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ABSTRACT 

The work is devoted to the numerical solution of the initial boundary value problem for the heat equation with a 

fractional Riesz derivative. Explicit and implicit difference schemes are constructed that approximate the boundary value 

problem for the heat equation with a fractional Riesz derivative with respect to the coordinate. In the case of an explicit 

difference scheme, a condition is obtained for the time step at which the difference scheme converges. For an implicit 

difference scheme, a theorem on unconditional convergence is proved. An example of a numerical calculation using an 

implicit difference scheme is given. It has been established that when passing to a fractional derivative, the process of heat 

propagation slows down. 
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1. Introduction 

At the heart of modern science is an experimental dialogue with 

nature that involves active intervention rather than passive observation. 

This science sets the task for scientists to learn how to control the 

physical entity, to force it to act in accordance with the “scenario” that 

follows from the theoretical scheme put forward by scientists. 

In a fractal medium, in contrast to an ordinary continuous medium, 

a randomly wandering particle moves away from the reference point 

more slowly, since not all directions of motion become available to it. 

As shown in Uchaikin and Sibatov[1], the slowdown of the diffusion 

process in fractal media is so significant that physical quantities begin 

to change more slowly than in ordinary media, and this effect can be 

taken into account using integral-differential equations containing a 

fractional derivative. 

Due to the great difficulties that arise in the search for analytical 

solutions of equations with fractional derivatives, along with analytical 

methods, numerical methods for solving fractional differential 

equations are also being developed. The processes of anomalous 

diffusion and diffusion of particles in inhomogeneous media were 

numerically studied by Reviznikov and Slastushenskiy[2]. The works 
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of Liu and Xu[3], Meerschaert and Tadjeran[4, 5] as well as our recent paper[6] are also devoted to numerical 

methods for solving boundary value problems for partial differential equations of fractional order. The paper of 

Sweis et al.[7] considers a class of differential equations of fractional order with a delay of order ρ and 

Atangana-Baleanu fractional derivatives in the sense of Caputo fractional derivatives. For the numerical 

solution, the Galerkin algorithm based on the shifted Legendre polynomials was developed. Convergence and 

error are proved. Numerical examples are given to determine the efficiency of the algorithm. 

In this paper, we construct a numerical solution of the initial-boundary value problem for the heat 

equation with a fractional Riesz derivative with respect to the spatial coordinate. The fractional Riesz 

derivative, in contrast to the fractional derivatives of Caputo and Riemann-Liouville, is invariant under the 

transformation xx −→ . 

2. Mathematical statement of the problem 

Consider in the region }0,:),{( TtLxLtxD +−=  a boundary value problem for the heat equation 

with a fractional Riesz derivative with respect to the coordinate.  

The task. Find a solution )(),( 2 DCtxu   to the equation: 

( ) ( )txftxuDtxCtxu R
t ,),(,),( +=   (1) 
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is a partial Riesz fractional derivative. 

In contrast to the Riemann-Liouville and Caputo fractional order derivatives, the Riesz fractional 

derivative is invariant under the transformation xx −→ , that is, the equality takes place: 
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Equation (1) will take the form: 
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The boundary value problem for Equation (1) will be solved numerically. To do this, we introduce a grid 
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where ][•  is the integer part of number. 

According to the Letnikov theorem, if )(2 DCf   then the Grunwald-Letnikov derivative coincides with 

the Riemann-Liouville derivative (see Samko et al.[8]). 

Using the Grunwald-Letnikov definition of the fractional derivative with respect to space, we replace the 

fractional derivatives with respect to the coordinate on the right side by the difference expressions: 
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For the derivative tu  on the segment  1, +nn tt  the difference approximation 
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where ),(  ),,( 11
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i txfftxCC  ++ ,   is a numeric parameter.  

In the case 1= , we obtain an implicit difference scheme with a lead on the template:  
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Theorem 1. Difference Equation (9) is unconditionally stable. 

Proof of Theorem 1. After elementary transformations (9) will take the form: 



 

4 

1

1

0

1
1

1
1

1

0

1 +

+−

=

+
−+

+
+−

+

=

+ +=−−  n
i

iK

k

n
i

n
kiki

n
ki

i

k

ki
n
i fuuququ  , 

)(0
ii xu = ,  

)(10 n
n tu = , 

)(2 n
n
K tu = , 

where 








h

C n
i

i









−−

=

+

)2(
2

cos)2(2

1

. 

The system of equations in matrix form takes the form: 
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K
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The matrix of coefficients looks like: 
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Thus, all eigenvalues of the matrix A are in the conjunction K of circles centered at iia  and c with radii: 
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It follows from Equations (10) and (11) that the matrix A eigenvalues are greater than 1. Then the matrix 

1−A  eigenvalues are positive and less than 1. 

Therefore, difference Equation (9) is unconditionally stable. □ 

For the case 0=  we get an explicit difference scheme: 
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After elementary transformations, the difference Equation (12) will take the form: 
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Theorem 2. Difference Equation (13) is stable if 
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1
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Proof of Theorem 2. The finite difference Equation (13) can be reduced to the system of equations: 

nnn fAUU +=+ 1 . 
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Here   0,1 000 == jaa  if 1,,...,2,1 == KNaKj   and 0=Kja  if   −=−= 1,1,...,1,0 qKj . For  2 1  and 

1i , we have 0iq . Then the eigenvalues of the matrix A are found in the conjunction K of circles with 
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It follows from Equations (14) and (15) that in the case ,141 −− i  i.e., 
max2

1
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  all eigenvalues 

of the matrix A are less than 1 in absolute value. 

Therefore, the difference method is stable if 
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When using an explicit difference scheme to find a numerical solution to the initial-boundary value 

problem (1), we arbitrarily set a step along the coordinate that satisfies the condition 1h . And we find the 

time step from the condition 
max2 C
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Based on the difference scheme (7), we study the following problem. 
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 is a mobile heat source, q  is a consumed power, T  is a temperature distribution 

parameter. We consider the case when 1=L . 
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3. Results and discussion 

Let us consider the case when 100=q , 2)()(,1)( 21 === ttx    . 

Figure 1 shows the dependences of temperature on the coordinate at different times and for the values 

of the fractional derivative parameter 75.1=  and 2999.1 = . As we see from the figures, the process of 

temperature distribution slows down when passing to fractional derivatives, which is typical for media with a 

fractal structure. 

  
(a) (b) 

Figure 1. Graphs of the dependence of temperature on the coordinate for 75.1=  (a) and 999.1=  (b) and times: 1 second (1), 2 

seconds (2), 3 seconds (3), 4 seconds (4). 

4. Conclusions 

In this paper, explicit and implicit difference schemes are constructed that approximate the boundary 

value problem for the heat equation with a fractional Riesz derivative with respect to the coordinate. In the case 

of an explicit difference scheme, a condition is obtained for a time step under which the difference scheme is 

stable, and for an implicit difference scheme, an unconditional stability theorem is proved. As an example, we 

study a boundary value problem for the heat equation with a fractional Riesz derivative with respect to the 

coordinate and a moving Gaussian heat source. It was found that the process of temperature distribution slows 

down when passing to fractional derivatives, which is typical for media with a fractal structure. As is known 

from numerous works, the slowdown of the diffusion process in fractal media is so significant that physical 

quantities begin to change more slowly than in ordinary media, and this effect can be taken into account only 

with the help of integral-differential equations containing a fractional derivative. 

In future works, we are going to investigate the third initial-boundary value problem for the heat equation 

with a fractional Riesz derivative with respect to the coordinate. At this stage, an a priori estimate is obtained 

for solving the differential problem. 
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