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ABSTRACT
In this paper k-obnoxious facility location problem has been modeled as a pure planner location problem. Area

restriction concept has been incorporated by inducting a convex polygon in the constraints set. A linear programming
iterative algorithm for k- obnoxious facility locations has been developed. An upper bound has been incorporated in the
algorithm to get the optimal solution. Also the concept of upper bound has reduced the number of linear programming
problems to solved in the algorithm. Rectilinear distance norm has been considered as the distance measure as it is more
appropriate to the various realistic situations.
Keywords: Obnoxious Facility Location; Iterative Algorith; Rectilinear Distance Norm

1. Introduction
For service facility location problems when the costs are the increasing function of distance, it is reasonable to

consider either minimum of the sum of distances or the weighted distances. On the other hand, for some vital facilities it
may be desired to minimize the maximum distances. However, there are types of location situations where cost
decreases as distance increases and is named in the literature as obnoxious or undesirable facility location problem.

Location theory can be traced back as far as the 17th century and much work has been done in this area during last
60 years. However undesirable facility location has received less attention from operations researchers. The earliest
reference we can find, in the operations research literature that deals with semi desirable facility location models
dates back to 1975, Golden and Dearing[9]. Using the rough estimates, approximately 2% of the location literature deals
with obnoxious facility location (Erkut & Neuman[6])

Erkut and Neuman[6] have mentioned that one explanation for the imbalance may be that the undesirable facility is
the byproduct of technology and industrialization. Location of nuclear reactor, power plants, dump sites, mega-airports
are all problems of 20th century. On the other hand the desirable facility such as schools, college, hospitals are the
problems of centuries. There are environmental issues which should be looked for undesirable facility location in the
society. Hansen et. al.[10] point out that the French Government choose to locate half of the country’s nuclear power
plants along the Atlantic coast line and German and Belgium broader, at a great distance from the large population
centers.

In the location literature many people have worked on 1-MAXIMIN criterion with Euclidean distances. Shamos[15]

defines the unweighted 1-MAXIMIN problem as the largest empty circle problem in R2 and provides an algorithm for
solving that problem. Dasarathy and White[3] extended the unweighted maximin problem to a higher dimensional space
and a convex feasible region. They provide an algorithm for a three dimensional space. Drezner and Wesolowsky[4]

present a solution to a 1-maximin problem assuming a feasible region which is the intersection of the circles of
prescribed radii whose centers are existing facility points. Melachrinoudis and Cullinane[12] solved 1-maximin problem
for the case of non-convex feasible region S in the presence of forbidden circles.

Drezner and Wesolowsky[5] first introduced the rectilinear 1-maximin problem for locating an obnoxious facility.
They developed a solution procedure by dividing the feasible region into rectilinear sub regions and solving a linear
programming problem for each of these sub regions. Melachrinoudis[9] proved several properties of the optimal solution,
developed elimination strategies for each of the sub regions and solved the duals of the LPs for the remaining sub-
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regions. Mehrez et al.[14] suggested an improvement of Drezner and Wesolowsky’s algorithm, based on bounds, which
reduces the size as well as the number of sub problems to be solved.

In the generic single undesirable facility location models given above, the decision maker wishes to locate the new
facility such that some measure of the distances between the new and the existing facilities is maximized. Multiple
obnoxious facility location problem is not extensively studied in the literature. We are aware of very few studies on
planar multi-facility maximin models. Some of the works on multi-facility maximin problems on networks
are by[2,11,7,16]

Gianikkos and Appa[1,8] have studied the rectilinear version of the weighted 2- obnoxious facility location problem,
and present an algorithm based on binary search for its solution Tamir[16] proved that when k, the number of obnoxious
facilities, is part of the input then the above maximin k-obnoxious facility location model is strongly NP- hard even in
the one- dimensional case. Arie Tamir[17] has discussed the problem of locating two new facilities in S and presented a
sub quadratic algorithm.

In this present investigation k-obnoxious facility location model has been designed. Area restriction concept
has been incorporated so that the facility to be located should be within certain restricted area. Incorporation of the area
restriction has been implemented by inducting a convex polygon in the feasible region. A linear programming iterative
algorithm has been developed.

Mathematical model formulation for the multiple obnoxious facility problems has been given in section 2.
Algorithm has been designed in sections 3. A numerical example has been presented in section 4. Conclusion and future
scope are given section 5.

2. Model Formulation
Let ）（ jj ba , , i=1,2,…,r, be the location of the ith existing facility and ）（ jj yx , , j=1,2,…n are the co-ordinates

of the points to be located. The multi-facility formulation of the problem.
P1
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


),( Min ),,(Min Maximize
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j
injriij

K
j XXdWPXdU

(2.1)
Subject to

, p=1,2,…,l, j=1,2,…,n. (2.2)
Where the notations are as given in the following table 1.

01 ）（ jj ba , , i=1,2,…,r, be the location of the ith existing facility.

02 ）（ jj yx , , j=1,2,…n are the co-ordinates of the points to be located.

03
j
iW = Weights assigned to the demand points i corresponding to the facility points j for i =

1,2…r and j = 1,2.,…,n.

04
K
JU = weights corresponding to the facility points 1,2,…,n.

05 l be the number of constraints.

06 represent the distance between the locations of new facility j and existing facility i.

07 be the distances between the new facilities j and k.

08 S be the set of all feasible solutions.

09 ��� ����� are constants for p=1,2,…,l.

10 m be rectangle for m=1,2,…, (r+1)
2

.

11 UBm be the upper bound corresponding to rectangle m

Table 1. Notations

3. Generalized Algorithm for k-Obnoxious Facility Location Problem
Let us consider the grid of lines formed by drawing horizontal and vertical lines through every demand point

pjpjp eydxc 

),( ij PXd

),( kj XXd
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., ）（ jj ba This will form (r+1)2 rectangular regions some of them are bounded by infinity. The mathematical formulation

for the problem for a given rectangular region, m, is as given below.

P2

Maximize 1Z (3.1)

Subject to,

1])()([ ZbyaxW ijij
j
i  , i = 1,2,…r, j = 1,2,…,n for all j in Vi . (3.2)

1])()([ ZyyxxU kjkj
k
j  , i = 1,2…r; j = 1,2 ,…,n (3.3)

1Z  U Bm (3.4)

ppppp eydxc  , p=1,2,…,l (3.5)

Let UBm is the upper bound corresponding to the rectangle m.

To find the upper bound inside rectangle m we use procedure I
3.1. Procedure-1

The maximum value of 1Z on m is as given below

Z m =
mjyjx

Max
),(

{
i

Min ��
�( x j – a i + y j – b i ) +

��
�� x j – x k + y j – y k )


i

Min {
myx jj

Max
),(
��
�( x j – a i + y j – b i ) +

��
� ( x j – x k + y j – y k , for all possible k j ) }

The maximum inside rectangle m must occur on V, where V is the set of four vertices of the rectangle ( some of these

vertices may be at infinity). Hence, an upper bound on 1Z is

U Bm =
i

Min {
mjyjx

Max
),(

��
�( x j – a i + y j – b i ) +

��
�( x j – x k + y j – y k , for all possible k j in V) }

3.2 Procedure-2
To find

jLj xx  for j=1,2,3,…n, the lower limit for jx , solve a linear programming problem with jx as the

objective to be minimized and the constraints pjpjp eydxc  , p=1,2,…l, j=1,2,…n. Maximizing jx will give
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j
xU which define the upper limit. The lower and the upper limit for j

y
j Ly  and j

y
j Uy  are found by

minimizing jy and maximizing jy respectively.

Let us consider the rectangle m defines by the lines
1jij xx  ,

2jij xx 
3jij xx 

4jij xx  where

21 jiji xx  and
43 jiji xx  . Also define the segments and where , . These

are the points of the line jij yy  and jij xx  .respectively.

Theorem-3.2: If all the conditions hold then there is no feasible point inside rectangle m.

(1) 4
1
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i
jLy 
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1

jiy
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(2) 4
2
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i
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or 3
2
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(3) 2
3
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or 1
3
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i
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(4) 2
4

jix
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or 1
4

jiy
i
jUx 

Proof: As trivially follows

Now two non-linear inequality constraints (3.2) and (3.3) can be broken down, with inequality relations.
3.3 Inequality Relation-1: In equation 3.2 is equivalent to four set of constraints as follows

0)/( 1  j
iiijj wZbayx

Or
;0)/( 1  j

iiijj wZbayx
Or

;0)/( 1  j
iiijj wZbayx

Or
0)/( 1  j

iiijj wZbayx
Proof.
In equality relation 3.2

)/()()( 1
j
iijij wZbyax 

=> ij
j
iij bywZax  )/( 1 ;

=> ij
j
i bywZ )/( 1 <
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-----------------(1)
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- ij
j
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----------------(2)

From equation (1) above
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 )/( 1
j
iiijj wZbayx

0---------------(a)
Or

0)/( 1  j
iiijj wZbayx

--------------(b)
Similarly from equation (2)

0)/( 1  j
iiijj wZbayx

---------------------(c)
Or

0)/( 1  j
iiijj wZbayx

-------------------(d)
By associative law for addition we can write in equation (2.4) is equivalent to (a)or (b) or (c) or (d).
This completes the proof.

3.4 Inequality relation-2: In equation 3.3 is equivalent to four set of constraints as follows
0)/( 1  k

jkkjj UZyxyx
;

Or
;0)/( 1  k

jkkjj UZyxyx
Or

0)/( 1  k
jkkjj UZyxyx

;
Or

0)/( 1  k
jkkjj UZyxyx

Proof. Proof follows in the same line as given in in equality relation 1.
Combining in equality relation 1 and inequality relation 2 corresponding to equation (3.2) and (3.3) we get 16 set

of alternative in equations as given below.
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for i=1,2,…m;j=1,2,…,n
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k
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For all the sixteen sets I=1,2,…,m and j=1,2, ..n
The complete algorithm for k- obnoxious facility location model is as given below.

3.5 Algorithm
Step-1 Find the enclosing feasible rectangle.
Step-2 Restrict the grid and rectangles to be considered to those that lie within the enclosing feasible rectangle.
Step-3 Eliminate all infeasible rectangles by theorem-1.

Step-3 Find the upper bound on Z1 by using the procedure-1 of section 3. Sort these upper bounds of 1Z from
largest to smallest.
Step-4 Develop 16 alternative set of in-equality constraints for the non-linear constraints (3.2) and (3.3) as given in
in equality relation 3.1 & 3.2.
Step-5. Solve the sub problems starting with the rectangle with the highest upper bound on 1Z . Consider
constraints corresponding to that rectangle. Take the solution of the sub problem which gives maximum objective
function value
Step-6. Stop when the upper bound for the next rectangle is not superior than the solution obtained so far.

4. Numerical Example
Let A(2,1), B(3,5), C(6,9), D(4,1), E(9,7) be the five demand points on a plane, and X1  10; X2  12; Y1

 9; Y2  11; are the boundary of the convex feasible region. Let the weights attached to five demand points are
0.30, 0.15, 0.20, 0.10, 0.25 respectively. Also the weights associated corresponding to the two facility points is 0.3

The upper bound corresponding to the twenty feasible rectangles are obtained by procedure 3.1 and are given in
the following table.

Table 2. Upper bounds for various rectangles

Table 3. Upper bounds in sorted order

Rectangle
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number

UBm 2.1 1.4 1.2 1.8 2 2.6 2.2 2.1 2.2 2.5 1.8 1.35 1.3 1.4 1.7 1.6 1.2 1.1 1.2 1.5
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                                                                            : Rectangles 

Figure 6.1. Rectangles 1-20.

Mathematical formulation corresponding to the highest upper bound 2.6, corresponding to the rectangle 6, is as
given below.

Here 16 sub problems corresponding to 16 set of inequality relations are formed. Also constraint corresponding to
the rectangle 6 is also taken into consideration.
Solution obtained for all 16 sub problems by LINGO-12.0 are as given below.

Sub problem Objective value Co-ordinates Remarks

SP-1 No Feasible Solution

SP-2 -Do-

SP-3 -Do-

SP-4 -Do-

SP-5 -Do-

SP-6 -Do-

SP-7 -Do-

SP-8 -Do-

SP-9 1.6 (x1,y1)=(2,4.33)

(x2,y2)=(0,1)

Feasible Solution

SP-10 1.8 (x1,y1)=(2,1)

(x2,y2)=(0,5)

-Do-

SP-11 2.6 (x1,y1)=(2,1)

(x2,y2)=(0,1)

-Do-

SP-12 1.8 (x1,y1)=(0,1)

(x2,y2)=(2,5)

-Do-

SP-13 0.3 (x1,y1)=(0,2)

(x2,y2)=(0,1)

-Do-

SP-14 0.342 (x1,y1)=(0.57,1)

(x2,y2)=(0.142,1.71)

-Do-

SP-15 0.4 (x1,y1)=(0,1)

(x2,y2)=(0,1)

-Do-

SP-16 0.3 (x1,y1)=(0,1)

(x2,y2)=(1,1)

-Do-

Table 4. Solutions of the sub problems
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Maximum value obtained corresponding to sub problem 11 which is 2.6. We stop the procedure here as the
solution obtained for the subsequent upper bound rectangles cannot dominate the solution obtained so far. Thus the
solution is (x1,y1)=(2,1), (x2,y2)=(0,1) and Z1=2.6.

5. Conclusion and future scope
 In this paper a k-obnoxious facility location problem has been modeled
 A modified linear programming algorithm has been designed to solve the proposed model..
 Other distance norm such as Euclidean, Geodesic etc. may be considered to model various other situations.
 Models with general feasible regions ( Union of disjoint and non-convex sets) may be considered to model various

geographic regions.
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