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ABSTRACT 

Heat conduction theory stipulates that two thermo-physical properties of materials: the thermal conductivity “k” and 

the thermal diffusivity “𝛼” influence the temperature evolution in regular and irregular bodies as a response to various 

cooling/heating conditions. The traditional statement involving the two thermo-physical properties is examined at length 

in the present study for the case of a semi-infinite region. The primary objective of the present study is to investigate the 

influence of the less known thermo-physical property called the thermal effusivity “e” on the incipient surface 

temperature raise in a semi-infinite body affected by uniform surface heat flux. The secondary objective of the study is to 

identify a key figure-of-merit named the dimensionless threshold time that separates the incipient temperature elevation in 

a semi-infinite region from the incipient temperature elevation in a large wall of finite thickness under the same uniform 

surface heat flux. The outcome of the methodical analysis suggests that the accurate estimate for the dimensionless 

threshold time th in the semi-infinite region should be 0.10. 

Keywords: semi-infinite region; uniform surface heat flux; incipient surface temperature elevation; role of the thermal 

effusivity 

1. Introduction 

Unsteady heat conduction in regular and irregular bodies has 

remarkable importance in a multitude of engineering scenarios over 

the world as documented in the heat conduction textbooks by Carslaw 

and Jaeger[1], Arpaci[2], Luikov[3], Myers[4], Grigull and Sandner[5], 

Özişik[6], Poulikakos[7], Jiji[8] and Kakaç et al.[9]. 

With regards to unsteady heat conduction in regular and 

irregular bodies subject to a various heating/cooling conditions, the 

plethora of mathematical procedures has lead to an assortment of: 1) 

exact analytical solutions, 2) approximate analytical solutions and 3) 

approximate/numerical solutions. 

From the framework of thermo-physical properties of materials, 

it transcends that the temperature distribution in regular and irregular 

bodies is dependent upon two thermo-physical properties: the thermal 

conductivity “k” and the thermal diffusivity “”[1–9]. 

The present study focuses on a certain regular body, namely the 

semi-infinite region with constant initial temperature and 

temperature-invariant thermo-physical properties being heated with 

uniform heat flux at the surface (Neumann boundary condition). 

The primary objective of the study is to investigate the potential 
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interplay between the less known thermo-physical property called the thermal effusivity “e” and the surface 

temperature growth in the semi-infinite region as a consequence of the continuous heating. 

The secondary objective of the study revolves around the identification of a dimensionless threshold time 

th that separates a semi-infinite region from a large wall with finite thickness during the initial stages of the 

continuous heating of both. This part establishes a key figure-of-merit that is valuable in the analysis of this 

kind of unsteady heat conduction problems. 

2. Semi-infinite region affected by uniform heat flux 

Consider a semi-infinite region exposed to a nearby heat source. Uniform heat flux 𝑞s emanates from the 

heat source in the form of electrical heating[10] or radiative heating[11] and subsequently intrudes into the 

semi-infinite region. 

Under the assumption that a material has constant thermal conductivity “k” and constant thermal 

diffusivity “” in the temperature interval of operation ∆𝑇 = |𝑇in − 𝑇fin|, the temperature distribution in a 

semi-infinite region available in heat conduction textbooks[1–9] is 

𝑇sir(𝑦, 𝑡) = 𝑇in +
𝑞s
𝑘
[√
4𝛼𝑡

π
exp(−

𝑦2

4𝛼𝑡
) − 𝑦 erfc (

𝑦

√4𝛼𝑡
)] (1) 

where the space coordinate y is measured from the free surface y = 0 of the semi-infinite region inward. Herein, 

the subscript “sir” attached to the symbol T denotes semi-infinite region. 

Upon inspection of Equation (1), it is ascertainable that the temperature distribution 𝑇sir(𝑦, 𝑡) depends on 

the thermal conductivity “k” in the ratio 
𝑞s

𝑘
 preceding the bracket and on the thermal diffusivity “” in three 

different places inside the bracket. They are: 1) in the square root, 2) in the argument of the exponential 

function and 3) in the argument of the complimentary error function. 

Primary target temperatures 

Specifically, the primary target temperature in the continuous heating of the semi-infinite region under 

study here turns out to be the surface temperature 𝑇s. This is so because 𝑇s is the highest temperature in the 

semi-infinite region at any time during the heating, and it must remain below the melting temperature 𝑇melt  of 

the material. A list of typical melting temperatures 𝑇melt  of metals and alloys is available[12]. 

First, evaluating Equation (1) at the surface y = 0 in the semi-infinite region indicates that erfc (0) is 

nullified and exp  (0) equates to 1. Correspondingly, the surface temperature distribution becomes 

𝑇s(𝑡) = 𝑇s,sir(0, 𝑡) = 𝑇in +
𝑞s
𝑘
[√
4𝛼𝑡

π
exp  (0) − 0] (2) 

where the subscript “s” attached to T indicates surface. Here, the thermal conductivity “k” appears in the ratio 
𝑞s

𝑘
 preceding the bracket, whereas the thermal diffusivity “” appears in the square root inside the bracket. 

Second, replacing “𝛼” by its three components k, , cv, Equation (2) readily simplifies to 

𝑇s(𝑡) = 𝑇in +
2

√π

𝑞s
𝑘
√
𝑘

 𝑐v
√𝑡 (3) 

Third, regrouping the three components k,,cv gives way to the definitive equation for the surface 

temperature distribution 
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𝑇s(𝑡) = 𝑇in +
2

√π

𝑞s

√𝑘𝜌𝑐v
√𝑡 (4) 

3. The thermal effusivity 

The thermal effusivity “e”, also called the heat penetration coefficient or the thermal responsivity is a 

thermo-physical property outlined in the heat conduction textbook by Grigull and Sandner[5]. Surprisingly, the 

thermal effusivity “e” is not mentioned in the other six heat conduction textbooks[1–4,6–9] cited in the 

Introduction. 

The thermal effusivity “e” is defined as the square root of the product of the thermal conductivity “k”and 

the heat capacity at constant volume “𝐶v”: 

𝑒 = √𝑘𝐶v = √𝑘 𝑐v (5) 

The earliest use of the term thermal effusivity “e”traceable with modern scientific indexing tools was 

done by Krischer and Esdorn[13] in 1955. 

The thermal effusivity “e” seems like a contrived thermo physical property, but it does have real meaning. 

If two separate semi-infinite regions 1 and 2 at different temperatures 𝑇1 and 𝑇2 and with different thermal 

effusivities “𝑒1” and “𝑒2” suddenly come into perfect contact, then the surface in each semi-infinite region will 

quickly reach an interface temperature 

𝑇if =
𝑇1𝑒1 + 𝑇2𝑒2
𝑒1 + 𝑒2

 (6) 

This relation constitutes a weighted mean of the thermal effusivities “𝑒1” and “𝑒2”. It transcends that the 

will be closer to the temperature of the semi-infinite region with higher effusivity. In other words the three 

options are: if “𝑒1” = “𝑒2”, then 𝑇if lies halfway between 𝑇1 and 𝑇2, if “𝑒1” > “𝑒2”, then 𝑇if will be closer to 

𝑇1, and if “𝑒1” < “𝑒2”, then 𝑇if will be closer to 𝑇2. In this context, the thermal effusivity “e” emerges as an 

important metric for textiles and fabrics. Additional information is given in Xin and Tao[14]. 

Conversely, the thermal diffusivity “𝛼” refers to the thermal conductivity “k” divided by the heat capacity 

at constant volume “𝐶v” 

𝛼 =
𝑘

𝐶𝑣
=
𝑘

𝑐𝑣
 (7) 

At this point, it is important to realize that while the expression for “e” in Equation (5) and the expression 

for “𝛼” in Equation (7) contain the same physical quantities k, , cv, their contributions to unsteady heat 

conduction are quite different. On one hand, the thermal diffusivity 𝛼 is associated with the speed at which 

thermal equilibrium in a material can be reached[1–9]. On the other hand, the thermal effusivity “e” is connected 

to the capacity of a material to absorb heat[5]. 

Finally, the interplay between the thermal effusivity “e” and the thermal diffusivity “𝛼” can be visualized 

explicitly rewriting Equation (5) in the following manner 

𝑒 = √𝑘 𝑐v =
𝑘

√𝛼
=  𝑐v√𝛼 (8) 

Next, returning to Equation (4) combined with Equation (5) brings forth the definitive equation for the 

surface temperature distribution in the semi-infinite region receiving uniform surface heat flux 𝑞s continually. 

That is, 

𝑇s(𝑡) = 𝑇in +
2

√π

𝑞s
𝑒
√𝑡 (9) 

Note that in the second term of the equation, 𝑇s is directly proportional to 𝑞s and √𝑡 , while inversely 

https://en.wikipedia.org/wiki/Weighted_mean
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proportional to “e”. 

An extensive list of thermal effusivities “e” for engineering materials was compiled by Baines[15]. Here, 

the typical values of “e” were grouped in the following manner: 1) 0.01–0.4 for insulating materials, 2) 0.4–1.5 

kW m−2 K−1 s−1/2for polymers, 3) 1.5–9.0 kW m−2 K−1 s−1/2for ceramics and 4) 7–37 kW m−2 K−1 s−1/2 for metals. 

Another list of thermal effusivities “e” for materials related to electronics cooling was compiled by Lasance[16].  

4. Identification of the threshold time between a semi-infinite region and a 

large wall of finite thickness 

The temperature distribution in a semi-infinite region subject to uniform surface heat flux copied from 

Equation (1) is 

𝑇sir(𝑦, 𝑡) = 𝑇in +
𝑞s
𝑘
[√
4𝛼𝑡

π
exp(−

𝑦2

4𝛼𝑡
) − 𝑦 erfc (

𝑦

√4𝛼𝑡
)] (10) 

From geometry, the surface y = 0 in the semi-infinite region is coincident with the surface x = L on the 

right side of a large wall of finite thickness 2L. Elaborating on this issue, we proceed to evaluate the interior 

temperature 𝑇sir(𝐿, 𝑡) in the semi-infinite region coinciding with the mid-plane temperature 𝑇mp(0. 𝑡) in the 

large wall of finite thickness 2L. That is 

𝑇mp(0. 𝑡) = 𝑇sir(𝐿, 𝑡) = 𝑇in +
𝑞s
𝑘
[√
4𝛼𝑡

π
exp(−

𝐿2

4𝛼𝑡
) − 𝐿 erfc (

𝐿

√4𝛼𝑡
)] (11) 

where the subscript “mp” annexed to the symbol T stands for mid-plane in the large wall of finite thickness 2L. 

Dividing Equation(11) by 
𝑞s𝐿

𝑘
 and grouping the temperature difference 𝑇mp(𝑡) − 𝑇in , the resulting 

equation can be rewritten as 

1
𝑞s𝐿

𝑘

[𝑇mp(𝑡) − 𝑇in] = √
4

π
√
𝛼𝑡

𝐿2
exp(−

𝐿2

4𝛼𝑡
) − erfc (

𝐿

2√𝛼𝑡
) (12) 

From here, manipulating the half-thickness 𝐿 of the large wall on the right hand side in Equation (12), the 

equation switches adequately to 

1
𝑞s𝐿

𝑘

[𝑇mp(𝑡) − 𝑇in] =
2

√π
√
𝛼𝑡

𝐿2
exp(−

1

4 (
𝛼𝑡

𝐿2
)
)− erfc

(

 
1

2√
𝛼𝑡

𝐿2)

  (13) 

In the previous equation, the ratio 
𝛼𝑡

𝐿2
 appears in three places: the square root, the argument of the 

exponential function and the argument of the complimentary error function. Since the ratio 
𝛼𝑡

𝐿2
 defines the 

dimensionless time , Equation (13) can be further simplified to the working equation 

𝜙𝑚𝑝() =
2

√π
√ exp (−

1

4
) − erfc (

1

2√
) (14) 

where 𝜙mp denotes to the dimensionless mid-plane temperature 
𝑇mp(𝑡)−𝑇in

𝑞s𝐿

𝑘

 in the large wall of half-thickness 

L. 

Now, we proceed to estimate the dimensionless threshold time th, a figure-of-merit that separates the 

dimensionless temperature sub-distribution in the semi-infinite region from the dimensionless temperature 

distribution in a large wall of half-thickness L. First, to estimate the dimensionless mid-plane temperature 𝜙mp 

https://www.electronics-cooling.com/author/clemens_j_m_lasance/
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at  = 0, a simple trial-and-error procedure is pursued. Various values of the dimensionless time  ranging 

between  = 0 and 0.10 are tested in Equation (14). In particular, when the dimensionless threshold time  =

0.10 is substituted in Equation(14), the dimensionless mid-plane temperature 𝜙mp amounts to 

𝜙mp(0.10) = 0.35683 × 0.08209 − 0.02535 = 0.0394 ≈ 0.005 (15) 

Alternatively, this finding may be rephrased in the following manner: setting a very small 0.5% error in 

the dimensionless mid-plane temperature 𝜙mp(0) for the large wall of finite half-thickness L, the correlative 

dimensionless threshold time that results is th = 0.10.  Moreover, the validity of this number can be 

confirmed by looking at the right lower part in Figure 1. 

 
Figure 1. Dimensionless temperature distribution in the right part of a large wall of finite thickness 2L receiving uniform heat flux. 

5. Conclusion 

The main conclusion that may be drawn from the present study is that the thermal effusivity “e” plays a 

significant role on the incipient growth of the surface temperature in a semi--infinite region under the 

combination of constant initial temperature and uniform surface heat flux. The material of the semi-infinite 

region has temperature--invariant thermal conductivity “k” and temperature--invariant thermal diffusivity “𝛼”. 

It was found that the impact of the thermal effusivity “e” on the surface temperature growth in a 

semi-infinite region is dominant between the dimensionless initial time 𝜏 = 0 and the dimensionless threshold 

time 𝜏th = 0.10. At other interior locations beyond y > 0 different than the surface y = 0, the correlative 

dimensionless temperature vs time relation in Equation (1) is affected by the thermal conductivity “k” outside 

the bracket and by the thermal diffusivity “𝛼” inside the bracket. 

Conflict of interest 

The author declares no conflict of interest. 

 



 

6 

Nomenclature 

𝑐v Specific heat capacity at constant volume 

𝐶v Heat capacity at constant volume, 𝑐v 

𝑒 Thermal effusivity, √𝑘𝑐v 

𝐹𝑜 Fourier modulus in Figure 1, 
𝑡

𝐿2/
 

k Thermal conductivity 

2L Thickness of large wall 

𝑞s Uniform surface heat flux 

t Time 

𝑡th Threshold time 

T Temperature 

Tin Initial temperature 

Ts Surface temperature 

x Space coordinate in a large wall 

X Dimensionless 𝑥 in Figure 1, 
𝑥

𝐿
 

y Space coordinate in a semi-infinite region 

Greek letters 

 Thermal diffusivity, 
𝑘

𝑐v
 

 Density 

 Dimensionless time, 
𝑡

𝐿2/
 

th Dimensionless threshold time, 
𝑡th

𝐿2/
 

𝜙 Dimensionless T, 
𝑇−𝑇in

𝑞s/𝑘
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