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ABSTRACT 

Remote sensing technologies have revolutionized forestry analysis by providing valuable information about forest 

ecosystems on a large scale. This rev iew article explores the latest advancements in remote sensing tools that leverage 

optical, thermal, RADAR, and LiDAR data, along with state-of-the-art methods of data processing and analysis. We 

investigate how these tools, combined with artificial intelligence (AI) techniques and cloud -computing facilities, en-

hance the analytical outreach and offer new insights in the fields of remote sensing and forestry disciplines. The article 

aims to provide a comprehensive overview of these advancements, discuss their potential applications, and highlight the 

challenges and future directions. Through this examination, we demonstrate the immense potential of integrating remote 

sensing and AI to revolutionize forest management and conservation practices. 

Keywords: remote sensing; forestry analysis; optical; thermal; RADAR; LiDAR; artificial intelligence (AI); cloud com-

puting 

1. Introduction 

Forestry analysis plays a crucial role in understanding and man-

aging forest ecosystems, and remote sensing technologies have signif-

icantly advanced this field. Remote sensing involves the acquisition 

of information about an object or area without direct physical contact. 

In the context of forestry analysis, remote sensing techniques provide 

valuable data on forest cover, health, and dynamics over large spatial 

extents[1]. 

Over the years, remote sensing tools have evolved to include 

various data acquisition systems, such as optical sensors, thermal sen-

sors, RADAR systems, and LiDAR scanners. Optical sensors capture 

images of forests using the visible and near-infrared spectrum, allow-

ing for detailed analysis of vegetation indices, such as NDVI (normal-

ized difference vegetation index), which can indicate forest health 

and productivity. Thermal sensors measure the emitted heat radiation 

from the forest, providing insights into temperature variations and 

identifying potential stress conditions. RADAR systems use electro-

magnetic waves to penetrate forest canopies, allowing for the estima-

tion of forest biomass and the detection of forest structural properties. 

LiDAR scanners emit laser pulses and measure their return time, ena-

bling highly detailed 3D representations of forest structure and topog-

raphy[2]. 

Advancements in data processing and analysis have also signifi-

cantly enhanced the capabilities of remote sensing tools for forestry 

analysis. Machine learning and artificial intelligence (AI) techniques 
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are now being integrated to automate the classifi-

cation and mapping of forest cover types, detect 

changes in forest structure and composition, and 

predict forest disturbances such as wildfires and 

insect infestations. These AI-driven approaches 

enable more efficient and accurate analysis of re-

mote sensing data, saving time and resources 

while providing valuable insights[3]. 

Furthermore, the integration of remote sens-

ing tools with cloud computing infrastructure has 

facilitated the storage, processing, and sharing of 

large volumes of remote sensing data. Cloud-based 

platforms allow researchers and practitioners to 

access and analyze remote sensing data remotely, 

eliminating the need for expensive computing re-

sources and reducing the time required for data 

processing. This accessibility and scalability have 

opened up new avenues for collaboration, ena-

bling multidisciplinary approaches and fostering 

innovation in forest analysis and management[4]. 

1.1 Importance of remote sensing in forest-

ry analysis 

Remote sensing plays a crucial role in forest-

ry analysis by providing valuable information 

about forest ecosystems at various spatial and 

temporal scales. Figure 1 shows the diagram for 

functions of remote sensing in forestry analysis. 

Here are some key points highlighting the im-

portance of remote sensing in forestry analysis: 

a) Large-scale coverage: Remote sensing 

allows for the assessment of forest resources over 

large areas that are often difficult or time-consuming 

to access on the ground. This enables comprehen-

sive monitoring and analysis of forests at regional, 

national, and global scales. 

b) Forest inventory and mapping: Remote 

sensing data, such as optical imagery and LiDAR, 

can be used to estimate forest inventory parame-

ters like tree species, tree height, canopy cover, 

biomass, and carbon stocks. These measurements 

are crucial for assessing forest health, productivity, 

and carbon sequestration potential. 

c) Forest change detection: Remote sensing 

data enables the detection and monitoring of for-

est changes over time, such as deforestation, for-

est degradation, regrowth, and natural disturb-

ances like wildfires and insect outbreaks. Timely 

and accurate information about these changes is 

vital for implementing effective forest manage-

ment strategies and conservation measures. 

d) Biodiversity monitoring: Remote sens-

ing can contribute to biodiversity assessments by 

identifying and mapping habitat types, ecological 

corridors, and key biodiversity areas. It can help 

monitor changes in habitat conditions and track 

the distribution of threatened or endangered spe-

cies. 

e) Forest health monitoring: Remote sens-

ing tools, including thermal and hyperspectral 

sensors, can provide insights into forest health 

conditions, including stress detection, disease 

identification, and pest infestations. Early detec-

tion of these issues facilitates prompt interven-

tions to mitigate their impacts on forest ecosys-

tems. 

f) Sustainable forest management: Re-

mote sensing data can support sustainable forest 

management practices by providing information 

on forest growth rates, timber volume estimation, 

and optimal harvest planning. It enables the iden-

tification of suitable areas for afforestation and 

reforestation, as well as monitoring the success of 

these initiatives. 

g) Risk assessment and planning: Remote 

sensing helps in assessing risks related to forest 

hazards, such as wildfires, landslides, and disease 

outbreaks. By identifying vulnerable areas, stake-

holders can develop effective risk management 

strategies and prioritize resources for prevention 

and mitigation efforts[5]. 

h) Policy support and decision-making: 

Remote sensing data provides objective and spa-

tially explicit information to support evidence-

based decision-making in forestry-related policies, 

conservation planning, and resource allocation. It 

helps policymakers and stakeholders understand 

the state of forests, evaluate the effectiveness of 

interventions, and monitor compliance with envi-

ronmental regulations. 
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Figure 1. Functions of remote sensing in forestry analysis. 

1.2 Overview of optical, thermal, RADAR, 

and LiDAR remote sensing data 

Each type of remote sensing data has its 

strengths and limitations. Optical data offers high 

spatial resolution and detailed spectral infor-

mation but can be affected by cloud cover and 

limited to daylight imaging[6]. Thermal data cap-

tures thermal signatures but may have lower spa-

tial resolution. RADAR data provides all-weather 

imaging but typically has lower spatial resolution 

compared to optical data[7]. LiDAR data offers 

accurate 3D information but can be expensive and 

limited in spatial coverage. Figure 2 shows over-

view of optical, thermal, RADAR, remote sensing 

data. 

a) Optical remote sensing data: Optical 

remote sensing utilizes sensors that capture the 

visible and near-infrared portions of the electro-

magnetic spectrum. It includes data captured by 

satellites, aerial platforms, and drones. Optical 

sensors provide detailed information about the 

spectral characteristics of objects and can be used 

for various applications such as land cover classi-

fication, vegetation health assessment, and map-

ping. 

b) Thermal remote sensing data: Thermal 

remote sensing data captures the thermal radiation 

emitted by objects. It measures the surface tem-

perature of objects and can provide valuable in-

formation about energy exchange processes, in-

cluding evapotranspiration and heat stress. Ther-

mal imagery is particularly useful for detecting 

and monitoring forest fires, assessing vegetation 

water stress, and analyzing land surface tempera-

ture patterns. 

c) RADAR remote sensing data: RADAR 

(radio detection and ranging) remote sensing uses 

active sensors that emit microwave signals and 

measure the backscattered signals reflected from 

the Earth’s surface and objects. RADAR data can 

penetrate clouds and vegetation, making it suita-

ble for all-weather and day-night imaging. It pro-

vides information on surface roughness, terrain 

elevation, and vegetation structure. RADAR data 

is commonly used for forest mapping, monitoring 

forest biomass, and detecting forest disturbances 

such as deforestation and forest degradation. 

d) LiDAR remote sensing data: LiDAR 

(light detection and ranging) remote sensing em-

ploys laser sensors that emit pulses of light and 

measure the time it takes for the light to return 

after hitting a target. LiDAR data provides highly 

accurate and detailed three-dimensional (3D) in-

formation about the Earth’s surface and objects, 

including vegetation. It is used for generating 

digital elevation models (DEMs), creating high-

resolution canopy height models, identifying indi-
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vidual trees, estimating biomass, and mapping 

forest structure. 

By combining and integrating data from 

these different remote sensing sources, researchers 

and analysts can gain a comprehensive under-

standing of forest ecosystems, including their 

structure, health, composition, and changes over 

time. The synergistic use of optical, thermal, RA-

DAR, and LiDAR data enables more robust and 

accurate analysis, providing valuable insights for 

forestry applications and environmental manage-

ment. 

 
Figure 2. Overview of optical, thermal, RADAR, remote sensing data. 

1.3 Advantages of AI and cloud computing 

in remote sensing applications 

AI (artificial intelligence) and cloud compu-

ting offer numerous advantages when applied to 

remote sensing applications. Here are some key 

benefits: 

a) Enhanced data processing: AI tech-

niques, such as machine learning and deep learn-

ing, can efficiently process large volumes of re-

mote sensing data. They can automate tasks like 

feature extraction, classification, and object detec-

tion, reducing the time and effort required for 

manual analysis. 

b) Improved accuracy and precision: AI 

algorithms can improve the accuracy and preci-

sion of remote sensing analysis. They can learn 

complex patterns and relationships from training 

data, leading to more reliable and consistent re-

sults in tasks such as land cover classification, 

change detection, and species identification. 

c) Scalability and efficiency: Cloud compu-

ting provides on-demand access to vast computa-

tional resources. It allows remote sensing analysts 

to process and analyze large datasets quickly and 

efficiently. Cloud-based platforms can scale up or 

down based on the workload, ensuring timely and 

cost-effective data processing. 

d) Accessibility and collaboration: Cloud-

based remote sensing platforms enable easy ac-

cess to data and tools from anywhere with an in-

ternet connection. This accessibility promotes col-

laboration among researchers, allowing them to 

share data, algorithms, and models. It facilitates 

interdisciplinary research and knowledge sharing 

across different geographic locations. 

e) Real-time monitoring and alerts: AI al-

gorithms can be deployed on cloud-based systems 

to provide real-time monitoring and alerts for spe-

cific events or changes detected in remote sensing 

data. For example, forest fire detection systems 

can analyze satellite imagery in real-time and is-

sue alerts to authorities, enabling rapid response 

and mitigation measures. 

f) Fusion of multi-source data: AI tech-

niques combined with cloud computing enable the 

integration and fusion of multi-source remote 
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sensing data. This integration enhances the analy-

sis by combining complementary information 

from different sensors, such as optical, thermal, 

RADAR, and LiDAR data. It leads to a more 

comprehensive understanding of forest ecosys-

tems and enables more accurate and holistic as-

sessments. 

g) Adaptability and Learning: AI algo-

rithms can adapt and improve over time by learn-

ing from new data. They can be trained on updat-

ed datasets to refine and update models, enhanc-

ing the accuracy and relevance of remote sensing 

analysis. Cloud computing provides the infrastruc-

ture to support continuous learning and updates of 

AI models. 

h) Cost Savings: Cloud computing elimi-

nates the need for extensive local infrastructure 

and computational resources. Organizations can 

leverage the pay-as-you-go model of cloud ser-

vices, reducing costs associated with hardware, 

software, maintenance, and upgrades. It makes 

remote sensing analysis more accessible and cost-

effective, particularly for smaller organizations or 

research projects with limited budgets[8]. 

By harnessing the power of AI and cloud 

computing, remote sensing applications can 

achieve higher efficiency, accuracy, scalability, 

and accessibility. These technologies are trans-

forming the field by enabling advanced analysis, 

real-time monitoring, and collaborative research, 

ultimately leading to improved understanding and 

management of forest ecosystems. Figure 3 pro-

cess of AI Application in forest mapping and 

monitoring. 

 
Figure 3. Process of AI application in forest mapping and monitoring. 

2. Optical remote sensing tools 

2.1 Utilizing high-resolution multispectral 

and hyperspectral imagery for vegetation 

mapping and species classification 

Utilizing high-resolution multispectral and 

hyperspectral imagery for vegetation mapping and 

species classification has become a valuable ap-

plication in remote sensing[9]. Here are some key 

aspects and benefits of using these types of image-

ry for these purposes. 

2.1.1 Multispectral imagery 

Multispectral imagery captures data in a few 

distinct spectral bands, typically including the vis-

ible and near-infrared regions of the electromag-

netic spectrum. It provides valuable information 

about the reflectance properties of vegetation and 

other land cover types. Some advantages of using 

high-resolution multispectral imagery for vegeta-

tion mapping and species classification are: 

a) Spectral differentiation: Different vege-

tation species and types exhibit unique spectral 

signatures due to variations in their chlorophyll 

content, leaf structure, and physiological proper-

ties. Multispectral imagery allows for the differen-

tiation of vegetation classes based on their spec-

tral response patterns. 

b) Land cover mapping: Multispectral im-

agery can be used to classify and map various 

land cover types, including forests, grasslands, 

croplands, wetlands, and urban areas. By analyz-
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ing the spectral characteristics of different land 

cover classes, accurate maps can be created to 

monitor land use changes and assess vegetation 

dynamics. 

c) Vegetation indices: Multispectral image-

ry enables the calculation of vegetation indices 

such as the normalized difference vegetation in-

dex (NDVI) and Enhanced Vegetation Index 

(EVI). These indices provide quantitative 

measures of vegetation health, biomass, and vigor, 

facilitating vegetation mapping and monitoring of 

ecosystem conditions. 

d) Classification algorithms: high-resolution 

multispectral imagery can be utilized in conjunc-

tion with classification algorithms, such as deci-

sion trees, random forests, or support vector ma-

chines, to accurately classify vegetation species or 

land cover types. The combination of spectral in-

formation and machine learning techniques im-

proves the accuracy of classification results. 

2.1.2 Hyperspectral imagery 

Hyperspectral imagery captures data in nu-

merous narrow contiguous spectral bands, provid-

ing a more detailed spectral resolution compared 

to multispectral imagery[10]. It offers several ad-

vantages for vegetation mapping and species clas-

sification: 

a) Spectral signature analysis: Hyperspec-

tral imagery allows for the detection of subtle dif-

ferences in vegetation spectral signatures, ena-

bling finer discrimination among species and veg-

etation classes. It can capture unique spectral 

characteristics related to biochemical and physio-

logical properties of vegetation, leading to more 

accurate species identification. 

b) Species discrimination: Hyperspectral 

imagery provides a wealth of spectral information 

that can be used to develop species-specific spec-

tral libraries or signatures. These spectral libraries, 

combined with advanced classification algorithms, 

facilitate the identification and discrimination of 

plant species, including invasive or rare species. 

c) Vegetation trait analysis: Hyperspectral 

data can be used to extract additional vegetation 

traits beyond spectral classification. It enables the 

estimation of parameters such as leaf area index 

(LAI), chlorophyll content, water content, and 

biochemical composition. These parameters con-

tribute to a more comprehensive understanding of 

vegetation characteristics and ecosystem process-

es. 

d) Sub-pixel analysis: Hyperspectral image-

ry allows for sub-pixel analysis, enabling the iden-

tification and mapping of mixed pixels where 

multiple vegetation species or land cover types 

coexist within a single pixel. This capability en-

hances the accuracy of vegetation mapping and 

species classification in complex landscapes. 

e) Ecological research and conservation: 

Hyperspectral imagery provides valuable data for 

ecological research, habitat mapping, biodiversity 

assessment, and conservation planning. It aids in 

the identification of sensitive or threatened eco-

systems, monitoring the spread of invasive species, 

and assessing habitat quality. 

Both high-resolution multispectral and hy-

perspectral imagery offer valuable insights for 

vegetation mapping and species classification. 

The choice between the two depends on the spe-

cific research objectives, spatial resolution re-

quirements, and spectral resolution needs of the 

study. Advances in sensor technology and data 

processing techniques continue to enhance the 

accuracy and capabilities of these remote sensing 

tools for vegetation analysis and ecological stud-

ies. 

2.2 Extraction of forest structural parame-

ters using vegetation indices and machine 

learning algorithms 

The extraction of forest structural parameters 

using vegetation indices and machine learning 

algorithms is a powerful approach in remote sens-

ing. By combining spectral information from veg-

etation indices and the analytical capabilities of 

machine learning algorithms, accurate and effi-

cient estimation of forest structural parameters can 

be achieved. Figure 4 shows methodology flow 

chart extraction of forest structural parameters. 

Here are the key aspects and benefits of this ap-

proach: 
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a) Vegetation indices: Vegetation indices 

are derived from remote sensing data, typically 

using specific combinations of spectral bands, and 

provide quantitative measures of vegetation prop-

erties. Some commonly used vegetation indices 

include the normalized difference vegetation in-

dex (NDVI), enhanced vegetation index (EVI), 

and leaf area index (LAI). These indices capture 

important characteristics related to vegetation 

health, vigor, and leaf area. 

b) Forest structural parameters: Forest 

structural parameters refer to the physical charac-

teristics of the forest, such as canopy height, 

crown diameter, tree density, biomass, and vol-

ume. Accurately estimating these parameters is 

crucial for forest management, carbon accounting, 

biodiversity assessment, and ecosystem model-

ing[11]. 

c) Machine learning algorithms: Machine 

learning algorithms, such as decision trees, ran-

dom forests, support vector machines, or neural 

networks, can be trained using labeled or refer-

ence data to establish relationships between vege-

tation indices and forest structural parameters. 

Once trained, these algorithms can make predic-

tions or classifications on new or unseen data. 

 
Figure 4. Methodology flow chart extraction of forest structural parameters. 

2.3 Integration of AI methods for automat-

ed land cover change detection and forest 

disturbance monitoring 

The integration of AI methods for automated 

land cover change detection and forest disturbance 

monitoring has revolutionized the field of remote 

sensing and environmental monitoring. AI tech-

niques, such as machine learning and deep learn-

ing, have the capability to analyze large volumes 

of remote sensing data and automatically detect 

and classify land cover changes and forest dis-

turbances[12]. Here are the key aspects and benefits 

of this integration: 

a) Efficient change detection: AI methods 

enable automated change detection by comparing 

multi-temporal remote sensing data. By training 

machine learning models on labeled change/no-change 

data, these algorithms can learn to identify pat-

terns and spectral changes associated with land 

cover changes and forest disturbances. This elimi-

nates the need for manual visual interpretation of 

imagery, making the process more efficient and 

scalable. 

b) Multi-sensor data fusion: AI methods 

facilitate the integration of multi-sensor data, such 

as optical, thermal, RADAR, and LiDAR, for 

change detection and forest disturbance monitor-

ing. By combining information from different 

sensors, the algorithms can leverage the comple-

mentary strengths of each data source, resulting in 

more accurate and comprehensive analysis. 

c) High accuracy and reliability: AI algo-

rithms can achieve high accuracy and reliability in 

detecting land cover changes and forest disturb-

ances. By leveraging the power of deep learning 

neural networks, these algorithms can learn intri-

cate patterns and spectral characteristics that are 
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not easily discernible to human observers. This 

leads to improved detection rates and reduced 

false positives/negatives. 

d) Rapid detection and monitoring: AI 

methods enable real-time or near-real-time land 

cover change detection and forest disturbance 

monitoring. With automated processing and anal-

ysis, the algorithms can continuously monitor 

large areas and provide timely information on for-

est disturbances, such as deforestation, forest fires, 

insect outbreaks, and disease outbreaks. This al-

lows for proactive and rapid response to mitigate 

the impacts of disturbances. 

e) Scalability and cost-effectiveness: The 

integration of AI methods with cloud computing 

provides scalability and cost-effectiveness in pro-

cessing and analyzing large volumes of remote 

sensing data. Cloud-based platforms allow for 

parallel processing and utilization of high-performance 

computing resources, reducing computational 

time and costs associated with data storage and 

processing. 

f) Long-term monitoring and trend anal-

ysis: By automating land cover change detection 

and forest disturbance monitoring, AI methods 

facilitate long-term monitoring and trend analysis. 

Historical satellite imagery can be processed to 

identify persistent changes and assess the trajecto-

ry of forest disturbances over time. This infor-

mation is valuable for understanding long-term 

environmental changes, ecosystem dynamics, and 

informing land management and conservation 

strategies. 

g) Early warning systems: AI-based change 

detection algorithms can be integrated into early 

warning systems for forest disturbances. By con-

tinuously monitoring and analyzing remote sens-

ing data, these systems can provide timely alerts 

and notifications to stakeholders and decision-

makers, enabling them to take proactive measures 

to mitigate and respond to forest disturbances. 

The integration of AI methods for automated 

land cover change detection and forest disturbance 

monitoring has significantly improved the effi-

ciency, accuracy, and timeliness of environmental 

monitoring. It empowers researchers, land manag-

ers, and policymakers with actionable information 

for effective land management, conservation 

planning, and the preservation of forest ecosys-

tems. 

3. Thermal remote sensing tools 

3.1 Mapping forest health and stress using 

thermal infrared imagery 

Thermal remote sensing tools, particularly 

thermal infrared imagery, offer valuable insights 

into mapping forest health and stress. By captur-

ing and analyzing the thermal radiation emitted by 

objects, including vegetation, thermal remote 

sensing provides information about the tempera-

ture variations within forest ecosystems[13]. Here 

are key aspects related to mapping forest health 

and stress using thermal infrared imagery: 

a) Temperature as an indicator of forest 

health: Temperature is a vital parameter for as-

sessing the health and stress levels of forest vege-

tation. Healthy plants typically exhibit a well-

regulated temperature range, while stressed or 

unhealthy vegetation may show deviations from 

the normal temperature patterns. Thermal infrared 

imagery can detect these temperature variations 

and provide information on the physiological con-

dition of the forest. 

b) Water stress and drought monitoring: 

Water stress is a significant factor affecting forest 

health, particularly in arid and semi-arid regions. 

Thermal remote sensing can help identify areas of 

water stress by detecting higher leaf temperatures 

in plants experiencing water shortages. By moni-

toring the thermal patterns of forests over time, it 

is possible to assess the severity and spatial extent 

of drought conditions and their impact on forest 

ecosystems. 

c) Detection of pest and disease infesta-

tions: Thermal infrared imagery can aid in the 

detection of pest and disease infestations in for-

ested areas. Infected or infested trees often exhibit 

abnormal temperature patterns due to physiologi-

cal changes induced by pests or diseases. By 

comparing the thermal signatures of healthy and 

infected vegetation, it is possible to identify areas 
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of potential pest or disease outbreaks and target 

appropriate management actions. 

d) Fire detection and monitoring: Thermal 

remote sensing is widely used for fire detection 

and monitoring. Active fires emit significant 

amounts of thermal radiation, which can be de-

tected by thermal infrared sensors onboard satel-

lites or aerial platforms. By analyzing the thermal 

anomalies and patterns, such as hotspots and fire 

fronts, thermal remote sensing contributes to early 

fire detection, fire behavior modeling, and post-

fire monitoring. 

e) Vegetation stress and disturbance 

mapping: Thermal infrared imagery can provide 

insights into vegetation stress and disturbances 

caused by factors such as deforestation, land use 

changes, or human activities. Areas undergoing 

disturbances often exhibit changes in surface tem-

perature due to alterations in vegetation cover, 

water availability, or soil properties. By compar-

ing pre- and post-disturbance thermal imagery, it 

is possible to map and monitor areas of vegetation 

stress and disturbance. 

f) Mapping forest microclimates: Thermal 

remote sensing enables the mapping of forest mi-

croclimates by assessing temperature variations 

within a forested area. Different forest types, to-

pography, and vegetation structure can create dis-

tinct thermal environments. Understanding these 

microclimates is crucial for characterizing ecolog-

ical niches, species distribution, and habitat suita-

bility assessments. 

g) Integration with other remote sensing 

data: To enhance the accuracy and reliability of 

forest health and stress mapping, thermal remote 

sensing data can be integrated with other remote 

sensing datasets. Combining thermal infrared im-

agery with multispectral or hyperspectral data al-

lows for a more comprehensive analysis of vege-

tation dynamics, land cover change, and ecosys-

tem functioning. 

Mapping forest health and stress using ther-

mal infrared imagery has proven to be a valuable 

application of thermal remote sensing. By lever-

aging the temperature variations within forest eco-

systems, it provides essential information for un-

derstanding the impacts of water stress, pest and 

disease outbreaks, fire occurrences, disturbances, 

and microclimate variability. These insights con-

tribute to effective forest management, conserva-

tion planning, and the preservation of ecosystem 

resilience. 

3.2 Estimation of evapotranspiration and 

water stress in forests 

The estimation of evapotranspiration (ET) 

and water stress in forests is crucial for under-

standing water dynamics, assessing ecosystem 

health, and informing water resource management 

strategies[14]. Remote sensing techniques, com-

bined with modeling approaches, offer valuable 

tools to estimate ET and evaluate water stress in 

forested environments. Here are key aspects relat-

ed to the estimation of evapotranspiration and wa-

ter stress in forests: 

a) Evapotranspiration estimation: Evapo-

transpiration represents the combined processes of 

water evaporation from the soil surface and tran-

spiration from plant leaves. Estimating ET in for-

ests helps quantify the water loss and understand 

the water requirements of vegetation. Remote 

sensing plays a vital role in ET estimation by 

providing spatially and temporally explicit infor-

mation on vegetation properties, land surface 

temperature, and energy fluxes. 

b) Energy balance models: Energy balance 

models, such as the surface energy balance algo-

rithm for land (SEBAL) or the simplified surface 

energy balance (SSEB) approach, utilize remote 

sensing data to estimate ET. These models rely on 

measurements of surface temperature (derived 

from thermal infrared imagery), meteorological 

data, and vegetation indices to calculate energy 

fluxes and water vapor exchange between the land 

surface and the atmosphere. 

c) Vegetation indices: Vegetation indices, 

particularly those derived from multispectral or 

hyperspectral imagery, provide valuable infor-

mation for estimating ET and assessing water 

stress in forests. Indices such as the normalized 

difference vegetation index (NDVI) or the en-

hanced vegetation index (EVI) reflect vegetation 
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vigor and biomass, which are correlated with tran-

spiration rates and water availability. 

d) Water stress indicators: Water stress in 

forests can be evaluated by monitoring indicators 

related to vegetation water content and physiolog-

ical responses. Remote sensing-based indicators, 

such as the normalized difference water index 

(NDWI) or the water stress index (WSI), leverage 

spectral information from optical or thermal sen-

sors to assess the level of water stress in vegeta-

tion. These indicators detect changes in leaf water 

content or alterations in thermal patterns associat-

ed with water limitations. 

e) Canopy water content mapping: Remote 

sensing data, including microwave and L-band radar 

imagery, can be used to estimate canopy water 

content in forests. Microwaves penetrate vegeta-

tion and are sensitive to changes in water content, 

allowing the mapping of water storage in the can-

opy layer. This information contributes to under-

standing the water balance and water availability 

in forested areas. 

f) Integration of data sources: Integration 

of remote sensing data with meteorological infor-

mation, ground-based measurements, and hydro-

logical models enhances the accuracy of ET esti-

mation and water stress assessment. Combining 

remote sensing observations with ancillary data 

enables the calibration and validation of models, 

accounting for local climatic conditions, vegeta-

tion types, and soil properties. 

g) Monitoring and management applica-

tions: Accurate estimation of ET and evaluation 

of water stress in forests have practical applica-

tions in various domains. These include assessing 

drought impacts on forest ecosystems, optimizing 

water allocation for irrigation or ecological pur-

poses, guiding forest management practices to 

maintain healthy vegetation, and supporting water 

resource planning and decision-making. 

The estimation of evapotranspiration and wa-

ter stress in forests using remote sensing provides 

valuable insights into the water dynamics and 

ecosystem functioning. By leveraging the capabil-

ities of remote sensing techniques and modeling 

approaches, it contributes to improved water re-

source management, sustainable forest practices, 

and the conservation of water-dependent ecosystems. 

3.3 Combining thermal data with other 

remote sensing sources for improved forest 

fire detection and monitoring 

Combining thermal data with other remote 

sensing sources offers significant advantages for 

improved forest fire detection and monitoring. By 

integrating multiple data types, such as optical, 

thermal, and radar imagery[15], a more comprehen-

sive and accurate assessment of forest fires can be 

achieved. Here are the key benefits of combining 

thermal data with other remote sensing sources for 

forest fire detection and monitoring: 

a) Enhanced fire detection: Thermal data, 

particularly from thermal infrared sensors, provide 

valuable information on the radiant heat emitted 

by active fires. By integrating thermal imagery 

with optical data, such as multispectral or hyper-

spectral imagery, it is possible to improve fire de-

tection capabilities. Optical sensors capture the 

visual and spectral signatures of smoke, flames, 

and burned areas, complementing the thermal data 

and increasing the overall detection accuracy. 

b) Improved fire mapping and boundary 

estimation: Combining thermal data with high-

resolution optical imagery allows for more precise 

mapping and boundary estimation of forest fires. 

The thermal data provide information about the 

fire’s thermal intensity and extent, while optical 

data provide detailed spatial information, helping 

to delineate the fire perimeter and distinguish be-

tween burned and unburned areas. This integra-

tion enables more accurate fire size estimation and 

assessment of fire behavior. 

c) Smoke plume analysis: Integrating ther-

mal and radar data can provide valuable insights 

into the analysis of smoke plumes generated by 

forest fires. Radar sensors are capable of penetrat-

ing smoke and capturing the backscatter signals 

from smoke particles. By combining thermal data 

for fire location and intensity with radar data for 

smoke detection and characterization, it is possi-

ble to better understand smoke dynamics, disper-

sion patterns, and potential impacts on air quality. 
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d) Fire severity assessment: Combining 

thermal data with post-fire optical and radar data 

facilitates fire severity assessment. Post-fire opti-

cal imagery, such as high-resolution satellite im-

agery, can capture the extent and severity of 

burned areas, while radar data can help identify 

changes in forest structure and biomass. By com-

paring pre- and post-fire data, it is possible to 

quantify the severity of the fire’s impact on the 

forest ecosystem and assess vegetation recovery 

potential. 

e) Real-time fire monitoring: Integrating 

thermal data with near-real-time monitoring sys-

tems, such as geostationary satellites or unmanned 

aerial vehicles (UAVs), enables real-time fire moni-

toring and early warning systems. Thermal sen-

sors onboard satellites or UAVs can provide con-

tinuous updates on fire activity, while other sen-

sors capture complementary information on 

smoke, flames, and burned areas. This integration 

allows for timely response and decision-making to 

mitigate the impacts of forest fires. 

f) Fire behavior modeling: Combining 

thermal data with other remote sensing sources 

contributes to more accurate fire behavior model-

ing. By assimilating thermal data into fire behav-

ior models, it is possible to improve the prediction 

of fire spread, intensity, and direction. This infor-

mation is valuable for fire management and re-

source allocation, aiding in the deployment of 

firefighting resources and the development of ef-

fective fire containment strategies. 

g) Integration with ancillary data: Inte-

grating thermal data with ancillary data, such as 

weather data, topographic information, and fuel 

characteristics, further enhances the understanding 

and analysis of forest fires. Incorporating these 

additional data sources into fire detection and 

monitoring systems enables more robust modeling, 

considering factors that influence fire behavior 

and spread, such as wind patterns, slope, and veg-

etation type. 

Combining thermal data with other remote 

sensing sources significantly improves forest fire 

detection and monitoring capabilities. By leverag-

ing the strengths of different sensors and data 

types, it allows for more accurate fire detection, 

mapping, severity assessment, and real-time 

monitoring[16]. This integration enhances the ef-

fectiveness of fire management efforts and sup-

ports proactive measures to mitigate the impacts 

of forest fires on ecosystems and human popula-

tions. 

4. RADAR remote sensing tools 

4.1 Assessing forest biomass and structure 

using synthetic aperture radar (SAR) data 

Assessing forest biomass and structure using 

synthetic aperture radar (SAR) data has proven to 

be a valuable approach in remote sensing. SAR 

data, with its unique capabilities for penetrating 

forest canopies and capturing backscatter signals, 

provides valuable information for estimating for-

est biomass, characterizing forest structure, and 

monitoring changes over time[17]. Here are key 

aspects related to the assessment of forest biomass 

and structure using SAR data: 

a) Backscatter response and biomass es-

timation: SAR backscatter signals are sensitive to 

the structural properties and moisture content of 

forest vegetation. Forest biomass estimation using 

SAR data is based on the assumption that higher 

biomass is associated with increased backscatter 

intensity. By calibrating SAR backscatter meas-

urements with ground-based biomass data, it is 

possible to establish empirical relationships and 

develop biomass estimation models. 

b) Forest height and canopy structure: 

SAR data can be used to estimate forest height 

and characterize canopy structure. The interaction 

of SAR signals with forest canopies provides in-

formation about the vertical structure and density 

of vegetation. Forest height estimation is typically 

achieved by correlating SAR backscatter with 

field measurements of tree height, while canopy 

structure parameters, such as vegetation density or 

canopy closure, can be derived from the shape and 

intensity of the backscatter response. 

c) Forest change detection: SAR data al-

lows for the monitoring of forest changes over 

time, including deforestation, forest degradation, 
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or regrowth. By comparing SAR images acquired 

at different time points, changes in backscatter 

patterns can be identified, indicating alterations in 

forest biomass and structure. Change detection 

using SAR data contributes to understanding for-

est dynamics, assessing the impacts of human ac-

tivities, and supporting forest management and 

conservation efforts. 

d) Polarimetric SAR: Polarimetric SAR da-

ta, which provides additional information about 

the polarization properties of radar signals, en-

hances the assessment of forest biomass and struc-

ture. By analyzing the polarimetric backscatter 

responses, it is possible to extract more detailed 

information about the scattering mechanisms 

within forest canopies. Polarimetric SAR data en-

ables the discrimination of different vegetation 

types, estimation of biomass components (such as 

above-ground and below-ground biomass), and 

identification of structural characteristics, such as 

tree density and canopy orientation. 

e) Interferometric SAR (InSAR): InSAR 

techniques, using pairs or stacks of SAR images 

acquired from slightly different positions, allow 

for the estimation of forest height and monitoring 

of forest structure changes. By measuring the 

phase differences between SAR images, it is pos-

sible to generate digital elevation models (DEMs) 

and derive forest height information. InSAR also 

enables the detection of subtle ground defor-

mations, such as those caused by tree growth or 

subsidence, providing insights into forest structur-

al dynamics. 

f) Data fusion and integration: Integrating 

SAR data with other remote sensing sources, such 

as optical imagery or LiDAR data, enhances the 

assessment of forest biomass and structure. Data 

fusion techniques enable the integration of SAR 

information (e.g., backscatter intensity) with opti-

cal data (e.g., vegetation indices) or LiDAR-

derived metrics (e.g., canopy height). This inte-

gration allows for a more comprehensive analysis 

of forest characteristics, overcoming the limita-

tions and complementing the strengths of each 

individual data source. 

g) Calibration and validation: Accurate es-

timation of forest biomass and structure using 

SAR data requires calibration and validation 

against ground-based measurements. Field data 

collection, including forest inventory plots, bio-

mass sampling, or LiDAR acquisitions, is essen-

tial for establishing empirical relationships and 

validating the accuracy of SAR-based estimations. 

Ground truth data play a crucial role in calibrating 

SAR backscatter models and improving the relia-

bility of biomass and structure assessments. 

Assessing forest biomass and structure using 

SAR data offers valuable insights into forest eco-

systems, supporting forest inventory, carbon ac-

counting, and management practices. The unique 

capabilities of SAR in penetrating forest canopies 

and providing all-weather. 

4.2 Detection and mapping of forest dis-

turbances, such as deforestation and forest 

degradation, using SAR interferometry 

SAR interferometry, commonly known as 

InSAR (interferometric synthetic aperture radar), 

is a powerful technique for detecting and mapping 

forest disturbances, including deforestation and 

forest degradation[18]. By analyzing the phase dif-

ferences between pairs of SAR images acquired at 

different times, InSAR can identify subtle ground 

deformations associated with changes in forest 

cover. Here are key aspects related to the detec-

tion and mapping of forest disturbances using 

SAR interferometry: 

a) Forest height change detection: One of 

the main applications of InSAR in forest disturb-

ance mapping is the detection of changes in forest 

height. When deforestation or forest degradation 

occurs, the removal or alteration of vegetation 

results in changes in the surface elevation, which 

can be detected by InSAR. By comparing two or 

more SAR images, InSAR can quantify the verti-

cal displacement and provide insights into the ex-

tent and magnitude of forest disturbances. 

b) Differential interferometric SAR (DIn-

SAR): Differential interferometric SAR (DInSAR) 

is a variant of InSAR that focuses on measuring 

small-scale surface deformations. By comparing 
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the phase differences between two or more SAR 

images acquired at different times, DInSAR can 

detect and quantify subtle ground movements as-

sociated with forest disturbances. It enables the 

identification of localized areas of deforestation, 

selective logging, or other forms of forest degra-

dation. 

c) Forest cover change detection: In addi-

tion to measuring height changes, InSAR can also 

be used to detect changes in forest cover. By ana-

lyzing the coherence, which represents the simi-

larity of radar waves between two images, areas 

of significant vegetation loss or disturbance can 

be identified. A decrease in coherence indicates 

changes in the radar backscatter, indicating forest 

disturbances such as deforestation, clear-cutting, 

or fire. 

d) Mapping forest degradation: SAR inter-

ferometry can be used to map different types of 

forest degradation, such as selective logging, can-

opy gaps, or gradual loss of biomass. By quantify-

ing the vertical displacement and coherence 

changes in SAR images, InSAR provides infor-

mation about the spatial distribution and severity 

of forest degradation. These maps can assist in 

assessing the impact of human activities on forest 

ecosystems and guiding conservation efforts. 

e) Identification of illegal logging: illegal 

logging is a significant threat to forests worldwide. 

InSAR can contribute to the identification and 

monitoring of illegal logging activities by detect-

ing changes in forest cover and height. The ability 

to detect small-scale ground deformations allows 

for the identification of localized areas where un-

authorized logging activities are taking place, 

supporting law enforcement and forest manage-

ment efforts. 

f) Forest recovery monitoring: Following 

disturbances such as deforestation or selective 

logging, monitoring forest recovery is crucial for 

assessing the effectiveness of restoration efforts. 

InSAR can contribute to monitoring the regrowth 

of forests by detecting changes in surface eleva-

tion and canopy height over time. It enables the 

quantification of forest recovery rates and the 

evaluation of restoration success. 

g) Integration with other data sources: To 

enhance the accuracy and reliability of forest dis-

turbance mapping, InSAR data can be integrated 

with other remote sensing sources, such as optical 

imagery or LiDAR data. Combining InSAR with 

optical data allows for the identification of chang-

es in forest cover, while LiDAR data can provide 

additional information on canopy structure and 

biomass. Data fusion and integration enable a 

more comprehensive understanding of forest dis-

turbances and their impact on ecosystem dynam-

ics. 

Detection and mapping of forest disturbances, 

such as deforestation and forest degradation, using 

SAR interferometry, provide valuable insights 

into the dynamics of forest ecosystems. By lever-

aging the capabilities of InSAR, it is possible to 

assess the extent, magnitude, and spatial patterns 

of forest disturbances, supporting forest manage-

ment, conservation efforts, and policy-making for 

sustainable land use. 

4.3 Fusion of optical and RADAR data for 

improved forest characterization and mon-

itoring 

The fusion of optical and radar data offers 

significant advantages for improved forest charac-

terization and monitoring. By integrating the 

complementary information from these two data 

sources, a more comprehensive understanding of 

forest structure, biomass, and dynamics can be 

achieved[19]. Here are the key benefits of fusing 

optical and radar data for forest characterization 

and monitoring: 

a) Improved forest structure estimation: 

Optical data, such as multispectral or hyperspec-

tral imagery, provide high-resolution spatial in-

formation about vegetation characteristics, includ-

ing leaf area index (LAI), canopy height, and veg-

etation indices. On the other hand, radar data, 

such as synthetic aperture radar (SAR), can pene-

trate forest canopies and provide information on 

forest structure, such as canopy density and verti-

cal structure. By fusing optical and radar data, it is 

possible to enhance the estimation of forest struc-

ture parameters, resulting in more accurate as-
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sessments of biomass, canopy height, and forest 

density. 

b) Enhanced biomass estimation: Optical 

data are sensitive to the photosynthetic activity 

and green biomass of forests, while radar data can 

penetrate vegetation canopies and provide infor-

mation on the overall biomass content, including 

above-ground and below-ground biomass. By fus-

ing optical and radar data, it is possible to com-

bine the strengths of both sensors for more accu-

rate biomass estimation. The optical data can con-

tribute to estimating the green biomass, while the 

radar data can provide additional information on 

the total biomass content, including woody bio-

mass, which is particularly valuable for large-

scale biomass assessments. 

c) Improved forest disturbance detection: 

The fusion of optical and radar data enables im-

proved detection and monitoring of forest disturb-

ances, such as deforestation, forest degradation, 

and illegal logging. Optical data can capture 

changes in land cover and provide high-resolution 

spatial information on forest disturbances, while 

radar data can penetrate clouds and capture sur-

face changes even under adverse weather condi-

tions. By fusing these data sources, it is possible 

to detect and characterize forest disturbances more 

effectively, enabling timely response and inter-

vention. 

d) Enhanced forest mapping: Integrating 

optical and radar data facilitates more accurate 

forest mapping, including forest type classifica-

tion and land cover mapping. Optical data provide 

spectral information that is valuable for discrimi-

nating different vegetation types and land cover 

classes, while radar data contribute to distinguish-

ing between forested and non-forested areas and 

provide information on forest structure and bio-

mass. By combining these data sources, it is pos-

sible to generate more detailed and accurate forest 

maps, supporting various applications, such as 

forest inventory, land management, and conserva-

tion planning. 

e) Improved monitoring of forest dynam-

ics: The fusion of optical and radar data allows for 

better monitoring of forest dynamics, including 

changes in forest cover, regrowth, and vegetation 

phenology. Optical data capture the seasonal vari-

ations in vegetation greenness and phenological 

patterns, while radar data can penetrate clouds and 

capture changes in forest structure and biomass. 

By fusing these data sources, it is possible to mon-

itor forest dynamics at different spatial and tem-

poral scales, providing insights into forest health, 

growth, and response to environmental changes. 

f) Integration with ancillary data: Fusing 

optical and radar data can be combined with ancil-

lary data sources, such as topographic information, 

climate data, and soil properties, to improve forest 

characterization and monitoring. By integrating 

these additional data sources, it is possible to ac-

count for factors that influence forest dynamics, 

such as terrain characteristics, water availability, 

and nutrient content. This integration enhances the 

understanding of forest ecosystems and supports 

more comprehensive analyses and modelling. 

The fusion of optical and radar data provides 

a powerful tool for improved forest characteriza-

tion and monitoring. By combining the strengths 

of both sensors, it allows for more accurate esti-

mation of forest structure, biomass, and disturb-

ance detection[20]. This integrated approach sup-

ports effective forest management, conservation 

planning, and the assessment of ecosystem ser-

vices provided by forests. 

5. LiDAR remote sensing tools 

5.1 3D forest structure modelling and can-

opy height estimation using LiDAR data 

LiDAR (light detection and ranging) remote 

sensing is a powerful tool for 3D forest structure 

modelling and canopy height estimation. LiDAR 

data, acquired from airborne or terrestrial plat-

forms, provides detailed information about the 

vertical structure of forests, allowing for accurate 

characterization of forest canopies[20]. Here are 

key aspects related to 3D forest structure model-

ling and canopy height estimation using LiDAR 

data: 

a) Point cloud generation: LiDAR data 

consists of millions or even billions of individual 
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3D point measurements, commonly referred to as 

a point cloud. The LiDAR sensor emits laser puls-

es and records the time it takes for the laser to re-

turn after reflecting off the objects in the envi-

ronment, including tree canopies. By processing 

these point measurements, a high-resolution point 

cloud representing the forest canopy is generated. 

b) Canopy Height Model (CHM) genera-

tion: One of the primary applications of LiDAR 

data in forestry is the generation of canopy height 

models (CHMs). CHMs represent the vertical 

structure of the forest by calculating the difference 

between the ground elevation and the height of the 

highest points within the canopy. By subtracting 

the digital terrain model (DTM) derived from Li-

DAR data from the digital surface model (DSM), 

a CHM is generated, providing information on 

canopy height variations across the study area. 

c) Individual tree segmentation: LiDAR 

data can be used to segment individual trees with-

in a forested area. Using various algorithms, such 

as watershed segmentation or region growing, 

LiDAR point clouds can be processed to identify 

and delineate individual tree crowns. This allows 

for the extraction of tree-level information, such 

as tree height, crown diameter, and crown volume, 

contributing to accurate forest inventory and mon-

itoring. 

d) Forest canopy structure analysis: Li-

DAR data enables detailed analysis of forest can-

opy structure and its spatial distribution. Metrics 

such as canopy cover, leaf area index (LAI), 

crown density, and canopy gap fraction can be 

derived from LiDAR point clouds. These metrics 

provide insights into forest structure, species 

composition, and ecological processes. Canopy 

structure analysis using LiDAR data supports var-

ious applications, including forest ecology re-

search, biodiversity assessments, and habitat 

modeling. 

e) Forest biomass estimation: Canopy 

height derived from LiDAR data is a crucial pa-

rameter for estimating forest biomass. The height 

information, combined with allometric equations 

and ground-based measurements, enables the es-

timation of above-ground biomass and carbon 

stocks at various scales. LiDAR-based biomass 

estimation provides accurate and spatially explicit 

information, supporting forest carbon accounting, 

climate change modeling, and sustainable forest 

management practices. 

f) Forest change detection: LiDAR data, 

when acquired at different time points, facilitates 

the detection and monitoring of forest changes 

over time. By comparing LiDAR-derived metrics, 

such as canopy height or canopy cover, changes in 

forest structure, deforestation, or forest regrowth 

can be identified. LiDAR-based change detection 

allows for the assessment of forest dynamics, 

tracking disturbances, and evaluating the effec-

tiveness of forest management and restoration 

activities. 

g) Integration with other data sources: 

LiDAR data can be integrated with other remote 

sensing sources, such as optical imagery or radar 

data, to enhance forest characterization and moni-

toring. The fusion of LiDAR data with optical 

data allows for the extraction of additional infor-

mation, such as spectral properties and vegetation 

indices, complementing the 3D structural infor-

mation provided by LiDAR. Integration with ra-

dar data, such as SAR, enables the assessment of 

forest structure and biomass in areas where Li-

DAR data may be unavailable or limited due to 

cloud cover or dense vegetation. 3D forest struc-

ture modelling and canopy height estimation using 

LiDAR data revolutionize our understanding of 

forest ecosystems. The detailed information pro-

vided by LiDAR enables accurate assessments 

(Figure 5). 
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Figure 5. Flow chart showing 3D forest structure modelling and canopy height estimation using LiDAR data. 

5.2 Identification and mapping of individu-

al trees and their attributes 

LiDAR (light detection and ranging) remote 

sensing technology is well-suited for the identifi-

cation and mapping of individual trees and their 

attributes[21]. By processing the point cloud data 

acquired from LiDAR sensors, it is possible to 

extract detailed information about individual trees, 

including their location, size, species, and other 

attributes. Here are the key aspects related to the 

identification and mapping of individual trees us-

ing LiDAR: 

a) Point cloud segmentation: LiDAR point 

cloud data can be segmented to separate individu-

al trees from the surrounding vegetation and ter-

rain. Various algorithms and techniques, such as 

region growing, watershed segmentation, or 

graph-based methods, can be applied to group the 

LiDAR points that belong to the same tree crown. 

This segmentation process enables the isolation of 

individual tree objects from the LiDAR data. 

b) Tree location and position: Once the 

trees are segmented from the LiDAR point cloud, 

their precise locations and positions can be deter-

mined. The 3D coordinates of the points repre-

senting the tree canopy are used to calculate the 

centroid or representative point of each tree. This 

provides the spatial information needed to map 

the distribution of individual trees within a forest-

ed area. 

c) Tree height and canopy diameter: Li-

DAR data allows for accurate estimation of tree 

height and canopy diameter. By analyzing the ver-

tical structure of the LiDAR point cloud within 

each segmented tree crown, the maximum height 

and the vertical extent of the canopy can be de-

termined. These measurements provide valuable 

information about the vertical growth of individu-

al trees and their overall size. 

d) Tree species classification: LiDAR data, 

particularly when integrated with other data 

sources such as multispectral imagery or hyper-

spectral data, can support tree species classifica-

tion. The structural characteristics derived from 

LiDAR, such as the shape and texture of tree 

crowns, can be used to differentiate between dif-

ferent tree species. Machine learning algorithms 

and classification techniques can be employed to 

automatically assign tree species based on the Li-

DAR-derived features. 

e) Tree diameter at breast height (DBH) 

estimation: DBH is a critical parameter for char-

acterizing individual trees. LiDAR data can be 

utilized to estimate DBH accurately. By measur-

ing the width or circumference of the tree trunk 

within the LiDAR point cloud, the DBH can be 

estimated. This information is essential for vari-

ous forest management applications, including 
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growth modeling, carbon sequestration estimation, 

and timber volume calculations. 

f) Crown volume and canopy structure: 

LiDAR data provides detailed information about 

the 3D structure of tree canopies. By analyzing 

the density and distribution of LiDAR points 

within each segmented tree crown, the crown vol-

ume and shape can be derived. This information 

helps in understanding the spatial arrangement of 

branches and foliage, providing insights into for-

est structure, biomass distribution, and ecological 

processes. 

g) Tree health assessment: Changes in the 

structure and reflectance properties of tree cano-

pies captured by LiDAR data can indicate tree 

health conditions. LiDAR-derived metrics, such 

as canopy density, foliage cover, or canopy gaps, 

can be used to assess tree health and detect signs 

of stress, disease, or damage. By monitoring these 

metrics over time, forest managers can identify 

areas of concern and prioritize interventions for 

maintaining forest health. 

The identification and mapping of individual 

trees and their attributes using LiDAR data enable 

detailed forest inventory and monitoring. This 

information supports forest management practices, 

ecological research, and conservation efforts. Li-

DAR-based tree mapping provides essential data 

for assessing forest structure, carbon sequestration, 

biodiversity, and ecosystem services. 

5.3 Combining LiDAR with other remote 

sensing data for forest inventory and car-

bon stock estimation 

Combining LiDAR data with other remote 

sensing data sources can significantly improve 

forest inventory and carbon stock estimation. By 

integrating LiDAR with complementary data, 

such as optical imagery or radar data, a more 

comprehensive understanding of forest structure 

and biomass can be achieved [22]. Here are some 

ways in which LiDAR can be combined with oth-

er remote sensing data for forest inventory and 

carbon stock estimation: 

a) Fusion of LiDAR and optical data: In-

tegrating LiDAR with optical imagery, such as 

multispectral or hyperspectral data, allows for the 

extraction of additional spectral information about 

the forest. The fusion of LiDAR and optical data 

enables more accurate species classification, as 

the spectral properties of the trees captured by 

optical sensors can complement the 3D structural 

information provided by LiDAR. This fusion im-

proves the characterization of forest composition 

and helps estimate species-specific biomass and 

carbon stocks. 

b) Integration of LiDAR and SAR data: 

Combining LiDAR with synthetic aperture radar 

(SAR) data offers advantages in areas where opti-

cal imagery may be hindered by cloud cover or 

dense vegetation. SAR sensors can penetrate 

through clouds and vegetation to capture infor-

mation about forest structure and biomass. By 

integrating LiDAR’s detailed 3D information with 

SAR’s ability to detect changes and biomass vari-

ations, it is possible to improve forest inventory 

and carbon stock estimation in challenging envi-

ronmental conditions. 

c) LiDAR and forest inventory plot data: 

Ground-based forest inventory plot data, such as 

measurements of tree diameters and heights, can 

be used in conjunction with LiDAR data to cali-

brate and validate the remote sensing-based esti-

mates. By comparing the field measurements with 

the corresponding LiDAR-derived metrics, re-

gression models can be developed to establish 

relationships between ground-based measure-

ments and remote sensing data. This approach 

allows for more accurate and scalable estimation 

of forest inventory attributes and carbon stocks 

over larger areas. 

d) LiDAR and forest growth models: 

Combining LiDAR data with forest growth mod-

els enhances the estimation of carbon stocks over 

time. LiDAR provides accurate measurements of 

tree height, canopy volume, and structural attrib-

utes, which can be integrated into growth models 

to simulate the growth and development of forests. 

By coupling LiDAR-derived parameters with 

growth models, it is possible to monitor changes 

in forest structure and estimate carbon stock dy-
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namics, supporting long-term forest management 

and carbon accounting efforts. 

e) LiDAR and LiDAR repeat passes: Re-

peating LiDAR acquisitions over the same area at 

different time points enables the assessment of 

forest dynamics and changes in carbon stocks. By 

comparing multiple LiDAR datasets acquired at 

different times, forest growth, biomass accumula-

tion, and carbon stock changes can be quantified. 

The fusion of LiDAR repeat passes with other 

remote sensing data sources, such as optical or 

SAR imagery, further enhances the understanding 

of forest dynamics and carbon sequestration rates. 

f) Integration with environmental and 

topographic data: LiDAR data can be integrated 

with environmental and topographic data, such as 

climate variables, soil properties, and terrain char-

acteristics. By incorporating these additional data 

sources into the analysis, it is possible to account 

for factors influencing forest growth and carbon 

dynamics. This integration enhances the accuracy 

of carbon stock estimation by considering the en-

vironmental context and site-specific conditions 

that affect forest productivity. 

The combination of LiDAR with other re-

mote sensing data sources offers a comprehensive 

approach to forest inventory and carbon stock es-

timation. By leveraging the strengths of different 

sensors and data types, it is possible to improve 

the accuracy, scalability, and spatial coverage of 

forest assessments, contributing to better forest 

management, carbon accounting, and climate 

change mitigation efforts. Integration of RADAR-

derived indices, deep learning models, object 

segmentation techniques, and GEDI (global eco-

system dynamics investigation) lidar data can 

provide a comprehensive and multi-layered analy-

sis of forests. Let’s consider a hypothetical study 

that aims to assess forest structure, species classi-

fication, and biomass estimation in a mixed-

species forest region. 

a) RADAR-derived indices: The study 

could begin with the use of RADAR remote sens-

ing data to obtain a robust understanding of the 

forest structure and detect changes over time. A 

RADAR-derived index, such as the radar forest 

degradation index (RFDI), can be utilized to high-

light areas of the forest that have undergone sig-

nificant changes due to logging or natural disturb-

ances. The RFDI, calculated from the backscatter 

coefficients obtained from the RADAR imagery, 

could indicate areas with lower values, signifying 

potential logging activity or forest degradation. 

b) Deep learning models: To identify and 

classify tree species within the study area, deep 

learning models can be applied to high-resolution 

multispectral imagery. Convolutional neural net-

works (CNNs), a type of deep learning model, can 

be trained to recognize the unique spectral signa-

tures of different tree species. By feeding the 

CNN with training data that pairs multispectral 

imagery with known species classifications, the 

model can learn to identify different tree species 

across the entire study area with a high degree of 

accuracy. 

c) Object segmentation: Object-based im-

age analysis (OBIA), which involves segmenting 

an image into meaningful objects and classifying 

those objects, can also be used in this study. For 

example, individual tree crowns could be seg-

mented using algorithms such as Watershed or 

Mean-shift. The segmented tree crowns, each rep-

resenting an individual tree, can then be classified 

into different species using the trained CNN mod-

el. 

d) GEDI lidar data: To assess the vertical 

structure of the forest and estimate biomass, GEDI 

lidar data can be used. GEDI, a lidar instrument on 

the International Space Station, provides high-quality 

laser-ranging observations of the Earth’s forests 

and topography. The GEDI data allows for the 

precise measurement of forest height, canopy 

structure, and terrain. These measurements can be 

used to estimate forest biomass and carbon stocks, 

key indicators of the forest’s health and its role in 

the global carbon cycle. 

By integrating RADAR-derived indices, 

deep learning models, object segmentation tech-

niques, and GEDI lidar data, this hypothetical 

study would provide a comprehensive assessment 

of forest structure, species composition, and bio-

mass in the study area. The methodologies and 



 

19 

technologies used in the study could serve as a 

blueprint for future forest monitoring efforts, in-

forming sustainable forest management strategies, 

conservation planning, and climate change mitiga-

tion initiatives. 

6. Integration of artificial intelli-

gence and cloud computing 

The integration of artificial intelligence (AI) 

and cloud computing has revolutionized remote 

sensing applications, including those in the field 

of forestry[23]. Here are some key aspects of how 

AI and cloud computing contribute to remote 

sensing analysis and provide new insights in the 

forestry discipline: 

a) Data processing and analysis: AI algo-

rithms, such as machine learning and deep learn-

ing, can process and analyze large volumes of re-

mote sensing data with unprecedented speed and 

accuracy. Cloud computing provides the neces-

sary computational power and storage capabilities 

to train AI models and perform complex data pro-

cessing tasks. AI techniques can be applied to re-

motely sensed data, including optical, thermal, 

radar, and LiDAR, to extract meaningful infor-

mation about forest attributes, such as tree species, 

biomass, and health. By utilizing cloud resources, 

these AI-based analyses can be conducted effi-

ciently and at scale. 

b) Automated feature extraction: AI algo-

rithms can automatically extract features and pat-

terns from remote sensing data, enabling efficient 

and objective analysis. In the context of forestry, 

AI can be used to identify and classify vegetation 

types, detect tree boundaries, estimate forest pa-

rameters, and map land cover changes. By lever-

aging cloud computing, these AI-based feature 

extraction processes can be applied to large areas, 

allowing for comprehensive forest assessments 

and monitoring on a regional or global scale. 

c) Species classification and mapping: AI 

methods, coupled with remote sensing data, can 

improve species classification and mapping in 

forests. Machine learning algorithms can be 

trained using labeled training data to recognize 

spectral or structural patterns specific to different 

tree species. These AI models can then be applied 

to remotely sensed data, such as hyperspectral or 

LiDAR, to classify tree species and create detailed 

species distribution maps. The scalability and 

computational power of cloud computing enable 

the training and deployment of these AI models 

across large spatial extents. 

d) Forest change detection: AI algorithms 

combined with cloud computing capabilities facil-

itate automated forest change detection and moni-

toring. By comparing multi-temporal remote sens-

ing data, AI models can identify and quantify for-

est disturbances, such as deforestation, forest deg-

radation, and regrowth[24,25]. These AI-based 

change detection methods enable timely and accu-

rate assessment of forest dynamics, aiding in the 

identification of areas at risk and supporting sus-

tainable forest management practices. 

e) Data fusion and integration: Cloud 

computing platforms provide the infrastructure for 

integrating and fusing diverse remote sensing da-

tasets. AI algorithms can leverage this capability 

to combine optical, thermal, radar, and LiDAR 

data for comprehensive forest characterization [26–

28]. The fusion of different data sources enables 

the extraction of complementary information and 

provides a more holistic understanding of forest 

structure, biomass, and ecosystem functioning. 

Cloud-based AI tools facilitate the seamless inte-

gration of multi-sensor data and enable advanced 

analytics for improved forest monitoring and 

management. 

f) Scalability and accessibility: Cloud 

computing offers scalability, enabling the pro-

cessing and analysis of large-scale remote sensing 

datasets. With cloud-based AI platforms, re-

searchers, scientists, and forest managers can ac-

cess powerful computing resources on-demand, 

avoiding the need for costly infrastructure invest-

ments[29,30]. This accessibility lowers the entry bar-

rier for utilizing advanced remote sensing and AI 

techniques, allowing a broader community to ben-

efit from the insights and analysis that these tech-

nologies provide. 
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The integration of AI and cloud computing in 

remote sensing applications has opened up new 

possibilities for forest analysis and monitoring. By 

harnessing the capabilities of AI algorithms and 

the scalability of cloud computing, forest re-

searchers and managers can leverage large-scale 

remote sensing datasets to gain valuable insights 

into forest structure, species composition, biomass 

estimation, and change detection[31,32]. This inte-

gration has the potential to enhance sustainable 

forest management practices, support conserva-

tion efforts, and contribute to global climate 

change mitigation strategies. 

7. Challenges and future direc-

tions 

While remote sensing technologies have 

made significant advancements in recent years, 

there are still several challenges and opportunities 

for future research and development. Here are 

some key challenges and potential future direc-

tions in the field of remote sensing for forestry: 

a) Data availability and accessibility: Ac-

cess to high-quality, up-to-date remote sensing 

data, including optical, thermal, radar, and LiDAR, 

can be a challenge. Improvements in data acquisi-

tion, processing, and distribution methods are 

needed to ensure timely and open access to data 

for researchers, forest managers, and decision-

makers. Additionally, efforts to make remote 

sensing data more easily accessible and interoper-

able with other data sources will enhance the inte-

gration and analysis of multi-sensor datasets. 

b) Data fusion and integration: While there 

have been advancements in data fusion techniques, 

integrating multiple remote sensing datasets to 

obtain a comprehensive understanding of forests 

remains a challenge. Future research should focus 

on developing robust and scalable methods for 

effectively combining and integrating different 

data sources, such as optical, thermal, radar, and 

LiDAR, to generate more accurate and detailed 

forest information. 

c) Standardization and validation: The 

development of standardized methodologies and 

protocols for processing, analyzing, and validating 

remote sensing data in the context of forest moni-

toring is essential. Establishing consistent and 

transparent approaches will facilitate data compar-

ison, ensure data quality, and improve the reliabil-

ity of forest assessments. Collaborative efforts 

between the remote sensing community, forest 

researchers, and stakeholders are necessary to de-

velop and adopt standardized procedures. 

d) Algorithm development and machine 

learning: Advancements in machine learning al-

gorithms, such as deep learning, hold great poten-

tial for extracting valuable information from re-

mote sensing data. However, the development of 

robust and interpretable AI models specifically 

tailored for forest applications is an ongoing re-

search area. Improvements in algorithm perfor-

mance, transferability across different forest eco-

systems, and the ability to handle large-scale da-

tasets are important future directions. 

e) Integration of ancillary data: The inte-

gration of ancillary data, such as climate, topogra-

phy, and soil information, with remote sensing 

data can enhance the understanding of forest dy-

namics and ecosystem processes. Future research 

should focus on developing methods for effective-

ly integrating these diverse datasets and leverag-

ing their synergistic effects to improve forest 

monitoring, modeling, and decision-making pro-

cesses. 

f) Improved forest parameter estimation: 

Accurate estimation of forest parameters, such as 

biomass, carbon stocks, and structural attributes, 

is crucial for understanding ecosystem health and 

dynamics. Further research is needed to refine 

existing algorithms and develop new approaches 

for more precise and scalable estimation of these 

parameters using remote sensing data. Incorporat-

ing ground-based measurements, field campaigns, 

and novel sensor technologies into the modeling 

process can improve accuracy and reduce uncer-

tainties. 

g) Near real-time monitoring and early 

warning systems: Advancements in cloud com-

puting and AI methods provide opportunities for 

developing near real-time forest monitoring and 
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early warning systems for rapid detection and re-

sponse to forest disturbances, such as wildfires, 

insect infestations, and illegal logging. Integrating 

real-time data streams, including satellite imagery, 

aerial surveys, and ground-based observations, 

with AI-based algorithms can enable timely alerts 

and support proactive forest management strate-

gies. 

h) Integration with decision support sys-

tems: The integration of remote sensing data and 

analysis outputs with decision support systems 

can enhance the usability and applicability of re-

mote sensing information in forestry decision-

making processes. Future research should focus 

on developing user-friendly interfaces, visualiza-

tion tools, and decision support frameworks that 

facilitate the integration of remote sensing data 

into forest management practices and policies. 

Addressing these challenges and exploring 

future research directions will contribute to ad-

vancing the capabilities of remote sensing in for-

estry. By improving data accessibility, refining 

algorithms, integrating multi-sensor data, and en-

hancing the integration of remote sensing with 

other data sources and decision support systems, 

remote sensing technologies can better support 

sustainable forest management, biodiversity con-

servation, and climate change mitigation efforts. 

8. Opportunities for collaboration 

between researchers, industry, 

and policymakers 

Collaboration between researchers, industry, 

and policymakers is essential for advancing re-

mote sensing applications in forestry and maxim-

izing their impact. Here are some opportunities for 

collaboration among these stakeholders: 

a) Data sharing and access: Researchers, 

industry, and policymakers can collaborate to im-

prove data sharing and access. Industry partners 

and satellite data providers can work together to 

ensure timely and open access to remote sensing 

data. Researchers can collaborate with industry to 

access proprietary data sources or contribute to 

data collection efforts. Policymakers can play a 

role in facilitating data sharing agreements and 

establishing data infrastructure that supports col-

laboration. 

b) Algorithm development and validation: 

Collaboration between researchers, industry, and 

policymakers can accelerate the development and 

validation of algorithms for forest analysis. Re-

searchers can work closely with industry partners 

to develop and test algorithms using industry-

specific datasets or ground truth data. Policymak-

ers can support initiatives that promote algorithm 

validation and ensure the reliability and accuracy 

of remote sensing-based information used in deci-

sion-making processes. 

c) Field data collection and calibration: 

Industry partners, researchers, and policymakers 

can collaborate on field data collection campaigns 

to validate and calibrate remote sensing data. In-

dustry partners can provide access to forest sites 

and contribute ground-based measurements. Re-

searchers can design and conduct field campaigns 

to collect data for algorithm development and val-

idation. Policymakers can support and fund col-

laborative field campaigns that bridge the gap be-

tween remote sensing data and on-the-ground for-

est observations. 

d) Application development and deploy-

ment: Collaboration between researchers, indus-

try, and policymakers can drive the development 

and deployment of remote sensing applications for 

forestry. Researchers can develop innovative ap-

plications that address industry and policymaker 

needs, leveraging their expertise in algorithm de-

velopment and analysis. Industry partners can 

contribute their domain knowledge and resources 

to translate research findings into practical solu-

tions. Policymakers can provide support and cre-

ate favorable policy environments to encourage 

the adoption and implementation of remote sens-

ing technologies in forestry. 

e) Capacity building and knowledge 

transfer: Collaboration can promote capacity 

building and knowledge transfer among research-

ers, industry, and policymakers. Industry partners 

can provide training and resources to researchers 

and policymakers on data acquisition, processing, 
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and analysis techniques. Researchers can share 

their expertise and findings through workshops, 

seminars, and training programs. Policymakers 

can support capacity-building initiatives and cre-

ate platforms for knowledge exchange between 

stakeholders. 

f) Policy development and implementa-

tion: Collaboration between researchers, industry, 

and policymakers is crucial in developing and im-

plementing policies that promote the effective use 

of remote sensing in forestry. Researchers can 

provide scientific evidence and insights to inform 

policy decisions. Industry partners can contribute 

their practical knowledge and experiences to 

shape policies that align with industry needs. Poli-

cymakers can engage with researchers and indus-

try stakeholders to understand the potential of re-

mote sensing technologies and develop policies 

that support their adoption and use in forest man-

agement. 

By leveraging the strengths and expertise of 

researchers, industry, and policymakers, collabo-

rative efforts can drive innovation, improve data 

access and quality, validate algorithms, facilitate 

knowledge transfer, and ensure that remote sens-

ing technologies are effectively utilized in forestry 

applications. These collaborations have the poten-

tial to enhance forest management practices, sup-

port evidence-based policymaking, and contribute 

to sustainable forest ecosystems. 

9. Conclusion 

Remote sensing has emerged as a powerful 

tool for analyzing and monitoring forests, provid-

ing valuable insights into their structure, health, 

and dynamics. Optical, thermal, RADAR, and 

LiDAR remote sensing data, combined with state-

of-the-art methods of data processing and analysis, 

have contributed to the advancement of forestry 

disciplines. In this review article, we explored the 

various remote sensing tools and techniques uti-

lized in forestry analysis. We discussed the ad-

vantages of AI and cloud computing in remote 

sensing applications, including improved data 

processing, automated feature extraction, and en-

hanced scalability. We also highlighted the utili-

zation of high-resolution multispectral and hyper-

spectral imagery for vegetation mapping and spe-

cies classification, as well as the extraction of for-

est structural parameters using vegetation indices 

and machine learning algorithms. Moreover, we 

examined the integration of AI methods for auto-

mated land cover change detection and forest dis-

turbance monitoring, the mapping of forest health 

and stress using thermal infrared imagery, and the 

estimation of evapotranspiration and water stress 

in forests. We also discussed the combination of 

thermal data with other remote sensing sources for 

forest fire detection and monitoring. Furthermore, 

we explored the estimation of forest biomass and 

structure using synthetic aperture radar (SAR) 

data, the detection and mapping of forest disturb-

ances using SAR interferometry, and the fusion of 

optical and RADAR data for improved forest 

characterization and monitoring. We delved into 

the applications of LiDAR remote sensing, includ-

ing 3D forest structure modeling and canopy 

height estimation, identification and mapping of 

individual trees and their attributes, as well as the 

fusion of LiDAR with other remote sensing data 

for forest inventory and carbon stock estimation. 

Finally, we highlighted the integration of AI 

methods and cloud computing, emphasizing their 

role in advancing remote sensing applications in 

forestry. We discussed the challenges and future 

directions in the field, including data availability 

and accessibility, data fusion and integration, al-

gorithm development and validation, and the inte-

gration of remote sensing with decision support 

systems. We also emphasized the opportunities 

for collaboration among researchers, industry, and 

policymakers in driving innovation, data sharing, 

algorithm development, and policy implementa-

tion. In conclusion, remote sensing, coupled with 

AI and cloud computing, has revolutionized for-

estry analysis by providing accurate, timely, and 

scalable information about forests. These ad-

vancements have the potential to support sustain-

able forest management, biodiversity conservation, 

and climate change mitigation. Continued re-

search, collaboration, and technological advance-

ments will further enhance the capabilities of re-
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mote sensing in forestry, facilitating informed de-

cision-making and contributing to the long-term 

health and resilience of our forests. 
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