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Abstract: In Côte d’Ivoire, the government and its development partners have implemented a 

national strategy to promote agroforestry and reforestation systems as a means to combat 

deforestation, primarily driven by agricultural expansion, and to increase national forest cover 

to 20% by 2045. However, the assessment of these systems through traditional field-based 

methods remains labor-intensive and time-consuming, particularly for the measurement of 

dendrometric parameters such as tree height. This study introduces a remote sensing approach 

combining drone-based Airborne Laser Scanning (ALS) with ground-based measurements to 

enhance the efficiency and accuracy of tree height estimation in agroforestry and reforestation 

contexts. The methodology involved two main stages: first, the collection of floristic and 

dendrometric data, including tree height measured with a laser rangefinder, across eight (8) 

agroforestry and reforestation plots; second, the acquisition of ALS data using Mavic 3E and 

Matrice 300 drones equipped with LiDAR sensors to generate digital canopy models for tree 

height estimation and associated error analysis. Floristic analysis identified 506 individual trees 

belonging to 27 genera and 18 families. Tree height measurements indicated that reforestation 

plots hosted the tallest trees (ranging from 8 to 16 m on average), while cocoa-based 

agroforestry plots featured shorter trees, with average heights between 4 and 7 m. A 

comparative analysis between ground-based and LiDAR-derived tree heights showed a strong 

correlation (R2 = 0.71; r = 0.84; RMSE = 2.24 m; MAE = 1.67 m; RMSE = 2.2430 m and MAE 

= 1.6722 m). However, a stratified analysis revealed substantial variation in estimation 

accuracy, with higher performance observed in agroforestry plots (R2 = 0.82; RMSE = 2.21 m 

and MAE = 1.43 m). These findings underscore the potential of Airborne Laser Scanning as 

an effective tool for the rapid and reliable estimation of tree height in heterogeneous 

agroforestry and reforestation systems. 
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1. Introduction 

Forests cover around 31% of the land surface and play a critical role in 

maintaining global ecological balance [1]. They harbor around 80% of terrestrial 

biodiversity, deliver essential ecosystem services (including climate regulation and 

water purification), and serve as major carbon sinks by sequestering atmospheric 

carbon dioxide (CO2), thereby mitigating the impact of climate change [1]. 

Nevertheless, deforestation, driven predominantly by agricultural expansion, logging, 

and urban development, constitutes a significant global threat. It is estimated that 

nearly 10 million hectares of forest are lost annually, equivalent to one soccer field 
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every six seconds [1,2]. In West Africa, Côte d’Ivoire exemplifies a country that has 

experienced rapid and severe forest loss within a relatively short timeframe. National 

forest cover declined from 16 million hectares in 1900 to 7.9 million hectares by 1986 

[3]. This downward trend persisted, with forest area shrinking to 5.1 million hectares 

in 2000 and further to 3.4 million hectares by 2015, representing merely 11% of the 

national territory [3]. The loss is therefore more than 75% and has continued at a rate 

of around 110,000 hectares per year since 2015. A qualitative analysis of deforestation 

drivers identified agriculture (62%), logging (18%), and infrastructure expansion 

(10%) as the primary direct causes of forest loss [4]. Among these, cocoa cultivation, 

the country’s principal export crop, is directly implicated in the ongoing deforestation 

crisis. Today, the global cocoa value chain faces mounting challenges related to 

economic viability, social equity, and environmental sustainability. In response, a 

number of sustainability initiatives, such as the Rainforest Alliance, Fairtrade, ARS 

1000 Sustainable Cocoa Standard, and the EU Regulation on deforestation-free 

products, are being developed and implemented throughout the cocoa production 

zone. These programs aim to encourage agroforestry practices by promoting tree 

planting within cocoa plantations [5]. Traditionally, tree growth has been monitored 

through ground-based surveys to assess survival rates, increases in tree diameter and 

height, and biomass carbon sequestration. However, these field-based campaigns 

require substantial human and financial resources over extended periods and are often 

subject to measurement errors. As a result, the integration of geospatial technologies 

offering greater efficiency and reduced labor intensity has become increasingly 

necessary for such assessments. Among these technologies, Light Detection and 

Ranging (LiDAR) has gained recognition for its capability to characterize forest 

canopy structure with high accuracy [6–8]. Key advantages of LiDAR include high 

sampling density, fine spatial resolution, wide spatial coverage, the ability to penetrate 

upper canopy layers, and precise geolocation capabilities, making it an indispensable 

tool for the evaluation of vegetation structure and biomass [9,10]. LiDAR enables 

detailed 3D modeling of trees, providing accurate visualizations [11]. Numerous 

studies have demonstrated the relevance of this LiDAR in sustainable forest 

management and ecological research. In Brazil, Oliveira et al. [12] used Airborne 

Laser Scanning data as reference data to calibrate the Landsat satellite to improve 

estimates of structural parameters of Amazonian vegetation. In Costa Rica, Ferraz et 

al. [13] used the same technology and field inventory data to improve forest carbon 

stock estimates. Other studies have contributed significantly to the improvement of 

3D tree modeling techniques, focusing on precision, automation, and efficiency. For 

instance, Tarsha Kurdi et al. [14] introduced an innovative approach for accurately 

calculating the upper biomass volume of individual trees using LiDAR data. Also, he 

proposes an approach to automatically model tree trunk geometry from point cloud 

data obtained by laser scanning [15]. In light of the challenges associated with 

monitoring tree development in cocoa-growing regions, such as Côte d’Ivoire, the 

application of this technology within agroforestry and reforestation systems merits 

investigation. The objective of this study is to evaluate the potential of Airborne Laser 

Scanning (ALS) for accurate tree height estimation in agroforestry and reforestation 

systems, thereby enhancing the efficiency of plot-level monitoring. The methodology 
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integrates drone-mounted LiDAR systems for tree height estimation with floristic and 

dendrometric field data serving as reference measurements. 

2. Materials and methods 

2.1. Study area 

The study was conducted in West Africa, specifically in the southeastern region 

of Côte d’Ivoire, within the Agboville Department. The experimental design includes 

six cocoa-based agroforestry plots and two reforestation plots, located between 

latitude 06°04′ and 06°03′ north and longitude 04°23′ and 04°22′ west (Figure 1). The 

size of these plots varies between 0.2 and 4.2 ha, with an average of 2 ha (Table 1). 

The reforestation plots are more homogeneous, with a density of 426 trees/ha, while 

the agroforestry plots are very heterogeneous in terms of tree cover, with a density of 

25 trees/hectare. Trees were introduced into these plots in 2020, i.e., these trees are 4 

years old, with the presence of a few spontaneous or remanent tree species on both 

types of plots. All the plots are well maintained, enabling us to carry out this study. 

 
Figure 1. Geographic location of plots. Plots in red are agroforestry plots, and plots in yellow are reforestation plots in 

the village of Adomokro (Agboville). 
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Table 1. Characteristics of various plots (UTM Zone 30 N). 

Id Type Area (ha) X Y Trees planted 

1 AGROFORESTRY 4.2 346,391 671,171 

Terminalia ivorensis, Terminalia 

Superba, Acacia Mangum, 

Ricinodendron heudoletii, 

Cedrela odorata 

2 AGROFORESTRY 4.0 346,304 670,964 

3 AGROFORESTRY 0.9 346,433 670,695 

4 AGROFORESTRY 1.5 346,498 670,527 

5 AGROFORESTRY 2.4 345,942 670,386 

6 AGROFORESTRY 1.0 345,613 671,621 

7 REFORESTATION 0.2 346,854 671,379 Terminalia ivorensis, Terminalia 

Superba 8 REFORESTATION 0.3 346,143 670,622 

2.2. Overall methodology 

This section provides a general overview of the steps followed to collect and 

prepare the data necessary to produce orthophoto, elevation models and their 

derivatives, and the associated methods. These steps included data collection, data 

quality check, and processing. 

2.2.1. Ground control points marking 

Ground control points (GCPs) are points on the ground with known coordinates 

in the spatial coordinate system (i.e., coordinates defining both horizontal and vertical 

positions) (Figure 2). GCPs were highly beneficial for the ortho-rectification of 

images and enabled the production of accurate 3D models [16,17]. For GCP collection, 

their pre-selected locations, based on factors such as terrain, clear grounds, required 

accuracy, and the nature of the place (either a permanent surface or very short grasses), 

were proposed. This planning facilitated data collection, as these predetermined points 

were tracked until the survey crew reached the designated location. After identifying 

a suitable place for a control point, a mark was placed using a portable ground control 

point to indicate the center. GCPs were collected using Differential Global Positioning 

System (DGPS) in the Static observation method to ensure high accuracy, and all the 

collected points were tied to the Ivory Coast National grid of points using the UTM 

Zone 30N projected coordinate system. The activity covered the whole 13 plots. The 

ground control network was established across the DPA to act as horizontal and 

vertical control during the processing of aerial data. About 15 GCPs were collected in 

the survey area using DGPS method (Table 2). 
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Figure 2. Sample ground control point (GCP) collected. The central point marked by 

the cross was collected using Differential Global Positioning System (DGPS) in the 

static observation method to ensure high accuracy. 

Table 2. Table of ground control points (UTM Zone 30 N). 

ID X Y Z 

GCP1 346,259.0118 671,117.1213 128.7022 

GCP2 346,163.0411 670,680.59 138.3985 

GCP3 346,081.9614 670,277.0814 127.3008 

GCP4 346,522.0614 670,321.5388 129.9778 

GCP5 347,042.3994 670,525.8348 117.2303 

GCP6 346,428.5486 670,792.4813 134.5087 

GCP7 346,810.9346 671,325.6617 126.7313 

GCP8 346,377.9837 671,600.1373 122.1037 

GCP9 345,766.4521 671,547.3896 120.6868 

GCP10 346,165.1991 671,717.85 115.3009 

GCP11 346,155.0232 672,492.54 135.8688 

GCP12 347,017.4861 672,315.0148 122.545 

GCP13 346,751.9487 672,093.5422 127.0172 

GCP14 346,981.0794 671,758.2722 137.117 

GCP15 347,406.6711 671,980.4339 140.0778 

2.2.2. Aerial image acquisition and LiDAR data collection 

Both Photogrammetry and LiDAR technologies were used for data collection in 

aerial surveys, and all those technologies were required at the first step to prepare their 

flight mission over an area to be surveyed. For Photogrammetry, a high-quality Red-

Green-Blue (RGB) camera was mounted on a DJI Mavic 3E to capture many high-

resolution photographs over the defined area. The aircraft was flying at 100 m AGL 

with 80% and 70% forward and lateral overlap, respectively, at an average speed of 6 

meters per second. For collecting LiDAR points, the sensor R3 Pro LiDAR (Hesai 
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Pandar XT32, wavelength: 905 nm, pulse repetition rate: up to 640,000 pulses per 

second) with 200+ points per square meter was mounted on the designed drone DJI 

MATRICE M300 RTK to capture 3D points with information useful for generating 

more precise and accurate elevation models that can rival the accuracy achieved by 

using conventional ground-based surveys [18]. The flight parameters were readjusted 

to be able to get enough points that meet the study specifications; the flight height was 

80 m AGL, with 80% and 70% as forward and side overlap, respectively (Table 3). 

Table 3. Table of flight parameters. 

Drone 

Parameters 
Flight parameters 

Photogrammetry LIDAR 

Flight height 100 m AGL 80 m AGL 

Forward Overlap 80% 80% 

Side Overlap 70% 70% 

At the end of each flight mission, a preliminary data quality check in the field 

was conducted to detect any potential anomalies and to determine whether a re-flight 

was required. 

2.2.3. Data quality check  

After each flight, data were checked before sending them to the processing to 

account for faulty data and assess if a re-flight was required. After a successful quality 

check, they were sent to the office and backed up to the local storage. At the office, all 

raw data were imported into the software (Agisoft Metashape 1.8.5) and checked. This 

was done to assess if the pilots followed the planned route since this could affect data 

coverage. A thorough check was conducted on the quality of the image, such as 

lighting, cloud cover, overlap and sidelap, resolution of the imagery, and so forth. If 

any images failed these checks, this was immediately communicated to refly the line. 

Raw imagery was checked to assess whether there were no cloud covers or shadows. 

Checks on blurred imagery and lighting were conducted to ensure that the data were 

good enough to produce high-quality orthophotos. LiDAR point clouds’ density was 

checked. This was required to know if the collected data has enough points to enable 

analyses of the three-dimensional structure of the vegetation. The average point 

density was found to be 221.98 points per square meter, and the point spacing was also 

0.0671m. In addition to the density of the points, the quality of the points was also 

checked, as this is the key for registration and georeferencing success.  

2.2.4. Floristic and dendrometric data collection 

Once the eight plots had been selected, the shapefiles were uploaded to the office 

GPS. This was followed by an eight-day field mission. The eight plots were covered 

to collect floristic and dendrometric data. The following indicators were collected on 

each plot: Geographical coordinates (latitude and longitude) of each tree using a 

Garmin-type GPS, tree height using a Bosch-type laser rangefinder, Diameters at 

breast height (DBH) were measured using a tape measure, and botanical identification 

of tree species on the plots was done. Rangefinder sightings were repeated 4 times to 
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retain the mean height value. The various variations are due to optical obstacles 

(branches, foliage, and stems). Once the data had been collected, the information was 

recorded on physical collection sheets. Trees are marked with a marking spray to avoid 

double counting. Each evening, the data are downloaded from the GPS using the 

Dnrgps software, and the data from the collection sheets are entered. After this work, 

a summary table of the dendrometric measurements of the trees in the plots inspected 

was set up in Excel, including plot type, tree ID, tree coordinates, species, tree origin, 

diameter (DBH), and tree height. 

2.2.5. Geometric corrections, filtering and ortho-rectified image production 

During data processing, the software (Agisoft Metashape 1.8.5) stitches together 

geotagged drone images with high overlap, captured from multiple angles, and 

generates an ortho-rectified mosaic image. The steps followed by the software to 

generate an ortho-rectified image of each plot are shown in Figure 3. The steps of 

point cloud and mesh aim to produce a 3D model and reconstruct an analysis grid to 

facilitate orthomosaic production. The algorithm used for filtering when generating 

the dense point cloud is depth filtering. This parameter was moderated for a 

compromise between density and cloud properties. 

 
Figure 3. Image processing flowchart to produce Digital Surface Model (DSM) and 

orthomosaic. 
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2.2.6. LiDAR point cloud classification and Digital Terrain Model production 

Once LiDAR data have been collected, the next step to calculate the individual 

LiDAR points is often called the “point cloud.” Each laser pulse sent out from the 

system can have several individual returns. If grass, tree branches, vegetation, power 

lines, roofs, or any other objects above the ground are struck, a return will be picked 

up. Often the returns may be in the same position, as can happen when the return 

comes from bare ground. First, trajectories for each flight were generated and post-

processed with Inertial Explorer to get the best fit and accurate aircraft trajectories. 

The output software then processed the field files and used the post-processed field 

observations and the feature code to calculate the x, y, and z coordinates of each feature 

and plot it on the screen as a point. Each flight was processed and calculated 

individually to ensure the maximum accuracy of the outputs. Then, later various flights 

were added together into one large project for further processing by generating a LAS 

point cloud (LASer File format). After obtaining the LiDAR point cloud, it was 

imported into a point cloud filtering software (CloudCompare 2.6.1) to run the first 

automatic classification to classify the LiDAR points into ground hits and non-ground 

hits. This resulted in a greater than 80% correct classification. After the automatic run, 

a strenuous manual classification was carried out over the required area to edit the 

points, thus minimizing gross classification errors that may have occurred in the 

automatic classification process. The output point cloud was then subjected to manual 

editing and quality assessment to guarantee high-quality elevation models, and the 

final output from this process was ground points that were later used for Digital Terrain 

Model (DTM) creation. DTMs are important geodetical products of land surveying 

[19]. The DTM interpolation method is Triangulated Irregular Network (TIN), which 

preserves topographic discontinuities. 

2.2.7. Ground control points comparison with Digital Terrain Model 

The ground control points (GCPs) have been compared to the full LiDAR ground 

surface and used as a vertical check on the data. On this basis, the Root Mean Square 

Error (RMSE) was calculated and used to assess the quality of the LiDAR data 

according to the American Society for Photogrammetry and Remote Sensing reference 

standards [20]. 

2.2.8. Canopy Height Model and comparison with ground data  

The Canopy Height Model (CHM) was derived by subtracting the DTM from the 

Digital Surface Model (DSM) [21–23]. The trees identified on the ground are then 

extracted from the CHM to compare the height parameters derived from the 

photogrammetric and LiDAR data and the data measured in the field with the 

rangefinder. On this basis, errors were calculated. 

3. Results 

3.1. Ortho-rectified images and Digital Surface Model  

The result was more precise orthophotos of each plot with higher planimetric 

accuracy and high detail for visualization and decision-making purposes or for other 

geospatial planning and analyses. The orthorectified images (orthophotos) (Figure 4) 
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of each plot surveyed were provided in Enhanced Compressed Wavelet (ECW) format 

with an overall high resolution of 0.03 m/pixel. Digital Elevation Model (DSM) 

(Figure 4) captures all the aboveground features, such as vegetation cover and man-

made structures, providing a comprehensive representation of what lies on the Earth’s 

surface. This information is crucial for understanding the existing topography and 

identifying features and their heights, or the variations in their elevation. DSM of each 

plot surveyed was provided in GeoTIFF format with an overall high resolution of 0.25 

m/pixel. This resolution was set to take account of the resolution of the Digital Terrain 

Model (DTM) and to avoid resampling in the production of the Canopy Height Model 

(CHM). 

 
Figure 4. Orthorectified images (orthophoto in the left) and DSMs (in the right) resulting from photogrammetric 

processing of flights at the 8 plots in March 2024. (A) cocoa-based agroforestry plots and (B) reforestation plots. 

3.2. Digital Terrain Model with LiDAR data 

The Digital Terrain Model (DTM) generation (Figure 5) was done and processed 

in CloudCompare 2.6.1 and QGIS 3.32 software; LiDAR point clouds were filtered to 

account for non-ground features and noise points. The target was to remain with only 

ground points for generating each plot DTM of 0.25 m/pixel with contour lines. The 

DTM allows for a better appreciation of the topography. In the agroforestry plots, it 

indicates a topography that varies from 129 m to 134 m in plot 1, representing a 

difference in level of 5 m. On plot 2, the topography varies from 129 m to 138 m, 

representing a difference in level of 9 m. On plot 3, the topography varies from 135 m 

to 138 m, representing a difference in level of 3 m. On plot 4, the topography varies 

from 124 m to 136 m, representing a difference in level of 12 m. On plot 5, the 
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topography varies from 123 m to 133 m, representing a difference in level of 10 m. 

On plot 6, the topography varies from 115 m to 121 m, representing a difference in 

level of 6 m. In the reforestation plots, on plot 7 the topography varies from 127 m to 

129 m, representing a difference in level of 2 m. Finally, plot 8 has a topography 

varying from 134 m to 139 m, representing a difference in level of 5 m. 

 
Figure 5. DTMs (contour lines are shown in pink) resulting from LiDAR data processing of flights at the 8 plots in 

March 2024. (A) cocoa-based agroforestry plots and (B) reforestation plots. 

3.3. Canopy Height Model 

The Canopy Height Model (Figure 6) was derived by subtracting the DTM from 

the DSM. The CHM resolution is 0.25 m/pixel. The choice of this resolution is 

justified by the high density of LiDAR points and the need to distinguish individual 

treetops. This results in a representation of the height of vegetation and structures, 

offering insights into canopy structure, canopy area, tree height, and variations. CHM 

is particularly valuable for assessing vegetation health, biomass estimation, and 

planning agroforestry interventions. On average, reforestation plots contain the largest 

trees (between 8 and 16 m high), while cocoa-based agroforestry plots contain trees 

with average heights ranging from 4 to 7 m (Table 4). 
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Figure 6. CHMs at the 8 plots. (A) cocoa-based agroforestry plots and (B) reforestation plots. 

Table 4. Statistical of Canopy Height Model (CHMs) at each study plot. 

Id Type Maximum Height (m) Average (m) Standard Deviation (m) 

1 AGROFORESTRY 46.90 5.47 4.94 

2 AGROFORESTRY 32.35 7.34 3.99 

3 AGROFORESTRY 33.68 6.84 5.10 

4 AGROFORESTRY 32.57 6.80 3.85 

5 AGROFORESTRY 26.22 5.86 4.29 

6 AGROFORESTRY 19.54 4.04 3.07 

7 REFORESTATION 55.88 15.96 10.86 

8 REFORESTATION 19.12 7.50 3.14 

3.4. Trees extract in Canopy Height Model and comparison with ground 

inventory data 

A total of 506 trees were counted (27 genera and 18 families), measured, and 

geolocated across the 8 plots studied. These trees were also identified on each of the 

CHMs to extract the corresponding tree heights (Figure 7). Correlation analysis 

(Figure 8) between tree heights measured in the field and those estimated from the 

CHMs revealed a strong correlation, with a coefficient of determination R2 of 0.71 

(Pearson correlation coefficient r = 0.84, p-value = 1.42 × 10−137, MAE = 1.6722 m, 

and RMSE = 2.2430 m). 
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Figure 7. Spatial distribution of trees identified on the CHMs of plots 2 and 8. (A) cocoa-based agroforestry plots and 

(B) reforestation plots. 

 
Figure 8. Correlation graph (linear modelling) between tree height measurements 

obtained with LiDAR technology and tree height measurements inventoried in the 

field. Regression line (red line) with 95% confidence interval (R2 = 0.71; MAE = 1.67 

m; RMSE = 2.24 m). 

3.5. Stratified analysis 

A stratified analysis shows that the precision of the estimate differs significantly 

between agroforestry and reforestation plots, given their structural differences. In the 

agroforestry stratum, on a sample of 293 trees, the errors obtained on this stratum are 
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much better, with R2 = 0.82; MAE = 1.4336 m; RMSE = 2.2123 m (Figure 9a). On 

the other hand, in the reforestation plots, on a sample of 213 trees, the errors are much 

greater, with R2 = 0.18; MAE = 1.5208 m; and RMSE = 1.788 m (Figure 9b). 

 
Figure 9. Correlation graph (linear modelling) between tree height measurements obtained with LiDAR technology 

and tree height measurements inventoried in agroforestry plots (a) and reforestation plots (b). 

4. Discussion 

4.1. LiDAR data accuracy and validation with ground data 

The methodological approach emphasizes the integration of LiDAR data with 

ground control points (GCPs) to enhance both planimetric and vertical accuracy, the 

latter being critical for tree height assessments [21]. Ground control points were 

compared to the LiDAR-derived ground surface to serve as a vertical validation 

reference. The final Root Mean Square Error (RMSE) for vertical accuracy was 0.076 

m relative to the GCPs, which falls within acceptable thresholds as defined by the 

American Society for Photogrammetry and Remote Sensing [20]. LiDAR-derived tree 

heights were further validated against field measurements obtained using a laser 

rangefinder. The analysis demonstrated a strong correlation, with a coefficient of 

determination R2 = 0.71 (r = 0.84; RMSE = 2.2430 m; MAE = 1.6722 m). These results 

are aligned with those reported in forest inventory studies by McRoberts et al. [24] 

and Peterson et al. [25], who also obtained an R2 of 0.71 in predicting canopy bulk 

density using airborne LiDAR. Similarly, Kombaté et al. [26] reported a correlation 

coefficient of r = 0.84 for canopy height estimation in savannah forests of Togo using 

GEDI spaceborne LiDAR. The findings of the present study are also consistent with 

those of Brou et al. [27], who observed a strong correlation (R2 = 0.8) between drone-

derived and field-measured tree heights in cocoa-based agroforestry systems in Côte 

d’Ivoire, though discrepancies were noted based on tree height and crown class. These 

results underscore the reliability of the present study’s measurements, particularly 

given the structural complexity inherent to agroforestry environments. 
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4.2. Source of errors in tree height estimation 

Several sources of error may have contributed to the observed RMSE and MAE 

values. Field measurement inaccuracies, particularly those associated with the use of 

a rangefinder, include human error, such as misalignment when visually identifying 

the tree apex, especially under conditions where the crown is partially obscured, and 

line-of-sight obstructions from branches, foliage, or adjacent stems. O’Beirne [28] 

highlighted that field-based measurements are prone to higher levels of random error 

and require labor-intensive procedures, often leading to greater inaccuracies compared 

to LiDAR-derived estimates. Among the most influential factors affecting field-based 

error is tree height, which supports the use of LiDAR as a more reliable alternative for 

such assessments. Another potential source of error lies in tree misidentification, 

where the tree measured in situ may not correspond precisely to the one detected in 

the LiDAR dataset due to spatial offset or confusion with neighboring trees [29]. 

Furthermore, inaccuracies in LiDAR-derived canopy height estimations can arise from 

orthophoto processing steps, particularly the subtraction of the Digital Terrain Model 

(DTM) from the Digital Surface Model (DSM), which are sensitive to the interpolation 

algorithms employed. As noted in prior studies, extracting tree height metrics from 

LiDAR data in densely forested areas can lead to DTM-related errors, increasing the 

RMSE by up to 1.95 m [30,31]. 

4.3. Agroforestry plots vs reforestation plots 

Although the trees in this study were all planted in the same year (2020), those in 

the reforestation plots exhibited greater average heights (ranging from 8 to 16 m) 

compared to trees in the agroforestry plots, which ranged from 4 to 7 m in height. This 

difference may be attributed to species-specific responses to environmental 

conditions, as some tree species are likely better adapted to the open environments 

typical of reforestation systems than to the more competitive, mixed conditions found 

in cocoa-based agroforestry. Additionally, the disparity may be linked to differences 

in management and cultivation practices. Agroforestry systems often involve 

maintenance activities such as pruning, weeding, and herbicide application to enhance 

cocoa yield. These interventions can negatively impact the growth and survival of 

companion tree species [32–34]. 

This structural heterogeneity between the two systems, in terms of both tree 

height and density, also affects the accuracy of field-based estimations. Indeed, 

agroforestry plots yielded more accurate estimates than reforestation plots. The 

reduced accuracy in the reforestation plots may stem from their high tree density (426 

trees/ha) and taller tree heights (8–16 m), which can complicate the visual alignment 

required for accurate rangefinder measurements. Moreover, dense canopy conditions 

can introduce errors in Digital Terrain Models (DTMs), thereby increasing the 

uncertainty in dendrometric parameter estimations [30,31]. These findings are 

consistent with those of Peng et al. [35], who reported that estimation errors tend to 

rise with increasing tree height and stand density. 
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4.4. Challenges in ALS-based dendrometric estimation 

This study explored the potential of Airborne Laser Scanning (ALS) for 

predicting tree diameters. However, several challenges were encountered, particularly 

in densely vegetated plots. In all study areas, tree density posed a significant constraint 

to effective detection by automated modeling algorithms. Specifically, reforestation 

plots had a density of 426 trees per hectare, while agroforestry plots, interspersed with 

cocoa trees, had a lower density of approximately 25 trees per hectare. Such high-

density environments complicate diameter at breast height (DBH) estimation using 

ALS, especially given that the trees in question generally have small diameters. 

Manual delineation of tree trunk structures from ALS-derived point clouds proved 

labor-intensive and challenging under these conditions. While ALS is effective at 

capturing detailed top-of-canopy structures, it offers limited insight into sub-canopy 

and trunk architecture due to the scarcity of laser returns from within the canopy [6] 

(Figure 10). This limitation underscores the complementary value of Terrestrial Laser 

Scanning (TLS) and Mobile Laser Scanning (MLS), which are often used in other 

studies to provide more complete structural data of forest interiors. Furthermore, a key 

limitation of the current study is the absence of computer vision techniques, which 

have demonstrated significant potential for the automated extraction of dendrometric 

parameters. Recent studies [36–39] illustrate how such methods can enhance both 

the accuracy and efficiency of tree metric estimation from LiDAR data.  

 
Figure 10. LiDAR point cloud on plot 8 with small, dense trees posing a challenge to estimating tree diameter using 

automated model algorithms. 

5. Conclusions 

The objective of this study is to evaluate the potential of Airborne Laser Scanning 

(ALS) for accurate tree height estimation in agroforestry and reforestation systems, 

thereby facilitating the monitoring and evaluation of these land-use practices. The 

methodological framework combined the use of RGB drones and drones equipped 

with LiDAR sensors to acquire both orthophotos and LiDAR point cloud data across 

eight study plots. Complementary field surveys were conducted in cocoa-based 
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agroforestry and reforestation plots to collect floristic and dendrometric data for 

validation purposes. This study is particularly relevant in the current context of 

expanding sustainability initiatives, especially agroforestry and reforestation 

programs, aimed at addressing climate change. As such, there is an increasing need 

for efficient and accurate monitoring tools to assess tree performance and the 

effectiveness of these interventions. 

The results demonstrated that ALS can reliably estimate tree heights in both 

systems, with a strong correlation (R2 = 0.71) between LiDAR-derived measurements 

and field observations obtained using a rangefinder. This level of accuracy was 

supported by the integration of ground control points (GCPs), yielding a vertical 

survey accuracy of 0.076 m. The ALS-based approach enabled rapid, safe, and highly 

accurate data acquisition, offering a clear advantage over traditional ground-based 

survey methods in terms of time and labor efficiency. 

Nevertheless, the study also highlighted limitations in using ALS for estimating 

tree diameter at breast height (DBH). For more accurate DBH estimation, future 

studies should explore the application of Terrestrial Laser Scanning (TLS) and Mobile 

Laser Scanning (MLS) in conjunction with advanced algorithms for cylinder 

segmentation and trunk detection. 

Overall, the findings underscore the value of ALS technology for monitoring 

agroforestry and reforestation plots and support its integration into the evaluation of 

sustainability-oriented land management projects. 
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