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ABSTRACT 

In some fungi-ascomycetes and basidiomycetes, the 4 haploid spores formed as a result of meiosis can fuse in pairs, 

forming a dikaryon or diploid. The consequence of such intratetrad mating is the preservation of heterozygosity of 

genes linked to the mating-type (MAT) locus. If the MAT is linked to the centromere physically or genetically (as a 

result of the suppression of recombination), the centromere regions of all chromosomes are preserved in a heterozygous 

state. Suppression of recombination in the MAT chromosome contributes to the accumulation of lethal mutations and 

chromosomal rearrangements in it. Two MAT chromosomes cease to be homologous and become analogues of the sex 

chromosomes of animals and plants. 
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Several species of fungi, whose genome has been studied 

accordingly, have a pair of “sex” chromosomes, similar in their 

characteristics to the sex chromosomes of animals and plants[1–4]. The 

stages of evolution of the sex chromosomes of fungi are discussed in 

several articles[5–11]. In most of these articles, the possible role of a 

special type of cell mating, intratetrad mating, which, in our opinion, 

is the driver of the formation of sex chromosomes, is not considered[9]. 

In ascomycetes and basidiomycetes, the possibility of fusion of 

cells and nuclei is determined by differences in the loci of mating 

types (MAT), in some species there are two pairs of such loci, in 

others–one. In those fungi in which 4 haploid cells formed as a result 

of meiotic division (asco- and basidiospores) remain in contact for 

some time, there is a possibility of fusion two products of the same 

meiosis, which we have called intratetrad mating[12]. 

The genetic consequences of such mating were considered by 

us[12,13] and it was shown that the probability of homozygote 

formation in intratetrad mating is lower than in classical self-

fertilization (fusion of gametes formed by one organism, but in 

different meiotic divisions), but higher than in sibling mating. Much 

later, Kirby’s article was published, which repeated our 

conclusions[14]. 

Another consequence of intratetrad mating is the preservation in 

a heterozygous state of genes closely linked to the mating type locus. 

At the same time, if the MAT locus itself is linked to the centromere, 

then in a number of generations the heterozygosity of genes in the 
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centromeric regions of all chromosomes is maintained, not only the chromosome carrying the mating type 

locus[13]. This has been confirmed experimentally[15,16]. 

Intratetrad mating has two obvious biological advantages over the random coupling of spores (gametes). 

Firstly, during the dispersal of fungal cells, individual haploid spores are unlikely to meet a suitable mating 

partner, but if the connection between the spores persists after meiosis, they can fuse in pairs. This 

circumstance is critically important, since in many fungi it is the diploid or diheterokaryotic stage that is 

more viable, or only this stage in pathogenic fungi can infect the host organism. 

The second advantage of intra-tetrad mating is the preservation of the heterozygous state of large 

sections of the genome noted above and, due to this, the manifestation of the effects of heterosis. As it was 

said, the centromeric regions of all chromosomes are preserved in the heterozygous state, but on condition 

that the mating type locus is closely linked to the centromere of its chromosome[13,17,18]. 

The noted two advantages of intratetrad mating have led to the fact that in a number of species of asco- 

and basidiomycetes, a convergent evolved obligate or facultative intratetrad mating takes place. The fixation 

of intratetrad mating in the life cycle during evolution was considered in work[19]. As obligate (or very 

frequent) intra-tetrad mating is known in Saccharomycodes ludwigii, Microbotryum sp., Neurospora 

tetrasperma, Agaricus bisporus. 

In obligate intra-tetrad mating, and even in cases where this type of spore union is facultative, the 

mating type locus in most genetically analyzed cases is linked to its centromere (Table 1). 

Table 1. Features of the life cycle and location of the MAT locus in some fungi[17,18]. 

Organism Dominant stage in the life cycle Intratetrad fertilization Distance (cm) MAT-cen 

Saccharomycodes ludwigii Diploid Obligatory 0.0 

Microbotryum violaceum Dikaryion Very frequent 0.0 

Neurospora tetrasperma Heterokaryon Obligatory 0.4 

Saccharomyces cerevisiae Diploid Frequent 25.3 

Schizosacharomyces pombe Haploid Possible >50 

Pichia pinus Haploid Possible 1.4 

Hansenula wingei Haploid Possible 26.0 

Neurospora crassa Haploid Possible 6.6 

Sordaria brevicolis Haploid Possible 1.7 

Ascobolus immersus Haploid Possible 0.0 

The close coupling of the mating type locus and centromere may be a consequence of either their 

physical very close location in the chromosome, or the suppression of recombination at the MAT-cen district. 

The first may be the result of the transposition of the MAT into the near-centromeric region, the second may 

be the result of the occurrence of inversions and other chromosomal rearrangements[9]. 

Since during intratetrad mating and linkage of the mating type locus with the centromere, regions that 

persistently maintain a heterozygous state in a number of generations appear in the genome, various changes 

will accumulate in these regions. These are, firstly, lethal and sublethal mutations that will persist without 

showing their negative effect (in some cases, in a heterozygous state, lethal mutations can have a positive 

heterosis effect). Secondly, these are chromosomal rearrangements (also in some cases with a lethal effect), 

which will increasingly “lock” the crossing-over in the near-centromeric area. 

The presence of lethals linked to the mating type locus or with centromeres of other chromosomes was 

shown when studying natural populations of the fungus Microbotryum sp.[20]. 
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A careful study of the chromosome where the MAT locus is located showed that two chromosomes 

with MAT1 and MAT2 loci differ very much, which is the result of many rearrangements and 

transpositions[9]. The presence of loci determining the possibility of cell pairing, morphological differences 

(in this case, differences in length[3]), suppression of recombination while maintaining a small homologous 

“pseudoautosomal” district[3,9], do the chromosomes of Microbotryum sp. analogs of animal sex 

chromosomes. 

This allows us to present the evolution of chromosomes in fungi in the following way (Table 2). 

Table 2. Stages in sex chromosome evolution. 

Stages Selective disadvantages/advantages 

Release of haploid spores immediately after meiosis Difficulty of finding a mating partner 

Maintenance of spore connection Ease of finding a partner 

Intratetrad mating Dikaryon/diploid formation, heterosis effects 

Recombination suppression across the MAT locus Heterozygosity retention in a number of generations 

Accumulation of differences between homologous 
chromosomes 

Fixation of recombination suppression in sex chromosomes 

So, intratetrad mating in itself, regardless of its genetic consequences, is biologically beneficial, since it 

guarantees the possibility of fusion of haploid cells (or nuclei) with the subsequent formation of a diploid or 

a diheterokaryon. Once appearing, intratetrad mating will contribute to the linkage, physical or genetic, of 

the MAT and centromere locus and the accumulation of rearrangements in the genome. The accumulation of 

rearrangements in the chromosome with the MAT locus will lead to the formation of sex chromosomes in 

fungi, in many respects similar to the sex chromosomes of animals. 
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