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ABSTRACT
Simple mathematical expressions are given for the betweenness centrality of nodes in trees, forests and cycles. As

application, a centrality test is given for when a network might be a forest.
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1. Introduction
The advent of online social networks has made mathematical network theory intuitively accessible to

non-mathematicians and this has lowered threshold barriers to the use of network theory in numerous areas of research.
Now, network theory is used ubiquitously in chemistry, computer science, criminology, ecology, linguistics, logistics,
medical big data, social sciences, telecommunications and many other areas; for a small representative sample, see [1—8]

for a tiny selection. Contemporary application of network theory often involves the measuring of centrality metrics.
These can be used to help determine the topology of a network, aspects of which include particularly dense
subcomponents and nodes or subcomponents with high center of gravity.

A particularly useful centrality metric is the betweenness centrality, first defined in[9]. For a network � on nodes �,
the betweenness centrality of any node � in � is defined by the sum

bG(v) =
{s,t}⊆V

σst(v)
σst

�

where ��� is the number of shortest paths between node s and node t and σst(�) is the number of such paths that pass
through the node � � �,�.

The purpose of this note is to provide simple mathematical expressions for the betweenness centrality of nodes in
trees, forests and cycles; see Theorem 1, 2 and 3 below. As an application of these results, a centrality test is given for
when a network might be a forest; see Corollary 2.1.
2. Trees

To recall (see, e.g.,[4]), a forest is, mathematically, a network with no cycle, and a tree is a connected forest. Trees
can be graphically represented as collections of nodes and edges between the nodes, such as in the following
illustration.

Figure 1; A tree T.
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The general definition of betweenness centrality simplifies nicely in the case of trees T, namely to the simple
expression

bT(v) =
s,t ⊆V

σst� (v)

since there is exactly ��� = � path between node s and node t. The betweenness centralities �� � of the nodes � for
the tree � pictured in Figure 1 are as given in the table below.

v v0 v� v2 v3 v4 v5 v6 v7 v8
bT v 0 19 13 18 0 0 0 0 0

Table 1. The betweenness centralities �� � of tree �.
Another expression for the betweenness centrality �� � of any node v of a tree � is presented and proved here, in

Theorem 1 below. The importance of this theorem is that it allows �� � to be calculated effectively without the need
for finding all shortest paths through � . Instead, it suffices to consider the sizes of the connected components of the
network � ʸ � obtained by deleting from T the node v and each of its incident edges.

Theorem 1. For any node � of a tree �, let ��,�, �� denote the � := deg(�) connected components of �ʸ �, and
let ��,�, �� denote the respective number of nodes in these components. Then

bT v =
�≤i<j≤d

cicj .�

To illustrate the use of Theorem 1, consider the node �� in the tree � of Figure 1. This node has degree � = deg(��)
= 3, so the network � ʸ �� has three connected components, say �� , �2 , and �3 , as depicted in Figure 2. These
components contain �� = � nodes, �2 = 3 nodes, and �3 = 4 nodes, respectively. Therefore, by Theorem 1,
the betweenness centrality �� �� is

bT v� =
�≤i<j≤d

cicj�

= c�c2 + c�c3 + c2c3
= � × 3 + � × 4 + 3 × 4

= �9 .

Figure 2; The connected components of T-v1.
Proof of Theorem 1. Any path in � that passes through node � has endpoints � and � in distinct connected

components of � ʸ �, say �� and ��. The �� nodes of �� can be freely chosen as the endpoint in ��; similarly, the ��
nodes of �� can be freely chosen as the endpoint in ��. Thus, there are ���� choices for such endpoints. Summing over
all pairs of connected components �� and �� therefore provides the betweenness centrality of �:

�� � =
�,� ⊆�

��� � =
�≤�<�≤�

����� .�

Note that if � is a leaf node, then � ʸ � has at most one connected component, in which case, then sum given by
the theorem is empty and has value 0, which is indeed the value of ��(�).
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A special case of Theorem 2 is that in which � is a path :
Corollary 1. For any node � of a path �, let � denote the closest distance from � to either end of �. Then

�� � = � � ʸ � ʸ � .
3. Forests

We can extend Theorem 1 to forests as follows.
Theorem 2. For any node � of a forest �, let � denote the tree in � that contains �, let ��,�,�� denote the � :=

deg(�) connected components of � ʸ �, and let ��,�,�� denote the respective number of nodes in these components.
Then

bG v = bT v =
�≤i<j≤d

cicj� .

From Theorem 2, it is clear that the betweenness centrality of each node of a tree, or a forest more generally,
must be an integer. This provides us with a simple centrality test for testing whether a network is a forest, as follows.

Corollary 2.1. If the betweenness centrality ��(�) of any node � of a network � is not an integer, then � is not a
forest.

To demonstrate this test, consider the network � in Figure 3 below. This network is a cycle and is therefore not a
forest. This is also evident from the betweenness centralities

�� �� = �� �2 = �� �3 = �� �4 =
�
2
.

Since these betweenness centralities are not all integers, Corollary 2 asserts that G is not a forest.

Figure 3; A non-forest network G.

4. Cycles
As the example above demonstrated, the nodes of a cycle network can have non-integer betweenness centralities.

However, cycles are very nearly trees, and indeed, it turns out that in the majority (75%) of cases, the node betweenness
centralities of a cycle are in fact integers; see Remark 3.1 below. This is implied by the following Theorem 3, in which
the node betweenness centralities of the cycle �� with � nodes is given explicitly in terms of the value of �.

Theorem 3. For any node � of the cycle �� with � nodes.
If � is even, then

��� � =
�
8
� ʸ � � ʸ 3 .

If � is odd, then
��� � =

�
8
� ʸ 2 2.

To illustrate Theorem 3, consider the network � in Figure 3. It is the cycle C4 so, since 4 is even, each node in �
has betweenness centrality

�
8
� ʸ 2 2 =

�
8
4 ʸ 2 2 =

�
2
,

as previously established.
Note that if n is odd, then both n-1 and n-3 are even, and precisely one of these is divisible by 4; therefore, bCn (v)

= 18 (n-1)(n-3) is an integer. If n is even, however, then bCn (v) = 18 (n-2)2 may or may not be an integer. In particular,
this expression is even and thus an integer if n-2 is divisible by 4; however, it is not an integer if n is divisible by 4. We
may summarise these remarks as follows.

Remark 3.1. For any node � of the cycle �� with � nodes, ���(�) is an integer unless � is divisible by 4.
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Proof of Theorem 3. Label the nodes of �� consecutively by 0, �,�,� ʸ �, visualised as lying clockwise around
a circle, and note that, by symmetry, the node betweenness centralities are all equal. It therefore suffices to calculate
��� � for the node � = 0.

We must consider two cases, namely that in which � is even and that in which � is odd. The detail that
distinguishes these cases is that, in the even case, ��� can equal 2, namely when nodes � and � lie on diametrically
opposite sides of �� ; in other words, when the difference between the label values of � and � is �

2
, for then there are

exactly 2 shortest paths between � and � . In the odd case, no pair of nodes lie diametrically opposite each other, so
��� = � for all nodes � and �. This is illustrated in Figure 4.

Figure 4; The cycle ��.
Consider the case in which � is even, and suppose that � is one of the nodes �,�, �

2
ʸ �. If = � + �

2
, then � and � lie

on diametrically opposite sides of ��, and ��� = 2 and ��� � = �. If ∈ {� + �
2
+ �,�,� ʸ �} , then there is a unique

shortest path between � and �, and it passes via the node � = 0, so ��� = ��� � = �. For the values � = � + �,�,� +
�
2
ʸ �, the shortest path between � and � does not pass through �, so ��� � = 0.

Therefore,

��� � =
�,� ⊆ 0,�,�ʸ�

��� �
���

�

=
�=�

�
2 ʸ�

�
2
+

�=�+ �
2 +�

�ʸ�

���

=
�=�

�
2 ʸ�

�
2
+ � ʸ � ʸ � +

�
2�

=
�
2

�
2
ʸ
�
2 ʸ

�=�

�
2 ʸ�

��

=
�
2
ʸ �

�
2
ʸ
�
2

ʸ
�
2
�
2
ʸ �

�
2

=
�
8
� ʸ 2 2 .

The odd case is similar.
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