ORIGINAL RESEARCH ARTICLE

Harnessing psychoenergetics through meditation techniques to enhance yield and quality of litchi (*Litchi chinensis* Sonn.)

Narayan Lal^{1,*}, Vishal Nath²

ABSTRACT

An experiment was conducted to assess the effect of psychoenergetic energy in litchi as positive and negative thoughts using a simple meditation technique at ICAR-NRC on Litchi, Muzaffarpur. The plant produced 24.75 g of fruit given positive energy, while the plant with negative thought energy produced 22.12 g of fruit. The fruit and seed weight increased by 11.88% and 13.63%, respectively, due to positive energy. The number of fruit retentions increased by 23.77% due to positive energy. Anthocyanin content in pericarp was increased by 5.45% in plants given positive energy. Fruit qualities were also significantly affected by psychoenergy. TSS (Brix) was significantly increased by 13.54% in plants given positive energy as compared to negative energy, and titratable acidity was reduced by 25% due to positive energy. Ascorbic acid was also increased by 30% in plant given positive thoughts. Sun burn was reduced by 54.76% and fruit cracking by 63.64% due to energy of thought. Fruit borer infestation was reduced by 70%, and mite infestation was reduced by 90% in plants given positive energy. The psychoenergetic potential is vast, and its ability to improve crop yield and quality cannot be overstated. The hidden power of thought is being practiced by all, but mostly people do not know this power and use it in an improper manner. This is a high time when we need to practice generating powerful thoughts to change present-day agriculture and its dependents.

Keywords: Rajyoga; thought; energy; positive; negative; quality

ARTICLE INFO

Received: 16 October 2023 Accepted: 3 November 2023 Available online: 9 November 2023

COPYRIGHT

Copyright © 2023 by author(s). Trends in Horticulture is published by EnPress Publisher LLC. This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/

1. Introduction

The global food crisis has been getting worse for more than a decade, and population pressure on agriculture is increasing day by day. We have limited cultivable land, and the need for growing populations is forcing a shrinkage of agricultural land. Many technologies, i.e., improved and hybrid varieties, improved packages of practices, INM, IPM, and genetic modification using biotechnology, have been applied for decades to improve crop production, but several issues regarding the safety of genetically modified (GM) food are rising, and its impact on biodiversity and sustainable farming is hindering its use. The cultivable land cannot be increased, but productivity on the same land can be increased through the intervention of technology, including thoughtbased (meditation) technology. Plants, as living beings, are known to respond to the energy of thought^[1,2]. The idea that thoughts may affect matters is not a new one. Our indigenous cultures have long accepted the interconnection between human thoughts and matters in the universe, which scientific research continues to affirm. The effect of thoughts on matters can improve productivity and quality, which can limit our global food crisis. The systematic research into the effect of thoughts on flora

¹ ICAR-Indian Agricultural Research Institute, Jharkhand 825405, India

² ICAR-Indian Institute of Soil Science, Bhopal 462038, India

^{*} Corresponding author: Narayan Lal, narayanlal.lal7@gmail.com

has been started since 1960. In 1963, Grad determined that plants are receptive to energy; healing energy improved growth, and negative energy stunted it. Plants and other living organisms respond to human intentions^[3]. Emoto's popular research photographing water crystals confirmed that thoughts, words, and intentions affect matter. Positive and negative intentions have a statistically significant effect on seed germination^[4]. A growing environmental movement, combined with the global problem of hunger and poverty, has pushed researchers into exploring new innovations based on ecologically sound, socially viable, and sustainable systems of agriculture. Litchi is one of the emerging crops in India, with advancements in new states like Kerala, Karnataka, Tamil Nadu, and Madhya Pradesh^[5]. Bihar is leading in litchi production, with fruit available from May to June. Litchi suffer from many problems starting from flowering to harvest, like heavy fruit drop^[6], fruit borer^[7], sun burn and fruit cracking, mites^[8] and pericarp browning^[9] which are responsible for lowering the productivity in India. The productivity in Bihar is 7.4 tons, while Punjab has a maximum of 15.1 tons^[10]. The world's litchi production is estimated at about 3.5 mt, of which 80% (2.8 mt) was produced in China in 2018. The other major producers are India (0.67 mt), Vietnam (0.38 mt), Madagascar (0.10 mt), and Thailand (0.048 mt). Other countries growing litchis include Bangladesh, Australia, South Africa, Reunion, Brazil, and Israel. It means litchi has great potential, and its productivity can be increased. The flowering of litchi is influenced by the phenolics content^[11], temperature, and age of the plants^[7,12]. Fruit set depends on sources of pollen grain^[13,14]. Total by product in litchi is found to be the tune of 19.85 to 59.54% in different genotypes fractioning with 6.96 to 22.58% seed and 12.89 to 36.96% pericarp^[15]. Our previous study on the effect of plant age and stress on flowering in litchi showed that young plants can enter the reproductive cycle when plants are stressed due to human talk, noise, vehicle movement, etc.^[12]. The earlier reports also indicated that plants respond to thought. The effect of thoughts is extensively applied to the germination of seed in annual crops. Meditation improved the seed germination rate by 16.4% in peas^[16]. The impacts of meditation and music have been reported on the germination of zucchini and okra seeds^[2]. Therefore, an experiment was conducted to assess the effect of thought of energy on flowering, fruiting, quality, and pest infestation in litchi.

2. Materials and methods

An experiment was conducted at the National Active Germplasm Site (NAGS) ICAR-National Research Centre on Litchi, Muzaffarpur (Bihar), located at 26°5'87" N latitude and 85°26'64" E longitude at an elevation of 210 m above msl. Ten-year-old Shahi plants were selected to assess the response of thought (energy) for the years 2017, 2018, and 2019. Psychoenergetic energy was applied as positive and negative thoughts using a simple meditation technique. Positive thought energy was given to a set of plants, and negative thought energy was given to another set of plants consisting of three each. Positive thought energy included plants being healthy, responsive to water, light, air, and other inputs, and free from burning, cracking, diseases, and insects. Plants were touched and loved with fingers by thinking that energy coming from supreme soul and entering to the plants through my fingers. Negative thought energy included that plants are unhealthy, not responsive to water, light, air, or any other input; they are affected by burning, cracking, diseases, and insects. Thought energy was given to the plants, which started from the initiation of panicles to harvesting at 6 AM in the morning and at 5 PM in the evening for half an hour. Length and width of panicle were measured by scale at full expansion and expressed in centimeters (cm), number of fruit per panicle recorded after fruit set to harvest by counting, fruit, pulp, peel, and seed weight (g) weighed in electronic balance, and length (mm) and diameter (mm) of fruits measured with the help of a Vernier caliper. Quality parameters were assessed in the lab. Total soluble solids in the fruits were recorded at room temperature using a digital refractometer and expressed in terms of Brix. Ten mL of juice was taken, and the volume was 100 mL with distilled water for the estimation of titratable acidity. Then 10 mL of this solution was taken for the purpose of titration with 0.1 N NaOH. For estimation of ascorbic acid, 22 mg of sodium bicarbonate and 25 mg of 2,6-dichlorophenol

indophenols were added to 100 mL of distilled water and mixed thoroughly, titrated against dye. Sun burn and fruit cracking were counted in the tagged panicle and expressed in percentage. The infestation of mites was measured in the tested plant, and fruit borer infestation was observed in harvested fruit and expressed in percentage. Four branches were selected from four directions in each positive and negative set of plants. The number of mite-infested leaved was counted and converted into percent. Thirty fruits were harvested from each positive and negative set of plants. Fruits were cut and observed the infestation of borer and converted into percent. An analysis of variance is used to test the significance of the data.

3. Results and discussion

Plants are living beings and are known to respond to the energy of thought. The positive thought energy given to the plants produced a panicle length of 46.90 cm, whereas plants with negative thought energy produced 45.13 cm (Figure 1). The effect of psychoenergy did not show significant differences in panicle traits. Similarly, psychoenergy did not show significant differences in the width of panicles in litchi, but positive energy had a greater effect on panicles. Plants produced fruit weights of 24.75 g with positive energy, while plants with negative thought energy produced fruit weights of 22.12 g. The fruit and seed weight increased by 11.88% and 13.63%, respectively, in plants given positive energy (Figure 2). Pulp and peel weight did not differ significantly due to intention of thoughts (Figure 3). Similarly, the length and diameter of fruits did not differ significantly, but plants exposed to positive thought energy produced large size of fruits (Figure 4). Plants are very well known to respond to the energy of thought^[1,2]. Thought energy-based (meditation) techniques are being used in rural sustainable farming settings in India with the coordination of Prajapita Brahma Kumaris Godly University, Mount Abu. The effect of intentional thought, positive and negative, was studied on zucchini seed^[4]. The weight increase of seeds receiving positive thought was significantly greater than the weight increase of seeds receiving negative thought (p < 0.001). Humans are interconnected with living organisms in significant ways^[3]. The germination of lettuce seed and the growth of seedling were greater with energized water that has been treated with positive thoughts than ordinary water^[1].

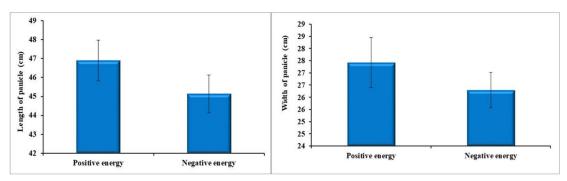


Figure 1. Effect of psychoenergy on panicle.

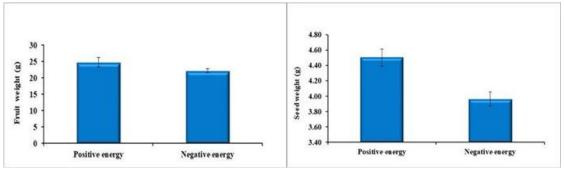


Figure 2. Effect of psychoenergy on fruit and pulp weight.

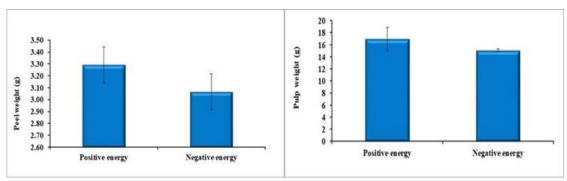


Figure 3. Effect of psychoenergy on peel and seed weight.

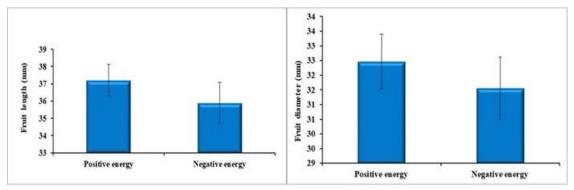


Figure 4. Effect of psychoenergy on fruit dimensions.

Fruit drop is a major problem in litchi^[6] and fruit set depends on male parents^[11]. The number of fruits per panicle differed significantly, and positive energy produced 12.91 fruits as compared to negative energy (10.43). The number of fruit retentions increased by 23.77% in plants given positive energy (**Figure 5**), which increased the final yield of litchi. Lettuce yield increased by 23% in the field through meditation^[1]. Anthocyanin content in pericarp was improved by 5.45% in plants given positive energy (**Figure 5**). Fruit qualities were also significantly affected by psychoenergy (**Figure 6**). TSS (Brix) was significantly increased by 13.54% in plants given positive energy as compared to those given negative energy, and titratable acidity was 25% reduced in plants given positive energy. Ascorbic acid was also increased by 30% in plants given positive thoughts. The earlier studies also reported that nutritional values were increased in tomatoes, viz., protein (52%), carbohydrate (36%), energy value (41%), and ascorbic acid (146%)^[17].

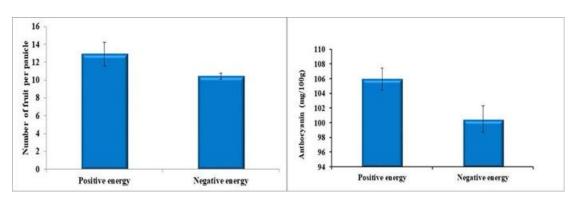


Figure 5. Effect of psychoenergy on number of fruit and anthocyanin content.

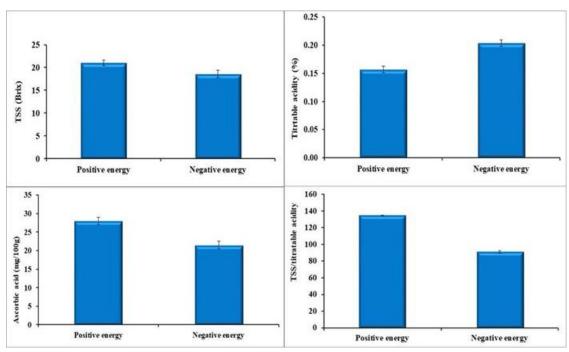


Figure 6. Effect of psychoenergy on quality traits.

In the present study, sun burn was reduced by 54.76% and fruit cracking by 63.64% due to energy of thought (**Figure 7**). Psychoenergy also significantly affected the infestation of pests. Fruit borer infestation was reduced by 70%, and mite infestation was reduced by 90% in plants given positive energy (**Figure 8**). Meditation techniques helped in reduction of fungus and slug attacks by 10% and 5%, respectively, in the lettuce field^[1]. Disease and pest infestations in strawberries were reduced by 66% due to acoustic frequency^[18]. Lettuce grown from the treated seeds had less fungal disease than those from seeds that were untreated^[1]. The effects of mental intent on the motility of algae have been found to be highly significant^[19].

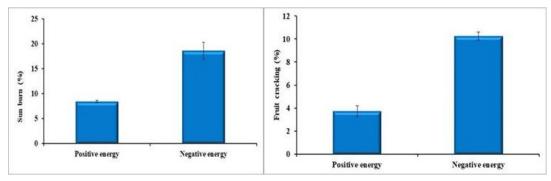


Figure 7. Effect of psychoenergy on physiological disorder.

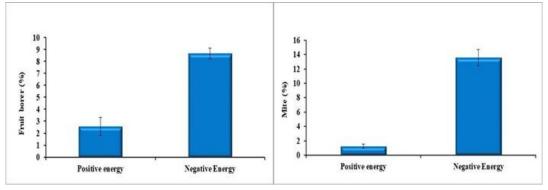


Figure 8. Effect of psychoenergy on pest infestation.

In India, a combination of meditation and organic farming is being practiced^[17] and is reported to improve crop production considerably with fewer resources. Farmers using this technique report considerable improvements in resistance to disease, pests, and adverse weather conditions. The meditation involves creating awareness of being the subtle conscious being rather than the physical body and then directing thought energy (peace, love, and bliss) from the Divine Source to the crops at any stage of growth or to the seeds before planting. It has also been proved that the thoughts sent to a distant object create changes in the object. These types of healing are being practiced on farms, and the intended crops grew faster with least diseases. The effect of thoughts on water is well documented. Water also stores thought energy, and this energy impacts whoever and whatever uses it. Positive thoughts subjected to water have been found to form beautiful crystals, and water exposed to negative thoughts forms either no crystals or deformed ones. No difference in yield of wheat under conventional fertilizer application and no fertilizer with meditation were recorded. This gave an idea that under organic farming, the thought power can be more useful for reducing the cost of cultivation. The coffee plantation started flowering and fruiting within two years due to positive thoughts. The effect of meditation on plants cannot be explained. However, the effect of thoughts on human health has been well recognized long ago, as has the increasing use of mind-body medicine, including meditation^[20]. Meditation is now well recognized and is being used for the treatment of many illnesses and achieving holistic health^[21,22]. Thought energy is also known to affect inanimate matter and water in particular. Although it is difficult to explain that the energy of thought affects matter, the comprehension of how thought influences the physical dimension is still a major quest of contemporary science.

4. Conclusion

The power of thoughts has been found to play a vital role in transforming agriculture. The effect of energy of thoughts on matters can improve productivity and quality, which can limit to our global food crisis. Aafe and secure food production can be achieved, and the ill effects of modern farming can be minimized, and the population will be healthier and wealthier. The power of meditation can make it successful, as it is a powerful non-monitory input for farming systems. This kind of technology, even if not very practical in the current scenario because of the lack of trained meditators and mental makeup of policymakers/authorities, must be promoted for the future or new era likely to come very soon. So, research may be planned and conducted in a networking mode at various institutes. This will not only transform agriculture but also facilitate transforming farming families and other human beings.

Author contributions

All authors made an equal contribution to the research presented in this paper, which covers the conceptualization, study design, data analysis, interpretation of the results, writing, and final revision of the paper. All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. Roney-Dougal SM, Solfvin J. Field study of an enhancement effect on lettuce seeds: A replication study. *The Journal of Parapsychology* 2003; 67(2).
- 2. Creath K, Schwartz G E. Measuring effects of music, noise, and healing energy using a seed germination bioassay. *The Journal of Alternative & Complementary Medicine* 2004; 10(1): 113–122. doi: 10.1089/107555304322849039
- 3. Backster C. *Primary Perception: Biocommunication With Plants, Living Foods, and Human Cells.* White Rose Millennium Press; 2003.

- 4. Du Charme LJ. The Effect of Intentional Thought in Close Proximity or at a Distance: Demonstrating the Relation between Mind and Matter on Seed Germination [PhD thesis]. Holos University; 2007.
- 5. Nath V, Kumar A, Pandey SD. Tripathi PC. Litchi in winter season—A way forward. *Indian Horticulture* 2015; 60(2): 26–27.
- 6. Lal N, Gupta AK, Nath V. Fruit retention in different litchi germplasm influenced by temperature. *International Journal of Current Microbiology and Applied Science* 2017; 6(12): 1189–1194. doi: 10.20546/ijcmas.2017.612.134
- 7. Lal N, Singh A, Gupta AK, et al. Precocious flowering and dwarf NRCL-29—A new genetic stock of Litchi (*Litchi chinensis* Sonn.). *Chemical Science Reviews & Letters* 2019; 8(32): 206–210.
- Gupta AK, Srivastava K, Marboh ES, et al. Evaluation of litchi tolerant varieties against litchi. In: Proceedings of National Conference on Integrated Plant Health Management in Fruit Crops; 3

 4 September 2019; Bihar, India. p. 113
- 9. Purbey SK, Pongener A, Marboh ES, Lal N. Advances in Packaging of Litchi Fruit to Maintain the Quality. *Current Journal of Applied Science and Technology* 2019; 38(1): 1–11. doi: 10.9734/cjast/2019/v38i130342
- 10. Gandhi CP. India horticulture database 2014. Available online: https://nhb.gov.in/area-pro/NHB Database 2015.pdf (accessed on 6 November 2023).
- 11. Lal N, Marboh ES, Gupta AK, et al. Variation in leaf phenol content during flowering in litchi (*Litchi chinensis* Sonn.). *Journal of Experimental Biology and Agricultural Sciences* 2019; 7(6): 569–573. doi: 10.18006/2019.7(6).569.573
- 12. Lal N, Nath V. Effect of plant age and stress on flowering in litchi (*Litchi chinensis*). *Current Horticulture* 2020; 8(1): 24–27. doi: 10.5958/2455-7560.2020.00004.7
- 13. Lal N, Gupta AK, Marboh ES, et al. Effect of pollen grain sources on fruit set and retention in Shahi Litchi. *Multilogic in Science* 2019; 9(29): 152–156.
- Lal N. Gupta AK, Marboh E, Nath V. Effect of pollen grain sources on success of hybrids in Bedana Litchi. *International Journal of Bio-resource and Stress Management* 2019; 10(3): 241–245. doi: 10.23910/IJBSM/2019.10.3.1990
- 15. Lal N, Pandey SK, Nath V, et al. Total phenol and flavonoids in by-product of Indian litchi: Difference among genotypes. *Journal of Pharmacognosy and Phytochemistry* 2018; 7(3): 2891–2894.
- 16. Haid M, Huprikar S. Modulation of germination and growth of plants by meditation. *The American Journal of Chinese Medicine* 2001; 29(03n04): 393–401. doi: 10.1142/S0192415X01000411
- 17. Rural Development Wing, Education and Research Foundation. Perpetual yogic agriculture (Shashwat Yogic Kheti). A novel step towards a new era. Available online: https://progreess.org/wp-content/uploads/2020/09/Yogic-Kheti.pdf (accessed on 6 November 2023).
- 18. Qi L, Teng G, Hou T, et al. Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse. In: Li D, Zhao C (editors). *CCTA 2009: Computer and Computing Technologies in Agriculture III*, Proceedings of Third IFIP TC 12 International Conference, CCTA 2009; 14–17 October 2009; Beijing, China. Springer Berlin Heidelberg; 2010. pp. 449–454. doi: 10.1007/978-3-642-12220-0 65
- 19. Pleass CM, Dey D. Conditions that appear to favor extrasensory interactions between homo sapiens and microbes. *Journal of Science Exploration* 1990; 4(2): 213–231.
- 20. Barrows KA, Jacobs BP. Mind-body medicine: An introduction and review of the literature. *Medical Clinics* 2002, 86(1): 11–31. doi: 10.1016/S0025-7125(03)00069-5
- 21. Lo PC, Wu SD. Effect of Zen meditation practice on perceived stress in college students: A survey study. *Biomedical Engineering: Applications, Basis and Communications* 2007; 19(6): 409–413. doi: 10.4015/S1016237207000513
- 22. Leeka J, Schwartz BG, Kloner RA. Sporting events affect spectators' cardiovascular mortality: It is not just a game. *The American Journal of Medicine* 2010; 123(11): 972–977. doi: 10.1016/j.amjmed.2010.03.026