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ABSTRACT 

Forests have ecological functions in water conservation, climate regulation, environmental purification, soil and 

water conservation, biodiversity protection and so on. Carrying out forest ecological quality assessment is of great sig-

nificance to understand the global carbon cycle, energy cycle and climate change. Based on the introduction of the con-

cept and research methods of forest ecological quality, this paper analyzes and summarizes the evaluation of forest eco-

logical quality from three comprehensive indicators: forest biomass, forest productivity and forest structure. This paper 

focuses on the construction of evaluation index system, the acquisition of evaluation data and the estimation of key 

ecological parameters, discusses the main problems existing in the current forest ecological quality evaluation, and 

looks forward to its development prospects, including the unified standardization of evaluation indexes, high-quality 

data, the impact of forest living environment, the acquisition of forest level from multi-source remote sensing data, the 

application of vertical structural parameters and the interaction between forest ecological quality and ecological func-

tion. 
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1. Introduction 
Forest ecosystem is a key factor affecting the quality of the eco-

logical environment, and plays a vital role in maintaining the global 
carbon balance and mitigating the greenhouse effect[1]. The strategy of 
reducing greenhouse gas emissions caused by deforestation and forest 
degradation to increase carbon stocks (REDD+) emphasizes the role of 
forests as carbon sinks, and the Kyoto agreement has also listed forests 
as an important measure to solve the problems of energy conservation, 
emission reduction and climate change[2]. In recent years, a large num-
ber of natural forests have been replaced by artificial forests, and the 
tree species and age structure of forests are generally single and young, 
resulting in the reduction of species diversity and the weakening of 
ecological functions. However, the protection measures carried out by 
various countries have failed to effectively curb the loss of forests, and 
the ecological quality of forests has been significantly degraded[3-5]. In 
this context, the problem of forest ecological quality has attracted much 
attention, and its evaluation has become a research hotspot of scholars 
at home and abroad. 

The monitoring and evaluation of forest ecological quality is of 
great significance to quantitatively grasp the carbon source/sink char-
acteristics, temporal and spatial distribution and dynamic changes of 
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forest ecosystem, and also provide a basis for the 
evaluation of forest natural resources assets and the 
formulation of forestry management measures. It is 
an important way to understand the forest ecologi-
cal quality, which will promote the improvement of 
forest ecological quality. Due to the differences in 
forest biophysical characteristics and environmental 
conditions on the space-time scale, domestic and 
foreign scholars evaluate the forest ecological qual-
ity in different research areas, different emphases 
and different scales, and their data acquisition 
methods, evaluation index systems and evaluation 
methods are also different[6-8]. Based on the existing 
research at home and abroad, this paper puts for-
ward the key ecological parameters that character-
ize the forest ecological quality, systematically 
combs the evaluation methods of each ecological 
parameter, and makes prospects for the evaluation 
indicators, high-quality data, forest environmental 
impact factors, remote sensing means, etc., in order 
to provide reference for the in-depth study of forest 
ecological quality evaluation. 

2. Connotation of forest ecological 
quality 

Forest is a biological community mainly com-
posed of woody plants, which has the characteris-
tics of rich species, complex structure, strong stabil-
ity and perfect functions. It can improve and 
maintain the ecological environment and provide 
necessary biological resources for human beings[9]. 
The forest ecosystem, which is composed of forests, 
other organisms and the environment, has ecologi-
cal functions and ecological services to regulate and 
maintain ecological security. Among them, forest 
ecological services are the natural environmental 
conditions formed and maintained by the forest 
ecosystem and its ecological process, and the utility 
provided directly or indirectly for human be-
ings[10,11]. Forest ecological function and ecological 
service capacity are important factors affecting its 
quality level.  

In 1992, Stolton first proposed the term “forest 
quality”, and then, together with Dudley et al., de-
fined its concept in the World Wide Fund for Nature 
(WWF) report as “the sum of all functions and val-
ues of forests in terms of ecological, social and 

economic benefits”[3]. Forest ecological quality re-
flects the connotation of forest quality from an eco-
logical perspective, a comprehensive measure of 
forest ecological functions and ecological services, 
growth conditions and self-reg- ulation functions, 
and reflects the ability of forests to improve the 
ecological environment and maintain ecologi-
cal balance[4,9]. Due to the abstraction of the concept, 
the connotation of forest ecological quality will be 
different for different research objectives, and a 
unified understanding has not been reached at pre-
sent. Based on the existing research, this paper de-
fines the forest ecological quality as that the forest 
has a variety of ecological functions such as water 
conservation, climate regulation, air purification, 
carbon fixation and oxygen release, nutrient accu-
mulation, biodiversity maintenance, etc., provides 
human beings with natural living conditions, bio-
logical resources, intangible value and other eco-
logical services, and reflects the stability, elasticity 
and resilience under the stress of biological and 
abiotic factors. 

3. Overview of forest ecological 
quality assessment research 

3.1 Evaluation index system 

Scholars usually choose easily accessible in-
dicators to evaluate the ecological quality of forests 

Table 1. Forest ecological quality evaluation indicators 
Involved level Index factor Application
Forest biomass Biomass per unit area, 

net biomass per unit area, 
stock per unit area, etc 

[12–15] 

Forest structure Stand origin, community 
structure, forest age, canopy 
structure, density, tree spe-
cies, canopy density, etc 

[9,12–15] 

Forest produc-
tivity 

Volume increment, biomass 
increment, forest growth per 
unit area, etc 

[8,9,14,15] 

Forest health Healthy forest area ratio, 
forest vitality, forest disaster 
(disease, pest, fire, etc.) area 
ratio, dry loss rate, etc 

[9,14,15] 

Ecological ser-
vice function 

Water conservation, soil 
conservation, carbon fixation 
and oxygen release, biodi-
versity, etc 

[9,12,15] 

Site conditions Altitude, slope direction, 
gradient, slope position, soil 
layer thickness, soil organic 
matter, etc 

[8,12] 
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in terms of biophysical properties, site conditions 
and growth conditions (Table 1). Generally speak-
ing, the main characterization parameters of forest 
ecological quality include forest structure, for-
est biomass, forest productivity, forest ecological 
service efficiency, health status and so on. Due to 
the diversity and complexity of forest in terms of 
geographical environment, species and spatial scale, 
the selection of evaluation indicators will face many 
problems, such as a large number, high correla-
tion between factors, and difficult data acquisition. 

3.2 Sources of evaluation data 

The spatial scales involved in forest ecological 
quality assessment include forest farms, regions, 
and even the world. The differences of spatial scales 
affect the way of obtaining observation data. The 
traditional method to obtain the key parameters 
representing the forest ecological quality is mainly 
the sample survey. The data obtained by this meth-
od is more accurate, but it requires a lot of time, 

manpower and material resources, and it is unable 
to realize the inventory of large areas and duration 
time scales[14,16]. The development of remote sens-
ing technology makes up for the shortcomings of 
traditional estimation methods, which can realize 
the rapid, continuous and nondestructive estimation 
of forest ecological parameters at local, regional 
and even global scales, meet the needs of forest in-
vestigation and biophysical parameter detection, 
and provide data sets with different spatial resolu-
tions and time series for ecological quality assess-
ment (Table 2). At present, the research on the dy-
namic change inversion of forest biomass, 
productivity and carbon storage at the regional level 
more combines remote sensing images with region-
al and national forest inventory data to generate the 
spatial distribution map of forest status[2,17-21], so as 
to realize the long-term, dynamic and fine spatial 
observation of forest ecological quality in the study 
area.

Table 2. Application characteristics of different remote sensing sensors in forest resource observation 
Sensor Characteristic Application
Optical re-
mote sensing 

The spectral information is rich, and the forest level parameters can be obtained; however, it is easily 
affected by the atmosphere. For dense, multi-layer and complex canopy, there are problems of mixed 
pixels and easy saturation, and it is not sensitive to forest spatial structure information. 

[22,23] 

Microwave 
remote sens-
ing 

All weather, all day imaging, less atmospheric interference, can react with forest trunks to obtain 
forest vertical status parameters; however, due to the influence of terrain and surface roughness, there 
is also a problem of saturation. 

[24,25] 

Lidar It can overcome the problem of easy saturation and obtain the vertical structure of forest; however, its 
high cost makes it difficult to obtain a wide range of image data, and it has not been widely used at 
present. 

[26,27] 

Multi source 
remote sens-
ing 

Multi-source remote sensing can avoid the limitations of a single data source and improve the accu-
racy of vegetation interpretation and inversion; however, there are problems in data source quality and 
fusion method selection. 

[22,28] 

     

3.3 Research methods of forest ecological 
quality 

3.3.1 Determination of index weight 

The evaluation of forest ecological quality 
can be achieved by building a suitable index system. 
Various indicators have different contributions to 
the evaluation results, so they need to be given dif-
ferent weights. The weight determination methods 
mainly include subjective weighting method and 
objective weighting method. The former has simple 
operation, high reliability and practicability, but it 
largely depends on the personal experience of deci-
sion makers, with strong subjectivity, such as ana-
lytic hierarchy process[9,14]; the latter is more objec-
tive, avoiding the deviation caused by human 

factors, but there will be the problem of insufficient 
sample size, and without considering the differ-
ences between evaluation indicators, there may be 
inconsistencies between the determined weight and 
the importance of indicators. The commonly used 
methods are mean square deviation comprehensive 
analysis[12], principal component analysis[13], factor 
analysis[8,15], entropy weight method[29,30]. 

3.3.2 Research methods 

The selection of research methods is the key 
link to evaluate the forest ecological quality scien-
tifically and accurately. Generally speaking, the re-
search methods of forest ecological quality mainly 
include investigation method, remote sensing eval-
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uation method, model method, single evaluation 
method, comprehensive evaluation method, etc. 
Regional and national forest surveys are the basis 
for obtaining forest carbon reserves, health status 
and ecological service functions. Long-term moni-
toring can obtain the dynamic changes of forest 
ecological quality. In addition, with the develop-
ment and application of ecological models and 3S 
technology, more new methods are used to simulate 
and evaluate the change of forest ecological quality. 
For example, invest model can quantify the service 
function of forest ecosystem; the application of GIS 
and remote sensing technology in forest ecological 
quality assessment has also attracted much atten-
tion[14,31]. 

The indicator species method is a representa-

tive method in the single evaluation. By determin-
ing the key species, endemic species, endangered 
species or environmentally sensitive species in the 
forest ecology, its quantity, productivity, biomass, 
structure and function and other indicators are ob-
tained, so as to establish a model to describe the 
health status of the forest ecology and reflect the 
level of forest ecological quality on the side[32,33]. 
Comprehensive evaluation method is a method used 
more in the evaluation of forest ecological quality, 
that is, using multiple evaluation indicators to eval-
uate the research object in many aspects. The com-
monly used methods are shown in Table 3. In the 
actual process, many methods are often integrated 
to avoid the disadvantages of a single method and 
solve problems reasonably[29,30]. 

Table 3. Comparison of index system method for forest ecological quality assessment 
Evaluation 
method 

Advantage Inferiority Application

Composite 
index method 

The method is simple, the evaluation result is intuitive, 
the accuracy is high, and the information utilization rate 
is high. 

It may cover up some evaluation factors 
with great influence, resulting in devia-
tion of evaluation results. 

[31] 

Fuzzy com-
prehensive 
evaluation 
method 

Turn factors with unclear boundaries and difficult to 
quantify into quantitative indicators; the evaluation 
effect is better for complex problems with multiple 
factors, multiple levels and fuzzy concepts. 

The membership degree of fuzzy algo-
rithm is subjective, and the model can-
not be self-verified. 

[33,34] 

Cluster analy-
sis 

The algorithm is intuitive, easy to implement and oc-
cupies less memory. 

The selection of classification number 
and initial class center location is highly 
subjective; it is not friendly to data with 
complex shapes. 

[14] 

Matter element 
analysis 

Using matter-element transformation, structural trans-
formation and other methods to solve incompatible 
problems, it is suitable for multi-factor evaluation. 

The uncertainty of evaluation criteria and 
the definition of classical domain and 
node domain need to be further studied. 

[9,30] 

Set pair analy-
sis 

Solving the problem of certainty and uncertainty can 
deal with incomplete information. 

There is still room for improvement in 
dealing with indicators of different con-
tributions. 

[9,35] 

       
Table 4. Application of forest ecological parameter inversion model 

Model Features Application
Multiple linear 
regression  

The independent variable and dependent variable are required to have a linear relationship. This 
method is limited for non-linear ecological relationships or a small number of variables that cannot 
explain the variance of dependent variables. 

[37,38] 

Stepwise mul-
tivariate linear-
ity 

The iterative method is used to eliminate the factors with weak correlation and obtain the optimal 
fitting model, which requires the linear relationship between the prediction variables and dependent 
variables, and collinear and over fitting problems will occur when there are too many prediction 
variables. 

[39] 

KNN There is no parameter estimation and it is simple, but in the case of large sample size, the workload 
will be increased and the problem of over fitting will occur. 

[40] 

ANN It is suitable for dealing with the influence of multiple factors and the situation with fuzzy infor-
mation, without making assumptions on the data, and can effectively deal with the nonlinear, non 
normal and collinear problems between the data; but there will be fitting. 

[41–43] 

RF It can deal with complex and nonlinear ecological relationships, and has the advantages of efficient 
processing of massive data, less human interference, strong anti noise ability, and not easy to pro-
duce over fitting; however, it is very sensitive to the relationship between input variables, which will 
lead to the deviation of the prediction tree, so it is necessary to measure the importance of variables. 

[8,44,45] 

SVM It can be used for classification and regression analysis, and can produce higher classification or 
more accurate estimation in solving small sample, nonlinear and high-dimensional pattern recogni-
tion problems. 

[8] 
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3.3.3 Parameter inversion model method 

The selection of forest ecological parameter 
inversion model directly affects the accuracy and 
reliability of the results[21]. Model methods mainly 
include two categories: parametric methods and 
nonparametric Machine Learning Algorithm (MLA). 
Compared with linear model, MLA has some ad-
vantages: it can deal with nonlinear ecological rela-
tions; it can fit the inversion model from the limited 
training data; it can solve classification problems 
that are difficult to distinguish[36]. MLA includes 
k-nearest neighbor (KNN), artificial neural network 
(ANN), random forest (RF), support vector machine 
(SVM), etc. (Table 4). 

4. Study on key parameters of for-
est ecological quality evaluation 

Forest biomass and productivity are two wide-
ly used indicators of forest research[12,17]. For-
est biomass is one of the important parameters for 
monitoring forest carbon storage, forest fire, land 
use change, global climate change, etc., which 
can be used to reveal the process laws of forest 
ecosystem energy balance and material cycle[2,46,47]. 
Forest productivity can also describe the ecological 
function of forests in terms of accumulation of or-
ganic matter, which is of great significance to the 
level of forest ecological quality[8]. In addition, for-
est structure reflects the characteristics of forest 
evolution mode and growth state in the process of 
forest dynamic change, and becomes an important 
factor in monitoring and managing forest ecosystem, 
which helps human beings understand the current 
situation, dynamic changes and development trends 
of forests[48]. According to the principles of scienti-
ficity, comprehensiveness, relative independence, 
feasibility, representativeness and generalization, 
we believe that forest biomass, forest productivity 
and forest structure can comprehensively measure 
forest characteristics, growth status and ecological 
functions, which are the three key parameters to 
evaluate forest ecological quality. 

4.1 Remote sensing estimation of forest bio-
mass 

Forest biomass consists of aboveground and 

underground parts. Most studies often use standard 
root shoot ratio to calculate Belowground Biomass 
(BGB) from Aboveground Biomass (AGB)[2,49,50]. 
Relatively speaking, forest AGB assessment is intu-
itive and feasible, and scholars at home and abroad 
have studied it more at present. 

There are many methods for estimating forest 
AGB, which can be divided into non remote sens-
ing methods and remote sensing methods. Non re-
mote sensing methods mainly include measurement 
methods, model estimation methods, stock conver-
sion methods, etc. These methods are suitable for 
small-scale biomass research; the estimation of 
large-scale forest biomass needs the help of remote 
sensing, that is, by establishing a linear or nonlinear 
model between the image spectral information and 
the biomass at the sampling point, the forest bio-
mass can be retrieved. 

4.1.1 Remote sensing characteristic parame-
ters 

Different vegetation and the same kind of veg-
etation have different shapes and characteristics of 
reflection spectrum curve in different growth stages, 
so as to reflect vegetation information, and vegeta-
tion biomass is related to different elements of veg-
etation or a certain characteristic state[22]. For com-
plex vegetation remote sensing, vegetation index 
has better sensitivity and anti-interference than sin-
gle band estimation of biomass, and can be used to 
remove changes caused by canopy geometry, 
soil background, illumination angle and atmospher-
ic conditions[51]. Widely used vegetation indexes 
include Ratio Vegetation Index (RVI), Normalized 
Difference Vegetation Index (NDVI), Difference 
Vegetation Index (DVI), etc. With the development 
of relevant research, domestic and foreign scholars 
have proposed some modified vegetation indexes 
(Soil-adjusted Vegetation Index (SAVI), Trans-
formed Soil-adjusted Vegetation Index (TSAVI), 
Modified Soil-adjusted Vegetation Index (MSAVI), 
etc.) to weak soil background and atmospheric im-
pact, so as to enhance vegetation information (Ta-
ble 5). 
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Table 5. Characteristics of common vegetation index in biomass estimation 
Vegetation index  Advantage Inferiority Application
RVI RVI is a sensitive indicator parameter of green 

plants and has a good correlation with biomass. 
When the vegetation coverage is higher than 
50%, RVI has high resolution, but it is af-
fected by atmospheric conditions; when the 
vegetation coverage is less than 50%, the RVI 
resolution decreases. 

[22,55] 

NDVI It enhances the reflection contrast between veg-
etation and soil, effectively highlights vegetation, 
and is more suitable for vegetation monitoring 
with medium coverage or in the middle stage of 
development. 

It is easy to be saturated in the high vegetation 
coverage area; under the condition of low 
vegetation coverage, it is sensitive to 
soil brightness. 

[22,56,57] 

DVI It performs well in the case of low vegetation 
coverage, and can better identify vegetation and 
water bodies, which is conducive to the moni-
toring of vegetation environment. 

When the vegetation cover is dense, it is 
extremely sensitive to the change of 
soil background. 

[22,58] 

SAVI, TSAVI, 
MSAVI 

The soil adjustment coefficient is introduced to 
correct the sensitivity of NDVI to soil back-
ground. 

Some vegetation signals may be lost, making 
the vegetation index low. 

[59–62] 

Enhanced Vege-
tation Index 
(EVI) 

The blue band is added to enhance the vegetation 
signal, improve the sensitivity to high biomass 
areas, and correct the effects of soil background 
and aerosol scattering. 

It is mostly used in areas with dense vegeta-
tion. 

[22,63] 

Greenness Vege-
tation Index 
(GVI) 

The influence of soil background value on plant 
spectrum is excluded or weakened. 

GVI is susceptible to solar radiation, atmos-
pheric radiation, environmental radiation and 
other external conditions. 

[22,58] 

Perpendicular 
Vegetation Index 
(PVI) 

It is less affected by soil background, and its 
ability to resist atmospheric effects is also sig-
nificantly better than other vegetation indexes. 

As the leaf area index increases, it will be-
come very sensitive to the soil background. 

[52,64] 

       

Texture is one of the important features used to 
identify objects or regions of interest in the im-
age[52]. The texture features of vegetation have great 
potential for distinguishing vegetation types, more 
effectively reflecting remote sensing image ground 
object information and adjusting inversion mod-
els[6,53,54]. 

4.1.2 Overview of forest AGB remote sensing 
inversion research 

Scholars use different remote sensing data 
sources in the process of forest biomass estimation 
in order to achieve better inversion results. The 
types of remote sensing data mainly include passive 
optical remote sensing, active or passive microwave 
remote sensing and lidar remote sensing. 

Optical remote sensing is one of the common 
methods to obtain forest biomass information, 
which can accurately obtain forest canopy infor-
mation and extract vegetation parameters to esti-
mate forest biomass[39,64]. Liu estimated the for-
est biomass of Chongqing by using the vegetation 
index, tassel transform component and principal 
component variable information of TM data[18]. 
Zhou generates vegetation index (SVIs) and texture 
factors through high-resolution optical remote 

sensing images, and then combines terrain factors 
and field sampling data to quantify the biomass on 
Robinia pseudoacacia plantation[65]. Considering 
that the accuracy of NDVI estimation of biomass in 
a single season is insufficient and there is a problem 
of saturation, Zhu et al. used NDVI values of 
Landsat images in different seasons to perform for-
est AGB inversion[39]. 

Microwave (such as synthetic aperture radar) 
can penetrate the canopy and interact directly with 
the main body of forest biomass—leaves, trunks 
and branches. The ability of microwave remote 
sensing makes it a practical method for accurate 
estimation of forest biomass. On the other hand, the 
combination of lidar data and ground measured data 
can obtain a more effective distribution map of for-
est carbon resources and forest aboveground bio-
mass[27]. 

Multi source remote sensing data can make up 
for the lack of a single data source and improve the 
accuracy of biomass inversion. Common mul-
ti-source data combination modes include: optical 
remote sensing sets with different spatial and spec-
tral resolutions; optical remote sensing and SAR 
data of different polarization modes; optical remote 
sensing and lidar remote sensing. Xu et al. used 
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Landsat-8 OLI image and GF-2 image as data 
sources, and used single band, vegetation index and 
other spectral information as well as fixed sample 
land data of forest resources survey to estimate for-
est biomass in Jishui County, Jiangxi Province[66]. 
Li et al. used fully polarized C-band SAR data and 
Landsat-5 TM optical data to build a remote sensing 
information model to quantitatively retrieve the 
forest biomass of natural secondary forests in the 
greater Hinggan Mountains[67]; Wang et al. fused 
Synthetic Aperture Radar (SAR, Sentinel-1) and 
optical remote sensing (Landsat-8, Sentinel-2) data 
to evaluate grassland biomass[68], which is still 
suitable for forest biomass estimation; Minh et al. 
estimated the forest biomass of Madagascar using 
the tree cover data generated by ALOS PALSAR 
and optical remote sensing[25]. Tang obtained eco-
logical parameters such as forest canopy height and 
canopy density based on LiDAR and multispectral 
remote sensing data, and then established a forest 
AGB inversion model using multiple linear regres-
sion and BP neural network model[43]; Li et al. es-
timated the AGB of temperate forests through strat-
ified sampling and geostatistical modeling, 
combined with airborne lidar data, SPOT images 
and field sampling data[69]; Chi et al. integrated 
GLAS data and Landsat/ETM+ data, and then car-
ried out forest AGB estimation research[70]. 

4.2 Estimation of forest productivity 

Vegetation productivity refers to the rate at 
which green plants accumulate or fix organic matter, 
mainly including Gross Primary Productivity (GPP) 
and Net Primary Productivity (NPP)[71]. Among 
them, forest NPP represents the remaining part after 
removing the organic matter consumed by plant 
autotrophic respiration from GPP, reflecting the in-
tensity of forest carbon sink[71,72]. 

4.2.1 Influencing factors of NPP spa-
tio-temporal pattern 

The dominant factors that produce the tem-
poral and spatial differences of forest NPP are dif-
ferent, mainly including environmental factors, for-
est age and forest disturbance. 

The influence of climate (such as temperature, 
precipitation, light) on NPP is achieved by changing 

the length of the growing season and the rate of 
photosynthesis. Abundant rain and heat conditions 
have a significant impact on plant productivity. 
Fang et al. studied the NPP changes of Chang-
baishan pine and cypress on a long time scale and 
found that the lowest temperature in April and the 
precipitation in June and July are the main reasons 
for the NPP changes[73]. Other studies have found 
that the increase of temperature will stimulate the 
autotrophic respiration of plants, and different water 
and heat combinations have an important impact on 
the temporal and spatial differentiation of NPP in 
the study area[74,75]. Extreme climate (drought, ex-
treme high temperature or low temperature, etc.) 
also have a profound impact on terrestrial ecosys-
tems[73,76]. In addition, the increase of carbon diox-
ide concentration between green plant cells can im-
prove the photosynthetic efficiency of vegetation 
and increase forest productivity; nitrogen deposition 
affects the absorption and utilization of nitrogen by 
vegetation, thus affecting the photosynthesis of 
vegetation. In addition, topography, soil and tree 
species will also affect the temporal and spatial pat-
tern of NPP. 

The relationship between forest age and NPP 
has attracted more and more attention, which is of 
great significance to improve the accuracy of NPP 
estimation. The photosynthetic utilization rate of 
young trees is higher, which improves the absorp-
tion of carbon by stems, branches and thick roots, 
and NPP increases rapidly; NPP of trees reached the 
maximum in the medium term; in the later stage, as 
the growth of aboveground biomass decreases, and 
NPP is mainly composed of leaf and fine root turn-
over organic matter, NPP will decline to a relatively 
stable state[77,78]. 

Human activities (such as logging), forest fires, 
forest diseases and insect pests and other disturb-
ances can directly release carbon to the atmosphere 
and accelerate the respiratory process, which has a 
strong impact on the carbon cycle, and may even be 
the leading factor causing the mutation of forest 
ecosystem in a special period of time[79]. Disturb-
ance activities can also change the age structure and 
tree species composition of forests, resulting in 
temporal and spatial differences in forest NPP[77]. 
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4.2.2 Overview of forest NPP estimation re-
search 

Forest NPP can be composed of organic matter 
and litter accumulated in roots (thick roots, fine 
roots), stems and branches, food consumption, vol-
atile organic matter, unobserved litter and dead tree 
organic matter[77,80].  

The research on forest NPP has been carried 
out since the last century, and the commonly used 
research methods such as direct harvesting method 
and carbon flux observation method are suitable for 
the observation of forest NPP in a small range. With 

the development of remote sensing technology, us-
ing remote sensing images and forest inventory data 
to estimate forest NPP in a large area has become a 
hot spot. For example, using MODIS NPP data and 
downscaling methods to carry out multi-scale NPP 
research[81]; NPP was estimated using NDVI signif-
icantly correlated with leaf area index[82]. Summa-
rize the NPP research models commonly used by 
scholars, mainly including empirical/statistical 
models, remote sensing models and process mecha-
nism models (Table 6).  

Table 6. Three main NPP estimation models 
Model Advantage Shortcoming Representative model Application 
Empirical/statistical 
model 

Meteorological data are easy to 
obtain and the model is simple.

The actual surface vegetation types 
are ignored, reflecting a trend or 
potential NPP. 

Miami model, Chiku-
go model; Compre-
hensive model, etc. 

[83,84] 

Remote sensing 
model 

Use remote sensing technology 
to obtain relevant parameters. 

The quality of remote sensing 
image affects the accuracy of the 
model; Input parameters of differ-
ent forest types lack calibration. 

CASA, GLO-PED 
model, InTECc model, 
etc. 

[85,86] 

Process mechanism 
model 

Considering the ecological 
mechanism of vegetation, the 
estimation result is more accu-
rate, which is usually applied to 
the productivity simulation of 
small areas. 

There are many parameters, the 
model is more complex, it is diffi-
cult to correct, and some parame-
ters are difficult to obtain, so it is 
difficult to promote. 

BIOME-BGC model, 
etc. 

[87] 

         

In addition, the method of estimating forest 
NPP through the correlation between NPP and for-
est biomass has also been widely used and prac-
ticed[73,77,78,80,88,89]. Some studies have shown that 
some NPP estimation models lack consideration of 
forest age, and the spatial distribution of forest car-
bon sources/sinks is more dependent on forest age 
than environmental factors[72,80]. 

4.3 Remote sensing inversion of forest 
structural parameters 

The forest structure reflects the structural ele-
ments of trees and the connection mode of their at-
tributes. The structural parameters that reflect the 
forest status mainly include: tree height, diameter, 
forest age, tree species composition, canopy height, 
canopy density, forest origin, etc.[90]. 

Remote sensing technology is an effective way 
to extract forest structural parameters. Li et al. 
comprehensively use remote sensing data, terrain 
factors, land cover, and forest inventory data to re-
trieve the average age of forest stands in Jiangxi 
Province, and then analyze the impact of forest age 

on forest NPP[72]. Hansen et al. used regression tree 
algorithm combined with Landsat-7 and Landsat-8 
comprehensive data to draw the tree height distribu-
tion map of sub Saharan region, with high inversion 
accuracy[91]. Qiu and Liao used glas waveform pa-
rameters to estimate the discrete forest maximum 
tree height, canopy height, forest canopy density, 
etc., and assisted GLAS in retrieving forest param-
eters on a regional scale with optical images and 
ground data[20,92]. 

LiDAR can accurately obtain forest vertical 
parameters (such as tree height), but its coverage in 
the horizontal direction is limited; optical remote 
sensing can obtain a wide range of forest canopy 
horizontal parameters, but it is relatively insensitive 
to the change of vertical height. Therefore, there are 
more and more studies on the combination of Li-
DAR and optical remote sensing to obtain forest 
structural parameters. Hudak et al. combined Li-
DAR, ETM data and five statistical methods to es-
timate canopy height[26]. Jin et al. used the 
small-scale vegetation canopy height extracted by 
LiDAR as the ground truth value data to train the 
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RF model, so as to realize the inversion of 
large-scale vegetation canopy height[93]. 

5. Existing problems and research 
prospects 

5.1 Existing problems 

Due to the multi-level, complexity, unity, dy-
namic change and other characteristics of forest, its 
ecological quality assessment may cover all aspects, 
which determines that there will be many problems 
in the assessment process. 

5.1.1 Selection of evaluation indicators 

The evaluation indicators of forest ecological 
quality are screened only by theory or experience, 
and insufficient consideration is given to the effec-
tiveness and representativeness of the evaluation 
indicators, which may lead to the lack of compara-
bility of research cases in different research areas or 
even the same region, so that the research results 
cannot be effectively used and referenced, and hin-
der the exchange of scientific research and academ-
ic activities. 

5.1.2 High quality data problems 

In the process of retrieving forest ecological 
parameters using remote sensing technology, accu-
rate and representative ground measurement data 
are needed for algorithm training and product veri-
fication, so high-quality sample data set is the 
premise of forest ecological quality estimation. 
Generally speaking, the verification data obtained 
from field sampling and vorticity related flux ob-
servation are of high accuracy, but such methods 
take a long time and have a small application area, 
and the data cannot be synchronized, which reduces 
the inversion accuracy. In addition, the estimation 
of forest biophysical parameters is more based on 
model simulation. Different models will have dif-
ferences in parameters, thresholds, operation condi-
tions and accuracy, which increases the uncertainty 
factors. For example, the forest biomass of the 
sample plot cannot be measured directly, and some 
ecological parameters (such as tree height, DBH, 
and forest age) are needed to assist in the calcula-
tion. Different studies use different regression mod-
els to calculate the ground point biomass, even for 

the same region, the results will be different. 

5.1.3 Environmental impact 

The level of forest ecological quality is closely 
related to its living environment. Environmental 
factors such as soil, climate, atmospheric composi-
tion, hydrological conditions, terrain and interfer-
ence factors such as biological activities and natural 
disasters will affect the forest. However, few studies 
have evaluated the relative impact of environmental 
factors and interference factors at the same time, 
resulting in insufficient analysis of the impact 
mechanism of forest ecological quality. 

5.1.4 Remote sensing means application is-
sues  

Remote sensing is a feasible method to obtain 
regional forest ecological parameters and quantita-
tively assess the ecological quality of forests, but 
most studies choose easily accessible horizontal 
forest structure parameters and do not consider 
enough vertical forest structure factors to compre-
hensively assess the ecological quality of forests 
with complex structure characteristics. 

5.2 Development prospect 

According to the problems existing in the 
evaluation of forest ecological quality, the follow-
ing discussions and prospects are made for its de-
velopment prospects. 

First of all, forest ecological quality assess-
ment needs to develop a standardized and unified 
index system. Reasonable evaluation indexes will 
improve the accuracy and objectivity of the assess-
ment. The selection of each index should follow the 
principles of scientificity, representativeness and 
comprehensiveness to avoid problems such as un-
clear meaning, index duplication and strong corre-
lation. For example, when it is forest land, “vegeta-
tion coverage” and “canopy density” have certain 
repeatability. Under different regions, different tree 
species and different site conditions, the threshold 
value of the evaluation index can be adjusted ac-
cording to local conditions to improve the promo-
tion ability, so that the research results of scholars 
can be mutually verified and used for reference, and 
promote academic exchanges. 

Secondly, high-level forest ecological quality 
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estimation requires long-term dynamic observation, 
so strengthen the long-term network monitoring and 
management of ground forests, constantly update 
and improve the basic data, so as to obtain real-time 
and effective sample data. Integrating multi-source 
remote sensing data, sample survey data, field sam-
pling data, machine learning models and other data 
and methods to estimate forest biophysical parame-
ters to quantify forest ecological quality, this re-
search idea can reduce the uncertainty of a single 
model, improve the estimation accuracy, and realize 
forest assessment at different scales. In addition, 
carrying out forest multi-scale research is not lim-
ited to the pixel scale of remote sensing data, but 
also using object-oriented methods for forest eco-
logical parameter estimation and multi-scale trans-
formation, so as to improve the accuracy and gen-
eralization ability of the estimation model. 

Thirdly, environmental factors (climate, terrain, 
soil, etc.), interference factors (drought, flood, pest, 
fire, etc.) and human activities should be considered 
in the process of forest ecological quality assess-
ment. These factors will cause forest changes, re-
sulting in differences in ecological quality levels. In 
addition, the parameters of the same species with 
different age structures and the heterogeneous spe-
cies with the same age structure are different. Con-
sidering the age and species structure of tree species 
when quantifying the evaluation parameters can 
improve the accuracy of inversion results and pro-
mote the refinement and systematization of forest 
resources mapping. 

Finally, multi-source remote sensing data is 
expected to improve the inversion accuracy of 
large-scale forest biophysical parameters, mainly by 
fusing the bands of different remote sensing plat-
forms and sensors with different spectra and resolu-
tions, so as to give full play to the advantages of a 
variety of remote sensing images and obtain more 
accurate and comprehensive forest horizontal and 
vertical structure ecological parameters. In addition, 
the expansion of research scale and the diversifica-
tion of data sources have increased the amount of 
data, and the use of appropriate and efficient com-
puting methods is also worth exploring and study-
ing. 

It is worth mentioning that the quality of forest 

ecological quality will affect the exertion of forest 
ecological functions and benefits. With the deepen-
ing of forest development and utilization, its eco-
logical functions will be damaged or even changed, 
which is bound to have an impact on the level of 
forest ecological quality. Therefore, the research on 
the relationship between forest ecological functions 
and their ecological quality should be paid attention 
to in the next work. 
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