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ABSTRACT 
Computer programs for the solution of everyday problems are very common because of the speed with which re-

sults can be obtained, which by traditional methods would be very laborious and especially those in which the solutions 
take repeated calculations. The work intends to demonstrate how, through programming, applying the exact solution 
method, fast and precise results can be obtained on similarities and differences between different geometries in heat 
transfer, which demonstrate the behavior, according to parameters, under equal conditions (geometric properties, diam-
eters, lengths, thicknesses, volumes) and physical properties (thermal conductivity, specific heat and density), appreci-
ating how they influence results such as cooling times, production according to the physical properties and design of the 
equipment, consumption rates, core and surface temperatures and others, according to the plastic pipe extrusion method, 
necessary in production processes that require constant monitoring. 
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1. Introduction
Wolfram Mathematica, by its very nature, is used in the scientific 

areas of engineering in its various mathematical and computational 
specialties. Commonly considered a computer algebra system, 
Mathematica is also a powerful tool for general-purpose programming. 
Hence, it can be used for multiple solutions to engineering 
problems[1-3], being a language that is constantly updated, always with 
greater application possibilities. 

Generally, the solution to heat transfer problems in pipes and 
plates in the extrusion technology are performed by the first term 
approximation method, taking into account the ease of calculation, 
especially for problems where a high accuracy is not required, being 
able to reach with it up to 96%–98%, approximately, making it very 
complex to reach higher accuracies without using the exact solution 
method. 

The exact solution method requires numerical analysis for its 
solution due to the complexity of its equations, hence the use of 
different software. In this case, the solution with Wolfram Mathematica 
8.0 always starts from the conformation of the equations that represent 

zim://A/A/%C3%81lgebra%20computacional.html
zim://A/A/%C3%81lgebra%20computacional.html
zim://A/A/%C3%81lgebra%20computacional.html
zim://A/A/Lenguaje%20de%20programaci%C3%B3n.html
zim://A/A/Lenguaje%20de%20programaci%C3%B3n.html
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each of these geometries, for the case of plates, 
Cartesian coordinates, and for pipes, cylindrical 
coordinates, which must be meticulously developed 
to obtain the desired results, since the solution for 
each of them have similarities[4-6]. 

The work aims to demonstrate, the feasibility 
of using this software, to achieve fast results and 
with the pressures that are required, for each of the 
particularities that are presented, being able to be a 
way of comparison of parameters, such as the 
energy behavior of different geometries. In this case, 
plates and pipes, in volumes, taking into account 
similar parameters and raw materials, in terms of 
production, consumption rates, cooling times, 
external and internal temperatures and others[7-9]. 

2. Materials and methods 

In heat transfer, there are many ways to solve 
problems used in engineering, in this first case, the 
solution for programming in Wolfram Mathematica 
8.0, corresponds to a plate, surrounded by a con-
vecting fluid, at the final temperature Tf, which is 
instantly introduced into the fluid under conditions 
where the resistance to heat transfer is very small, 
see in Figure 1. By the concept of plate and that the 
fluid is the same and is on both sides, there is sym-
metry and it turns out that the convective coefficient 
hc, will be the same between both half-plates, so 
that, considering this infinite plate of thickness (esp. 
= 2 L) for which at time (t = 0), there is a known 
temperature distribution and in which there are no 
edge effects, the differential equation[1,10,11], equa-
tion (1), applies. 

 

 

Figure 1. Interpretation of the convection boundary condition on an infinite plate. 

𝛼𝛼 𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2

= 𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

, with T = (x,t) 
(1) 

By changing the variable Φ = T – Tf with Tf ≠ 
0; equation (2): 

𝛼𝛼
𝜕𝜕2Φ
𝜕𝜕𝑥𝑥2

=
𝜕𝜕Φ
𝜕𝜕𝜕𝜕

 
(2) 

Whose general solution is equation (3): 

Φ = 𝜆𝜆𝑒𝑒−𝜆𝜆2𝛼𝛼∙𝜕𝜕[𝐵𝐵1𝑆𝑆𝑒𝑒𝑆𝑆(𝜆𝜆𝑥𝑥) − 𝐵𝐵2𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆𝑥𝑥)] 
(3) 

For T = 0, –L ≤ X ≥ L; Ф = f(x) or To 2 for T > 
0 it will be satisfied; equation (4): 

𝑥𝑥 = 0: �
𝜕𝜕∅
𝜕𝜕𝑥𝑥
�
𝑥𝑥=0

= 0, 𝑥𝑥 = ±𝐿𝐿 

−𝑘𝑘 �
𝜕𝜕∅
𝜕𝜕𝑥𝑥
�
𝑥𝑥=±𝐿𝐿

= ℎ𝑐𝑐∅ 

�
𝜕𝜕∅
𝜕𝜕𝑥𝑥
�
𝑥𝑥=±𝐿𝐿

= −
ℎ𝑐𝑐
𝑘𝑘
∅ = 𝑎𝑎1∅ 

(4) 

As the fluid on both sides of the plate is the 
same, then Φ-x = Φ+x, hc/k = Cte = –a1 and the 
equality is satisfied for any value of Ф. 

Taking into account the boundary condition x 
= 0; equation (5): 

(
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

)𝑥𝑥=0 = 0 = 𝜆𝜆𝑒𝑒−𝜆𝜆2𝛼𝛼∙𝜕𝜕[𝐵𝐵1𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆𝑥𝑥)

− 𝐵𝐵2𝑆𝑆𝑒𝑒𝑆𝑆(𝜆𝜆𝑥𝑥)]𝑥𝑥=0 ⇒ 𝐵𝐵1 = 0 
(5) 

The solution reduces to equation (6): 
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𝜕𝜕 = 𝐵𝐵𝑒𝑒−𝜆𝜆2𝛼𝛼∙𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆𝑥𝑥) 
(6) 

The boundary condition at (x = ±L) allows to 
obtain the values of λ; equation (7): 

�
𝜕𝜕∅
𝜕𝜕𝑥𝑥
�
𝑥𝑥=±𝐿𝐿

= −
ℎ𝑐𝑐
𝑘𝑘
∅ ⇒ 𝐵𝐵𝜆𝜆𝑒𝑒−𝜆𝜆2𝛼𝛼∙𝜕𝜕[−𝑆𝑆𝑒𝑒𝑆𝑆(𝜆𝜆𝑥𝑥)]𝑥𝑥=𝐿𝐿

= −
ℎ𝑐𝑐
𝑘𝑘

[𝐵𝐵𝑒𝑒−𝜆𝜆2𝛼𝛼∙𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆𝑥𝑥)]𝑥𝑥=𝐿𝐿 

𝑆𝑆𝑒𝑒𝑆𝑆(𝜆𝜆𝐿𝐿) =
ℎ𝑐𝑐
𝑘𝑘𝜆𝜆

𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆𝐿𝐿);𝐶𝐶𝐶𝐶𝜕𝜕𝐶𝐶(𝜆𝜆𝐿𝐿) =
𝜆𝜆𝐿𝐿
𝐵𝐵𝐵𝐵

 

(7) 
This equation is satisfied for an infinite num-

ber of values of the parameter (λL), so that for a 
given value of L, its solutions are found for various 
values of λ, intersecting at the curves: equation (8), 

𝑦𝑦 = 𝐶𝐶𝐶𝐶𝜕𝜕𝐶𝐶(𝜆𝜆𝐿𝐿);𝑦𝑦 =
𝜆𝜆𝐿𝐿
𝐵𝐵𝐵𝐵

 

(8) 
Note the dependence of the equation on Bi. 
Therefore, the temperature distribution is a 

series of the form; equation (9): 

 

(9) 
In which λn is the nth root of the equation; 

equation (10): 

 
(10) 

The initial condition Φ = f(x) = Φ0 = Cte, for (t 
= 0); equation (11): 

 
(11) 

From which Bn is obtained, taking into account 
the theory of orthogonal functions. 

The expression of the temperature distribution, 
on the infinite plate, as a function of position and 
time; equation (12): 

ϕ = 2� 𝜆𝜆𝑛𝑛𝑒𝑒−λn
2α∙t

∞

n=1

𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆𝑛𝑛𝑥𝑥)
𝜆𝜆𝑛𝑛𝐿𝐿 + 𝑆𝑆𝑒𝑒𝑆𝑆(𝜆𝜆𝑛𝑛𝐿𝐿)𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆𝑛𝑛𝑥𝑥) 

�𝑓𝑓(𝑥𝑥)𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆𝑛𝑛𝑥𝑥)𝑑𝑑𝑥𝑥

L

0

 

(12) 

For the particular case, in which the 
first boundary condition would be of the form. 

Φ = f(x) = Φ0 = Cte the above equation be-
comes; equation (13): 

 
(13) 

The temperature Φc = Tc – Tf on the axis of the 
plate ( 0)x =  of thickness (2 L) is equation (14): 

 
(14) 

For the second case, programming in Wolfram 
Mathematica 8.0, for the pipe, the procedure is sim-
ilar to the previous one, but the characteristic length 
of the plate (L), which varies from the surface to the 
center, is replaced by the (r), which is the radius, 
which varies from the surface of the pipe to its inner 
radius, another difference, in this case, is that it is 
solved with the equation in cylindrical coordinates 
and the Bessel and Newman equations are used, due 
to the temperature distribution that exists in this 
type of geometry, in addition, in the plate, there is 
dependence of the Biot number and in the pipe 
there is not equation (15): 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑟𝑟2

+
1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

=
1
𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,𝑤𝑤𝐵𝐵𝜕𝜕ℎ 𝜕𝜕 = 𝑇𝑇 − 𝑇𝑇𝑓𝑓 

(15) 
Where Φ, is the dimensionless temperature, 

which is a function of radius and time, T is the 
temperature in degrees Celsius, Tf is the final tem-
perature. Applying the method of separation of var-
iables, the resulting ordinary differential equations 
and their solutions are equation (16): 

 
General solutions: 

 
(16) 

Where R is a function, which depends only on 
the radius, J0 is the zero-order first-species Bessel 
function, Y0 is the zero-order second-species Bessel 
function (Newman function), B1 and B2 are con-
stants; equation (17): 
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𝑑𝑑𝑑𝑑
𝑑𝑑

= −𝜆𝜆2𝛼𝛼 ∙ 𝑑𝑑𝜕𝜕,𝐶𝐶𝑒𝑒𝑆𝑆𝑒𝑒𝑟𝑟𝑎𝑎𝑔𝑔 𝐶𝐶𝐶𝐶𝑔𝑔𝑠𝑠𝜕𝜕𝐵𝐵𝐶𝐶𝑆𝑆: 𝑑𝑑 = 𝐵𝐵3𝑒𝑒−𝜆𝜆
2𝛼𝛼∙𝜕𝜕 

(17) 
Where θ is a function that depends only on 

time and B is a constant. 
If it were a solid cylinder, then, as it cannot 

admit in its axis (r = 0), an infinite solution, because
0Y = −∞  results that B2 has to be (0) and we obtain 

an equation of the form; equation (18): 

 
(18) 

The general solution that provides the temper-
ature distribution; equation (19): 

 
(19) 

In which B and λ are constants that are deter-
mined by the boundary conditions. 

The initial condition is: 
t = 0; 0cor = R; Φ = f(r)o’Φ0 

The condition for an abrupt change of temper-
ature on the lateral surface of the infinite cylinder; 
equation (20): 

 

 
(20) 

Therefore, equation (21): 

 

(21) 
Which has to be fulfilled for any value of t 

with the conditions: 
1) To, t = 0; 0 ≤ r ≤ R; Φ = f(r)o’Φ0 = T0 
2) To, t ＞ 0; ∂Φ/∂rr = R = –(–hc/k)T  
Taking into account the second boundary con-

dition and that (∂/∂r)J0(λr) = –λJ1(λ1); equation (22): 

𝐵𝐵𝑒𝑒−𝜆𝜆2𝛼𝛼𝜕𝜕[−𝜆𝜆𝐽𝐽1(𝜆𝜆𝑟𝑟)]𝑟𝑟=𝑅𝑅
= −

ℎ𝑐𝑐
𝑘𝑘

[𝐵𝐵𝑒𝑒−𝜆𝜆2𝛼𝛼𝜕𝜕𝐽𝐽0(𝜆𝜆𝑟𝑟)]𝑟𝑟=𝑅𝑅 ⇒ 𝜆𝜆𝜆𝜆

=
𝐽𝐽0(𝜆𝜆𝜆𝜆)
𝐽𝐽1(𝜆𝜆𝜆𝜆)

𝐵𝐵𝐵𝐵;
𝐽𝐽0(𝜆𝜆𝜆𝜆)
𝐽𝐽1(𝜆𝜆𝜆𝜆)

=
𝜆𝜆𝜆𝜆
𝐵𝐵𝐵𝐵

= y 

(22) 
Which is satisfied for infinite values of λ with 

the intersection of the curves. 
Being the values of λn roots of the equation; 

equation (23): 

 

(23) 
For the case of a pipe, with initial conditions: t 

= 0; ri ≤ r ≤ re; Φ = f(r) or Φ0, the second constant 
does not become zero, as in the cylinder[1], this is 
also sought, with the boundary conditions according 
to Figure 2. Its obtaining is more complex, because 
the constant B2, cannot be zero, because the center 
(r = 0), does not enter the domain and in order to 
obtain a solution to the problem, a constant is writ-
ten as a function of the other, from the boundary 
conditions and thus, applying the theory of orthog-
onal functions, an expression for this constant is 
obtained. Boundary conditions for t > 0; equation 
(24): 

 
(24) 

  
Figure 2. Interpretation of the convection boundary condition in 
an infinite pipe volume element. 

From the boundary conditions, the transcend-
ent equation is obtained, whose roots are the λn of 
the solution equation; equation (25): 

𝜆𝜆𝑛𝑛[𝐽𝐽l(𝜆𝜆𝑛𝑛𝑟𝑟𝑒𝑒)𝑌𝑌l(𝜆𝜆𝑛𝑛𝑟𝑟𝐵𝐵) − 𝐽𝐽l(𝜆𝜆𝑛𝑛𝑟𝑟𝐵𝐵)𝑌𝑌l(𝜆𝜆𝑛𝑛𝑟𝑟𝑒𝑒)]
− 𝑎𝑎l[𝐽𝐽0(𝜆𝜆𝑛𝑛𝑟𝑟𝑒𝑒)𝑌𝑌l(𝜆𝜆𝑛𝑛𝑟𝑟𝐵𝐵)
− 𝐽𝐽l(𝜆𝜆𝑛𝑛𝑟𝑟𝐵𝐵)𝑌𝑌𝑜𝑜(𝜆𝜆𝑛𝑛𝑟𝑟𝑒𝑒)] = 0 

(25) 
Where Jl is the first-species, first-order Bessel 

function and Yl is the second-species, first-order 
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Bessel function. 
It turns out that the general solution of the 

problem is a linear combination of infinite solutions, 
for infinite self values of λ; equation (26): 
ϕ(𝑟𝑟, 𝜕𝜕)

= � 𝑒𝑒−λ
2 α∙t

∞

n=1

∫ 𝑟𝑟𝜕𝜕𝑜𝑜[𝐽𝐽0(𝜆𝜆𝑛𝑛𝑟𝑟)𝑌𝑌l(𝜆𝜆𝑛𝑛𝑟𝑟𝐵𝐵) − 𝐽𝐽l(𝜆𝜆𝑛𝑛𝑟𝑟𝐵𝐵)𝑌𝑌𝑜𝑜(𝜆𝜆𝑛𝑛𝑟𝑟)]𝑑𝑑𝑟𝑟re
ri

∫ 𝑟𝑟[𝐽𝐽0(𝜆𝜆𝑛𝑛𝑟𝑟)𝑌𝑌l(𝜆𝜆𝑛𝑛𝑟𝑟𝐵𝐵) − |𝐽𝐽l(𝜆𝜆𝑛𝑛𝑟𝑟𝐵𝐵)𝑌𝑌𝑜𝑜(𝜆𝜆𝑛𝑛𝑟𝑟)2𝑑𝑑𝑟𝑟re
ri

∙ [𝐽𝐽0(𝜆𝜆𝑛𝑛𝑟𝑟)𝑌𝑌l(𝜆𝜆𝑛𝑛𝑟𝑟𝐵𝐵) − 𝐽𝐽l(𝜆𝜆𝑛𝑛𝑟𝑟𝐵𝐵)𝑌𝑌𝑜𝑜(𝜆𝜆𝑛𝑛𝑟𝑟) 
(26) 

The dimensional temperature is a function of 
time and radius, (ri, re). 

Tempi = Φ (ri, t) 
where: tempi is the a-dimensional temperature 

at the inner radius of the pipe. 
tempe = Φ (re, t): A-dimensional temperature 

at the outer radius of the pipe.  
Finally, the temperature is calculated for any 

time and thickness[14]. For the temperature at the 
surface or outer radius (Ts); equation (27): 

𝜕𝜕(𝑟𝑟𝑒𝑒 , 𝜕𝜕) =
𝑇𝑇𝑠𝑠 − 𝑇𝑇∞
𝑇𝑇𝑖𝑖 − 𝑇𝑇∞

 

(27) 
And for the intermediate temperature or inner 

radius (T0); equation (28): 

𝜕𝜕(𝑟𝑟𝐵𝐵, 𝜕𝜕) =
𝑇𝑇𝑜𝑜 − 𝑇𝑇∞
𝑇𝑇𝑖𝑖 − 𝑇𝑇∞

 

(28) 
Assume that convection is forced because 

water is driven by a pump. 
To give a solution to all these cases, it is 

necessary to know or make some calculations such 
as. Width: l1 = Height: l2 Length: Therefore, the 
area of the bathtub will be: Ab = l1 × l2. 

Water flow: Q, 
Calculation of water velocity: Area of water 

flow, Aa = Area of bath - Area of (pipe, cylinder, or 
plate). 

Pipe area = π. (D/2)2. If the water flow is 
known then, 𝑄𝑄 = 𝐴𝐴𝑎𝑎𝑉𝑉 and 𝑉𝑉 = 𝑄𝑄/𝐴𝐴𝑎𝑎. 

The heat transfer coefficient (h) is calculat-
ed by calculating the Reynolds number to determine 
whether the regime is laminar or turbulent and us-
ing the corresponding Nusselt correlations; equation 
(29): 

 

Reynolds:  

(29) 
Where ρ = Water density (kg/m3), V = Velocity of 
water (m/s), D = Diameter or thickness (m); µ = 
Dynamic viscosity of water (N·s/m2). With red and 
the Prandt number (Pr), the Nusselt Number (Nus) is 
calculated. Pr is calculated by equation (30): 

 
(30) 

Where: 
ν = rate of momentum diffusion and α = rate of 

heat diffusion. 
μ = Dynamic viscosity of water; Cp = Specific 

heat of water, k = Thermal conductivity of water 
W/m.K. 

This value is easily found in tables. Calcula-
tion of the Nusselt number; equation (31): 

𝑁𝑁𝑠𝑠���� = 𝐶𝐶𝜆𝜆𝑒𝑒𝐷𝐷𝑚𝑚𝑃𝑃𝑟𝑟 
(31) 

Applicable regime for: 0.4 ＜ Re ＜ 44 × 105; 
Pr ≥ 0.7; where: C and m are constants taken by 
table according to Reynolds value. Other correla-
tions; equation (32) and (33): 

𝑁𝑁𝑈𝑈𝑈𝑈 = 0.3 +
0.62 ∙ 𝜆𝜆𝑒𝑒𝐷𝐷0.5 ∙ 𝑃𝑃𝑟𝑟

1
3

�1 + �0.4
𝑃𝑃𝑟𝑟
�
2
3�

0.25

0

∙ ��1 +
𝜆𝜆𝑒𝑒𝐷𝐷

282000�
5
8
�

0.8

; 

(𝜆𝜆𝑒𝑒𝐷𝐷 ∙ 𝑃𝑃𝑟𝑟 > 0.02) 
(32) 

𝑁𝑁𝑈𝑈𝑈𝑈 = Pr0.3 ∙ (0.35 + 0.47 ∙ Re0.52) 
(33) 

Applicable regime for: Re ＞ 200 and Pr ＞ 
0.7.  

Convective coefficient; equation (34): 

ℎ = 𝑁𝑁𝑠𝑠𝐶𝐶
𝑘𝑘
𝐷𝐷

 

(34) 
The physical properties of the material used 

were: 
K = 0.22 W/m. 0K thermal conductivity. Ρ = 

1,400 kg/m3 density. 
Cp = 1,273 J/kg0k specific heat. 
In addition, the properties of the solid, which is 

cooled or heated, such as density, specific heat and 
thermal conductivity, must be known or calculated, 
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and with these elements we proceed to the 
programming. The flow rate of the machine used 
was 270 kg/h, with 143 kW of general power, 85% 
of this power was considered, equal to 122 kW. 

The program starts, with the input of the data: 
Pipe diameter or width of the plate (mm), thickness 
for both (mm), initial material temperature (℃), 
cooling water temperature (℃), desired temperature 
(℃) for the surface, inner radius or center, machine 
flow rate (kg/h), heat exchanger dimensions, 
material and water properties, 0 type of exchange 
surface. With these data, it performs the cooling 

time calculation, based on the flow according to 
machine design. Subsequently, calculate Ti and Te 
according to the desired river temperature, or center 
and with this data the time it takes for the cooling to 
reach the desired temperature, depending on the 
case, which takes into account the thermophysical 
properties of the material, using the working tool 
(Wolfram Mathematica 8.0 software), it is 
compared with the desired temperature, if it is 
higher or lower, it is added, or subtract the desired 
value, until the necessary difference is reached, 
according to the required accuracy.  

Table 1. Comparison between 90 mm diameter pipe and plate with their equivalent dimensions and properties 
Thickness (mm) 5.4 4.3 3.5 2.7 2.2 
Time to reach desired temperature in re (sec.) Piping 235 184 147 111 89 
Time to reach desired temperature in re (sec.) Plate 215 163 128 96 75 
Temperature in ri (℃) 62 55 50 47 44 
Temperature in re (℃) 30 30 30 30 30 
Production meters of pipe 8 h according to (ρ) 1,075 1,333 1,622 2,083 2,542 
Production meters of pipe 8 h according to (PF) 978 1,247 1,562 2,078 2,602 
Plate meter production 8 h according to (ρ) 1,011 1,269 1,559 2,021 2,480 
Plate meter production 8 h according to 
(PF) 

1,072 1,413 1,800 2,451 3,072 

Pipe volume 1 m3 0.00116 0.001158 0.00095 0.00074 0.00061 
Plate volume 1 m3 0.00152 0.001215 0.00099 0.00076 0.00062 
Plate-pipe volume difference Plate-pipe volume differ-
ence 1 m3 

0.00037 0.000057 0.00004 0.00002 0.00001 

Note: (ρ) Raw material density as predominance, (PF) Thermophysical properties as a function of the cooling process. 

The result of this process is a cooling time, 
which is related to the thermo-physical properties of 
the raw material introduced, with which it is carried 
out, a new calculation of the maximum flow rate for 
the machine, which is not directly related to the 
design flow rate, and from these results, the other 
results are obtained, the higher efficiency of the 
equipment, is that the result. According to the 
thermo-physical properties, is as close as possible to 
the productive design of the machine, calculating 
from this result. The report includes the production 
and optimal consumption indexes, at the end it 
makes a report of all the indicators that are 
requested, giving the possibility to know the values 
of each of the equations and variables that 
participate in the process. A sample of this is shown 
in Table 1, which is only a sample of a requested 
report. The graphs with which the intervals and 
coefficients are calculated for the plate and the pipe 
are different, since the plate is dependent on the 
Biot number and the pipe is not, due to different 

geometries, as shown in Graphs 1 and 2, for a 
thickness of 4.3 mm. Figure 3 shows the 
calculation procedure described. 

3. Results and discussions 
With the application of Wolfram Mathematica 

8.0 as a working tool for the solution of heat 
transfer problems by the exact solution method, the 
following results, among others, can be obtained. 

Develop very fast calculations in real time, of 
each of the parameters necessary to obtain the con-
sumption and production index for each product. 

The possibility of taking parameters, such as 
the same temperature difference at the extruder 
outlet and at the bath inlet, equal thicknesses, 
cooling distances, temperature at the inner and outer 
radius, as well as the thermo-physical properties of 
the material, and demonstrate how the cooling times, 
productions, consumption rates and volumes of the 
geometries under study vary. 
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Figure 3. Flow chart of the described procedure. 

 

Graph 1. infinite solutions for infinite eigenvalues λn, for pipe-
line. 

 

Graph 2. Infinite solutions for infinite eigenvalues λn, for plate. 
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Table 1 shows a report of parameters obtained 
with the application of the tool, to which others 
can be added. The level of precision in real time, 
which is wanted to be obtained as it is from (n = 1 
to ∞ t will be fixed according to the need of the 
process to be executed, (productive or investigative), 
facility that exists for using a programming of this 
type. 

Another example of the benefits of this appli-
cation can be seen when comparing, based on its 
accuracy, how the volumes and cooling time de-
crease as the thickness decreases, tending to zero, 
demonstrating this condition, that truly, the thinner 
the thickness, the closer the values between both 
geometries, however, it shows the inappropriateness 
of using, for the solution to problems of pipes with 
thin thicknesses, the treatment as if it were a plate, 
since the rest of the indicators to be measured do 
not present the same situation. 

With the tool, it was possible to define the two 
main parameters to be taken into account to achieve 
productive and energetic efficiency of this process. 
The density, with direct correspondence with the 
flow of the equipment and the density achieved 
with the thermo-physical properties of the material, 
depending on the cooling process, which provides 
one more parameter to be taken into account for any 
energy and production analysis. 

4. Conclusions 
With the use of this work tool (Wolfram 

Mathematica 8.0), it was demonstrated that in order 
to develop any analysis of the productive process 
and define an energetic improvement in the plastic 
pipe extrusion machines, it is necessary to take into 
account two essential elements. For the productive 
flow, as the main basis, the density of the raw 
material and from the energetic point of view, the 
conjugation of the thermo physical properties 
present in the same, since both act differently in the 
process. 

Another example of the benefits of this 
application can be seen when comparing, based on 
its accuracy, how the volumes and cooling time 
decrease as the thickness decreases, tending to zero, 
demonstrating this condition, which is truly true, 

the thinner the thickness, the closer the 
values between both geometries are, however, it is 
shown that it is not convenient to use, for the 
solution to problems of pipes with thin thicknesses, 
the treatment as if it were a plate, since the rest of 
the indicators to be measured do not present the 
same situation.  

It was also demonstrated that the volumes of 
the plate and the pipe are reduced and tend to zero 
as their thicknesses decrease, but referred to the 
production increases in the pipe with respect to the 
flow of the machine, and according to the 
characteristics of the raw material, the production is 
lower than that of the plate, with these 
characteristics the consumption indexes behave in 
the same way. 
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