have preserved the concept of Waini et al.[50]. 

2. Problem formulation 
Consider a steady 2D boundary layer of MHD hybrid nanofluid and stagnation point flow toward a 

stretched porous cylinder with a radius 𝑎, as shown in Figure 1. The cylindrical polar coordinates (𝑟, 𝑧) are 

assigned in the radial and axial directions, respectively. On the 𝑧 = 0 plane, the flow of the cylinder is 

considered to be symmetric, and on the 𝑧-axis, it is axisymmetric with the stagnation point at 𝑟 = 𝑎 and 𝑧 = 0. 
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The cylindrical surface velocity is given by 𝑤௦(𝑧) = 2𝑥𝑧 , where the static and stretched cylinders are 

represented by 𝑥 = 0 and 𝑥 > 0, respectively. Moreover, the velocity of the free stream is chosen as 𝑤௘(𝑧) =

2𝑦𝑧, where 𝑦 > 0. Further, the surface and ambient temperatures 𝑇௦ and 𝑇ஶ are taken as constants respectively, 

where 𝑇ஶ < 𝑇௦. 

 
Figure 1. Geometric representation of the physical model for stretching cylinder. 

From the above-mentioned supposition, the governing PDEs are as follows: 
ப(௥௨)

ப௥
+

ப(௥௪)

ப௭
= 0, (1)

𝑢
ப௪

ப௥
+ 𝑤

ப௪

ப௭
= 𝑤௘

ௗ௪೐

ௗ௭
+

ఓ೓೙೑

ఘ೓೙೑
ቀ

ଵ

௥

ப௪

ப௥
+

பమ௪

ப௥మ ቁ −
ఙ೓೙೑

ఘ೓೙೑
𝛽଴

ଶ𝑤 −
ఓ೓೙೑

ఘ೓೙೑௞∗ 𝑤, (2)

ப்

ப௥
+ 𝑤

ப்

ப௭
=

௞೓೙೑

൫ఘ஼೛൯
೓೙೑

ቀ
ଵ

௥

ப்

ப௥
+

பమ்

ப௥మቁ +
ఙ೓೙೑ఉబ

మ௪మ

൫ఘ஼೛൯
೓೙೑

−
ଵ

൫ఘ஼೛൯
೓೙೑

ப௤ೝ

ப௥
. (3)

The suitable boundary constraints are as follows: 
𝑢 = 0,  𝑤 = 𝑤௦,  𝑇 = 𝑇௦ 𝑎𝑡 𝑟 = 𝑎
𝑇 → 𝑇ஶ,  𝑤 → 𝑤௘ ,  𝑎𝑠 𝑟 → ∞.

 (4)

c 
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. (5)

Here, (𝑘∗) represents the heat absorption coefficient, and (𝜎∗) is the Stefan-Boltzmann constant with the 

numerical value 5.670 × 10ି଼𝑊𝑚ିଶ𝐾ସ. The temperature difference is assumed within the flow is 𝑇ସ and 

could be expanded through Taylor’s expansion around 𝑇ஶ and neglecting higher order than we have 𝑇ସ ≈

4𝑇𝑇ஶ
ଷ − 3𝑇ஶ

ସ . 

Hence, Equation (5) can be written as: 
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In order to simplify the present work, we provide a similarity transformation as follows: 

𝑢 = −𝑥𝑎𝑓(𝜂)/(𝜂)
ଵ
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. (7)

Utilizing the above similarity transformation, i.e., Equation (7), into Equations (2) and (3) with boundary 
conditions, i.e., Equation (4), to get the following dimensionless, higher order nonlinear ODEs: 
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The related dimensionless form of boundary constraints (BCs) can be defined as: 

𝑓(1) = 0, 𝑓ᇱ(1) = 𝜖, 𝑓ᇱ(∞) = 1,  𝜃(1) = 1,  𝜃(∞) = 0. (10)

Here prime (′) denotes differentiation in terms of 𝜂, and the stretched parameter is represented by 𝜖 =

𝑥/𝑦  with 0 < 𝜖 , while the cylinder is static by 𝜖 = 0 . The important physical parameters that occur in 

Equations (8) and (9) are 𝑀, 𝑅𝑑, 𝑘ଵ, 𝑃𝑟, and 𝑅௘: 
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The two most well-known physical quantities included, 𝐶௙ and 𝑁𝑢, attract engineers because of their 

numerous applications in thermodynamics. The dimensionless mathematical expression of these quantities is 
given as: 
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Here 𝑞௦ and 𝜏௦ are the surface heat flux and shear stress which is given as: 
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Inserting Equations (7) and (13) into Equation (12) we get 
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3. Thermophysical properties of NF and HNF 
The thermophysical properties of hybrid nanofluid and nanofluid are defined in Table 1[51,52], while the 

properties of nanoparticles AlଶOଷ, Cu, and HଶO are provided in Table 2[52,53]. 

Here the volume fractions and their solid components are given by 𝜙ଵ , 𝜙ଶ  and 𝑡ଵ , 𝑡ଶ , respectively, 

for AlଶOଷ and Cu. Moreover, the subscripts 𝑓, 𝑛𝑓, and ℎ𝑛𝑓 are designated for fluid, nanofluid, and hybrid 
nano-fluid. 

Table 1. Physical property of nano fluid and hybrid nanofluid. 

Thermophysical 
characteristics 

Nano fluid Hybrid nanofluid 

Density 𝜌௡௙ = (1−𝜙ଵ)𝜌௙+𝜙ଵ𝜌௧భ
 𝜌௛௡௙ = (1−𝜙ଶ)[(1−𝜙ଵ)𝜌௙+𝜙ଵ𝜌௧భ

]+𝜙ଶ𝜌௧మ
 

Dynamic viscosity 𝜇௡௙ = 
ఓ೑

(ଵିథభ)మ.ఱ
 𝜇௛௡௙ = 

ఓ೑

(ଵିథభ)మ.ఱ(ଵିథమ)మ.ఱ
 

Heat capacity (𝜌𝐶௣)௡௙ = (𝜌𝐶௣)௧భ
𝜙ଵ+(𝜌𝐶௣)௙(1−𝜙ଵ) (𝜌𝐶௣)௛௡௙ = 

[(1−𝜙ଵ)(𝜌𝐶௣)௙+𝜙ଵ(𝜌𝐶௣)௧భ
](1−𝜙ଶ)+(𝜌𝐶௣)௧మ

𝜙ଶ 

Thermal conductivity ௞೙೑

௞೑
 = 

௞೟భାଶ௞೑ିଶథభ൫௞೑ି௞೟భ൯

௞೟భାଶ௞೑ାథభ൫௞೑ି௞೟భ൯
 

௞೓೙೑

௞೙೑
 = 

௞೟మାଶ௞೙೑ିଶథమ൫௞೙೑ି௞೟మ൯

௞೟మାଶ௞೙೑ାథమ൫௞೙೑ି௞೟మ൯
 

Table 2. Property of AlଶOଷ, Cu, and HଶO. 

Properties 𝝆 (kg/m3) k (W/mK) 𝜷𝟏 × 𝟏𝟎𝟓(1/K) 𝑪𝒑 (J/kgK) 

AlଶOଷ 3970.0 40.0 0.85 765.0 

Cu 8933.0 400.0 1.67 385.0 

HଶO 997.10 0.6130 21.0 4179.0 

4. Solution procedure through HAM 
Many phenomena in the applied science and engineering fields are governed by nonlinear BVPs. As a 

consequence, BVPs have received a significant concentration from engineers, mathematicians, and physicists 
for the sake of discovering and studying their solutions. In general, nonlinear ODEs and PDEs are significantly 
more laborious to solve than linear ODEs and PDEs, particularly by using the analytical method. Therefore, in 
1992, Liao[54] proposed the Homotopy Analysis Method HAM[55–60] based on homotopy in topology; this 
approach is independent of any large or small physical variable. The HAM approach allows great versatility 
in terms of changing and choosing the convergence area and estimating rates. The method has an advantage 
over typical computational methodologies in that it avoids rounding off errors induced by the discretization 
procedure. Therefore, the transformed nonlinear ODEs with the corresponding boundary conditions are solved 
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through HAM using Mathematica software. The basic derivations of the model equations are presented in the 
following way: 

𝑓መ଴(𝜂) = 𝑒ିఎ(𝑒ିଶఎ + 𝜂𝑒ఎ − 𝜖𝑒 + 𝜖𝑒ఎ), 𝜃෠଴(𝜂) = 𝑒ଵିఎ , (15)

The linearity term is chosen as: 

𝐿௙መ൫𝑓መ൯ = 𝑓መᇱᇱᇱ, 𝐿ఏ෡൫𝜃෠൯ = 𝜃෠ᇱᇱ. (16)

The signified linear operator 𝐿௙መ , 𝐿ఏ෡  are fallow as: 

𝐿௙መ(𝑒ଵ + 𝑒ଶ𝜂 + 𝑒ଷ𝜂ଶ) = 0, 𝐿ఏ෡(𝑒ସ + 𝑒ହ𝜂) = 0, (17)

The consistent nonlinear operator N௙መ and Nఏ෡ are selected as: 

N௙መൣ𝑓መ(𝜁; 𝜂)൧ =
𝜇௛௡௙/𝜇௙

𝜌௛௡௙/𝜌௙
൫𝜂𝑓መఎఎఎ + 𝑓መఎఎ൯ + 𝑅௘൫𝑓መ𝑓መఎఎ − 𝑓መఎ

ଶ + 1൯ −
1

2

𝜎௛௡௙/𝜎௙

𝜌௛௡௙/𝜇௙
𝑀𝑓መఎ

−
1

𝜌௛௡௙
𝐹ଵ𝑓መఎ

ଶ −
1

2

𝜇௛௡௙

𝜌௛௡௙
𝑘ଵ𝑓መఎ ,

 (18)

Nఏ෡ൣ𝑓መ(𝜁; 𝜂), 𝜃෠(𝜁; 𝜂)൧ =
1

𝑃𝑟

1/𝑘௙

൫𝜌𝐶௣൯
௛௡௙

/൫𝜌𝐶௣൯
௙

ቆ
𝑘௛௡௙

𝑘௙
+

4

3
𝑅𝑑ቇ 𝜂𝜃෠ఎఎ +

1

𝑃𝑟

𝑘௛௡௙/𝑘௙

൫𝜌𝐶௣൯
௛௡௙

/(𝜌𝐶௉)௙

𝜃෠ఎ

+𝑅௘𝑓መ𝜃෠ఎ +
𝜎௛௡௙/(𝜇𝜎)௙

(𝜌𝐶௉)௛௡௙/൫𝜌ଶ𝐶௣൯
௙

𝑀𝐸𝑐𝑓መଶ𝜂,

 (19)

The 0th-Order systems for Equations (8) and (9) are deliberated as: 

𝐿௙መൣ𝑓መ(𝜁; 𝜂) − 𝑓መ଴(𝜂)൧(1 − 𝜁) = 𝑝ℏ௙መN௙መൣ𝑓መ(𝜁; 𝜂)൧, (20)

𝐿ఏ෡ൣ𝜃෠(𝜁; 𝜂) − 𝜃෠଴(𝜂)൧(1 − 𝜁) = 𝑝ℏఏ෡Nఏ෡ൣ𝑓መ(𝜁; 𝜂), 𝜃෠(𝜁; 𝜂)൧. (21)

While BCs are 

𝑓መ(𝜁; 𝜂)ห
ఎୀଵ

= 0, 
∂𝜃෠(𝜁; 𝜂)

∂𝜂
ቤ

ఎୀଵ

= 𝜖, 𝜃෠(𝜁; 𝜂)ห
ఎୀଵ

= 1,

𝑓መ(𝜁; 𝜂)ห
ఎୀஶ

= 1, 𝜃෠(𝜁; 𝜂)ห
ఎୀஶ

= 0,

 (22)

𝑓መ(𝜂) = 𝑓መ(1; 𝜂), 𝜃෠(𝜂) = 𝜃෠(1; 𝜂), (23)

𝑓መ(𝜁; 𝜂) = ෍ 𝑓መ௡

ஶ

௡ୀଵ

(𝜂)𝜁௡ + 𝑓መ଴(𝜂), 𝜃෠(𝜁; 𝜂) = ෍ 𝜃෠௡

ஶ

௡ୀଵ

(𝜂)𝜁௡ + 𝜃෠଴(𝜂), (24)

𝑓መ௡(𝜂) =
1

𝑛!

∂𝑓መ(𝜁; 𝜂)

∂𝜂
ቤ

௣ୀ଴

, 𝜃෠௡(𝜂) =
1

𝑛!

∂𝜃෠(𝜁; 𝜂)

∂𝜂
ቤ

௣ୀ଴

. (25)

While BCs are 

𝑓መ(1) = 0, 𝑓መᇱ(1) = 𝜖, 𝜃෠(1) = 1, 𝑓መᇱ(𝜂) → 1, 𝜃෠(𝜂) → 0 𝑎𝑠 𝜂 → ∞ (26)

ℜ௡
௙መ(𝜂) =

𝜇௛௡௙/𝜇௙

𝜌௛௡௙/𝜌௙
൫𝜂𝑓መ௡ିଵ

ᇱᇱᇱ + 𝑓መ௡ିଵ
ᇱᇱ ൯ + 𝑅௘ ቌ ෍ 𝑓መ௪ିଵି௝

௪ିଵ

௝ୀ଴

𝑓መ௝
ᇱᇱ − 𝑓መ௡ିଵ

ᇱଶ + 1ቍ −
1

2

𝜎௛௡௙/𝜎௙

𝜌௛௡௙/𝜇௙
𝑀𝑓መ௡ିଵ

ᇱ

−
1

𝜌௛௡௙
𝐹ଵ𝑓መ௡ିଵ

ᇱଶ −
1

2

𝜇௛௡௙

𝜌௛௡௙
𝑘ଵ𝑓መ௡ିଵ

ᇱ ,

 (27)

ℜ௡
ఏ෡ (𝜂) =

1

𝑃𝑟

1/𝑘௙

൫𝜌𝐶௣൯
௛௡௙

/൫𝜌𝐶௣൯
௙

ቆ
𝑘௛௡௙

𝑘௙
+

4

3
𝑅𝑑ቇ 𝜂𝜃෠௡ିଵ

ᇱᇱ +
1

𝑃𝑟

𝑘௛௡௙/𝑘௙

൫𝜌𝐶௣൯
௛௡௙

/(𝜌𝐶௉)௙

𝜃෠௡ିଵ
ᇱ

+𝑅௘ ෍ 𝑓መ௪ିଵି௝

௪ିଵ

௝ୀ଴

𝜃෠௝
ᇱ +

𝜎௛௡௙/(𝜇𝜎)௙

(𝜌𝐶௉)௛௡௙/൫𝜌ଶ𝐶௣൯
௙

𝑀𝐸𝑐𝑓መ௡ିଵ
ଶ ,

 (28)

While 
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𝜒௡ = ൜
1, if 𝑛 > 1
0, if 𝑛 ≤ 1

. (29)

5. Results and discussion 
The influences of various physical parameters on velocity 𝑓ᇱ(𝜂)  and temperature 𝜃(𝜂)  profiles are 

highlighted in this section through graphical representation. These involved pertinent physical parameters are 

magnetic parameter M, inertial parameter 𝐹ଵ, porosity parameter 𝑘ଵ, radiation parameter 𝑅𝑑, Reynolds number 

𝑅௘, Prandtl number 𝑃𝑟 and Eckert number 𝐸𝑐. To determine an approximate solution for the dimensionless 
set of Equations (8) and (9) with boundary conditions as given in Equation (10), we will apply the HAM 
technique in Mathematica software. The numerical results for physical quantities like skin friction 𝐶௙ and 

Nusselt number 𝑁𝑢 are presented in tabular form. We took the fixed values of the governing parameters 
throughout the study as 𝜇௛௡௙ = 0.5 , 𝜇௙ = 0.6 , 𝜎௛௡௙ = 0.5 , 𝜎௙ = 0.6 , 𝜌௛௡௙ = 0.4 , 𝜌௙ = 0.3, 𝑘௛௡௙ = 0.3 , 

𝑘௙ = 0.2, (𝐶௉)௛௡௙ = 0.7, (𝐶௉)௙ = 0.4 and 𝜖 = 0.1. 

5.1. Impact on velocity profile 𝒇ᇱ(𝜼) 

In this subsection, the impacts of various embedded parameters on the velocity profile 𝑓ᇱ(𝜂) have been 
studied with the help of a graphical view, as elaborated in Figures 2–4. Figure 2 is plotted to show the behavior 

of 𝑓ᇱ(𝜂) for different values of magnetic parameter M when 𝐹ଵ = 0.2, 𝑘ଵ = 0.5 and 𝑅௘ = 0.7. It is seen from 

this figure that an increase in the worth of 𝑀 decreases 𝑓ᇱ(𝜂). The purpose behind such an influence of M is 
for the stimulation of a delaying body force, called the Lorentz force, due to the pressure of M in an electrically 
conducting hybrid nanofluid layer. Since M suggests the ratio of hydro magnetic body force and viscous force, 
a larger value of M specifies a stronger hydro magnetic body force, which has a tendency to slow the fluid 

flow. Furthermore, the produced magnetic field upsurges the boundary layer thickness with rise values of 𝑀. 
Physically, it can be deduced that both the applied and induced magnetic fields are going in the same direction. 

The comparison of a velocity gradient for different amounts of inertial parameter 𝐹ଵ is visualized in Figure 3 

when 𝑀 = 0.4, 𝑘ଵ = 1.2 and 𝑅௘ = 0.6. From the graph, a decline effect is noticed in 𝑓ᇱ(𝜂) for the upsurge 

values of the inertia parameter. Physical inertia is the capacity of a mass to resist transitions, therefore, 𝐹ଵ 

raises the resistance to precede more powerfully, thus 𝑓ᇱ(𝜂)  decreases. The estimations of the porosity 

parameter 𝑘ଵ  for velocity curves are shown in Figure 4 when 𝑀 = 0.8, 𝐹ଵ = 0.3, and 𝑅௘ = 0.1. Higher 

estimations of 𝑘ଵ  lead to decline 𝑓ᇱ(𝜂). Actually, the porosity parameter is inversely proportional to the 
Darcian drag force that suggested the Darcy number decreases, and hence this is acting to increase the 

permeability of the fluid flow, which shows to reduce 𝑓ᇱ(𝜂). The improvement of permeability increases the 
resistive forces within the particle, so that the velocity of the fluids will be diminished. 

5.2. Impact on temperature profile 𝜽(𝜼) 

In this subsection, the impacts of various embedded parameters on the temperature profile 𝜃(𝜂) have been 

studied with the help of a graphical view, as shown in Figures 5–9. Figure 5 represents the influence of 𝜃(𝜂) 

for different values of 𝑀 when 𝑅𝑑 = 1.2, 𝐸𝑐 = 0.4, 𝑅௘ = 0.8, and 𝑃𝑟 = 6.7. It is seen from this figure that 
the temperature variation increases when the magnetic parameter M values increase. Basically, the existence 
of a transverse magnetic field creates a Lorentz force that attracts more nanoparticles toward the surface. This 
Lorentz force has the tendency to slow down the fluid motion and the resistance offered to the flow. Therefore, 
it is possible for the temperature to increase; hence, the thermal boundary layer thickness increases. 

Furthermore, the influences of 𝑅௘ on 𝜃(𝜂) are displayed in Figure 6 when other parameters are selected as 

𝑅𝑑 = 1.2, 𝐸𝑐 = 1.7, 𝑀 = 0.4, and 𝑃𝑟 = 6.7. As predicated, the greater values of 𝑅௘ decline the temperature 

field. Physically, the Reynolds number 𝑅௘ indicates the relative significance of the inertia effect compared to 

the viscous effect. Figure 7 highlights the consequence of 𝑃𝑟 on 𝜃(𝜂). From the graph, it is observed that by 

developing 𝑃𝑟 with values of 6.7, 6.8, and 6.9, the thermal boundary layers and fluid temperature reduce. This 
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is because 𝑃𝑟 is the ratio of momentum diffusivity, to thermal diffusivity and the thermal diffusivity becomes 

smaller for higher values of 𝑃𝑟 , which decays the temperature and associated boundary layer thickness. 
Physically, the radiation parameter displays a major role in the progression of heat transmission. Therefore, 

the influence of 𝑅𝑑 on the non-dimensional temperature of the hybrid nanoparticles is demonstrated in Figure 

8. It is obvious from the graph that the rising values of 𝑅𝑑 lead to a release of heat energy in the flow directions, 
and thus the fluid’s temperature increases at any point. The measure of kinetic energy of the flow relative to 

the enthalpy difference across the thermal boundary layers is known as Eckert number 𝐸𝑐, and the role of 𝐸𝑐 

in the energy equation is display in Figure 9. The upsurge values of 𝐸𝑐 rises the temperature field. 

5.3. Impact on skin friction 𝑪𝒇 and Nusselt number 𝑵𝒖 

 
Figure 2. Variation in  𝑓ᇱ(𝜂) for various value of 𝑀 when 𝐹ଵ = 0.2, 𝑘ଵ = 0.5 and 𝑅௘ = 0.7. 

The numerically calculated values have been obtained through a semi analytical method HAM in 
Mathematica software and are tabulated in Tables 3 and 4. The influence of 𝑅௘, 𝑘ଵ, 𝑀, and 𝐹ଵ upon 𝐶௙ is 

constructed in Table 3. The increase in the values of the magnetic parameter rise 𝐶௙. This impact is due to 

rises magnetic factor that upsurge the resistive force on the flow of hybrid nanofluids, known as the Lorentz 

force. The increasing values of 𝑘ଵ and 𝐹ଵ upsurge the skin friction. This is because 𝑘ଵ (the porosity parameter) 
disturbs the boundary layer flow of the stretching cylinder, which enhances the resistive force on the hybrid 

nanofluid. The inertia parameter 𝐹ଵ is directly proportional to the porosity parameter 𝑘ଵ. The upsurge in the 
porosity parameter raises the inertia parameter as a result the opposing force to the hybrid nanofluid boosts. 
More Reynolds number decline 𝐶௙. The impact of 𝑅𝑑, 𝑀, 𝑃𝑟, 𝐸𝑐, and 𝑅௘ upon 𝑁𝑢 is shown in Table 4. It is 

seen that increases in the values of 𝑅𝑑, 𝐸𝑐, 𝑀, and 𝑅௘ upsurge the Nusselt number 𝑁𝑢, while more values of 

𝑃𝑟 decline 𝑁𝑢. 

 
Figure 3. Variation in 𝑓ᇱ(𝜂) for various value of 𝐹ଵ when 𝑀 = 0.4, 𝑘ଵ = 1.2 and 𝑅௘ = 0.6. 



 

9  

 
Figure 4. Variation in 𝑓ᇱ(𝜂) for various value of 𝑘ଵ when 𝑀 = 0.8, 𝐹ଵ = 0.3 and 𝑅௘ = 0.1. 

 
Figure 5. Variation in 𝜃(𝜂) for various value of 𝑀 when 𝑅𝑑 = 1.2, 𝐸𝑐 = 0.4, 𝑅௘ = 0.8 and 𝑃𝑟 = 6.7. 

 
Figure 6. Variation in 𝜃(𝜂) for various value of 𝑅௘ when 𝑅𝑑 = 1.2, 𝐸𝑐 = 1.7, 𝑀 = 0.4 and 𝑃𝑟 = 6.7. 

 

Figure 7. Variation in 𝜃(𝜂) for various value of 𝑃𝑟 when 𝑅𝑑 = 0.5, 𝐸𝑐 = 2.7, 𝑅௘ = 1.5 and 𝑀 = 0.7. 
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Figure 8. Variation in 𝜃(𝜂) for various value of 𝑅𝑑 when 𝐸𝑐 = 1.5, 𝑃𝑟 = 6.7, 𝑅௘ = 0.1 and 𝑀 = 0.5. 

 
Figure 9. Variation in 𝜃(𝜂) for various value of 𝐸𝑐 when 𝑅𝑑 = 0.8, 𝑃𝑟 = 6.7, 𝑅௘ = 2.5 and 𝑀 = 0.1. 

Table 3. Influence of various embedded parameters upon 𝐶௙. 

𝑹𝒆 𝒌𝟏 𝑴 𝑭𝟏 𝑪𝒇 

0.8 0.2 0.5 0.3 1.481045028 

0.9 - - - 1.462384206 

1.0 - - - 1.440279109 

- 0.2 - - 1.340481045 

- 0.3 - - 1.362275047 

- 0.4 - - 1.382720426 

- - 0.5 - 1.124810286 

- - 0.8 - 1.144602709 

- - 1.0 - 1.153860889 

- - - 0.3 1.225860022 

- - - 0.5 1.230290129 

- - - 0.7 1.250430518 

Table 4. Influence of various embedded parameters upon 𝑁𝑢. 

𝑹𝒅 𝑴 𝑷𝒓 𝑬𝒄 𝑹𝒆 𝑵𝒖 

0.3 0.5 5.5 0.8 0.8 1.504237108 

0.5 - - - - 1.501025234 

0.7 - - - - 1.450345207 

- 0.5 - - - 1.236410434 

- 0.8 - - - 1.215302874 
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Table 4. (Continued). 

𝑹𝒅 𝑴 𝑷𝒓 𝑬𝒄 𝑹𝒆 𝑵𝒖 

- 1.0 - - - 1.205485159 

- - 5.5 - - 1.440890179 

- - 5.6 - - 1.486860828 

- - 5.8 - - 1.507430387 

- - - 0.8 - 1.321714801 

- - - 1.1 - 1.310703405 

- - - 1.3 - 1.254080658 

- - - - 0.8 1.382583605 

- - - - 0.9 1.350215207 

- - - - 1.0 1.324702164 

6. Conclusion 
This research work is concerned with emphasizing the problem of MHD hybrid nanofluid and stagnation 

point flow toward a porous stretched cylinder in the presence of thermal radiation, where the hybrid nanofluid 
flow is considered the 2-dimensional and steady-state boundary layer. The nanofluid applied in this research 

work is a mixture of hybrid AlଶOଷ + Cu  nanoparticles and base fluid HଶO. The results are obtained through a 

semi analytical approach HAM in Mathematica software. The effect of various embedded parameters on 𝑓ᇱ(𝜂) 

and 𝜃(𝜂) is highlighted through graphs. The skin friction 𝐶௙ and Nusselt number 𝑁𝑢 are evaluated through the 

numerical values presented in tabulated form. The following outcomes can be drawn from this analysis: 

 For better estimation of the magnetic field, the distribution of the velocity profile declines while the 
distribution of the temperature field upsurges. 

 More estimation of Reynolds number and Prandtl number reduces temperature 𝜃(𝜂) field. 

 The rises values of embedded parameters 𝑘ଵ and 𝐹ଵ decline 𝑓ᇱ(𝜂). 

 An increase in temperature distributions is observed for a more accurate estimation of Eckert number 
and radiation parameter. 

 Higher estimations of 𝑅௘ and 𝑃𝑟 decline 𝐶௙. 

 An increase in values 𝑀, 𝑘ଵ, and 𝐹ଵ upsurge 𝐶௙, while 𝑁𝑢 increases when the values of 𝑀, 𝐸𝑐, 𝑅𝑑, 

and 𝑅௘ increase. 

 The results reveal that hybrid nanofluid is the best capable source to enhance heat transfer rates due 
to its higher thermal conductivity, mechanical resistance, higher chemical stability and physical 
strength. 
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