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ABSTRACT 
Remote sensing technologies have revolutionized forestry analysis by providing valuable information about forest 

ecosystems on a large scale. This review article explores the latest advancements in remote sensing tools that leverage 
optical, thermal, RADAR, and LiDAR data, along with state-of-the-art methods of data processing and analysis. We 
investigate how these tools, combined with artificial intelligence (AI) techniques and cloud-computing facilities, en-
hance the analytical outreach and offer new insights in the fields of remote sensing and forestry disciplines. The article 
aims to provide a comprehensive overview of these advancements, discuss their potential applications, and highlight the 
challenges and future directions. Through this examination, we demonstrate the immense potential of integrating remote 
sensing and AI to revolutionize forest management and conservation practices. 
Keywords: remote sensing; forestry analysis; optical; thermal; RADAR; LiDAR; artificial intelligence (AI); cloud com-
puting 

1. Introduction 
Forestry analysis plays a crucial role in understanding and man-

aging forest ecosystems, and remote sensing technologies have signif-
icantly advanced this field. Remote sensing involves the acquisition 
of information about an object or area without direct physical contact. 
In the context of forestry analysis, remote sensing techniques provide 
valuable data on forest cover, health, and dynamics over large spatial 
extents[1]. 

Over the years, remote sensing tools have evolved to include 
various data acquisition systems, such as optical sensors, thermal sen-
sors, RADAR systems, and LiDAR scanners. Optical sensors capture 
images of forests using the visible and near-infrared spectrum, allow-
ing for detailed analysis of vegetation indices, such as NDVI (normal-
ized difference vegetation index), which can indicate forest health 
and productivity. Thermal sensors measure the emitted heat radiation 
from the forest, providing insights into temperature variations and 
identifying potential stress conditions. RADAR systems use electro-
magnetic waves to penetrate forest canopies, allowing for the estima-
tion of forest biomass and the detection of forest structural properties. 
LiDAR scanners emit laser pulses and measure their return time, ena-
bling highly detailed 3D representations of forest structure and topog-
raphy[2]. 

Advancements in data processing and analysis have also signifi-
cantly enhanced the capabilities of remote sensing tools for forestry 
analysis. Machine learning and artificial intelligence (AI) techniques 
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are now being integrated to automate the classifi-
cation and mapping of forest cover types, detect 
changes in forest structure and composition, and 
predict forest disturbances such as wildfires and 
insect infestations. These AI-driven approaches 
enable more efficient and accurate analysis of re-
mote sensing data, saving time and resources 
while providing valuable insights[3]. 

Furthermore, the integration of remote sens-
ing tools with cloud computing infrastructure has 
facilitated the storage, processing, and sharing of 
large volumes of remote sensing data. Cloud-based 
platforms allow researchers and practitioners to 
access and analyze remote sensing data remotely, 
eliminating the need for expensive computing re-
sources and reducing the time required for data 
processing. This accessibility and scalability have 
opened up new avenues for collaboration, ena-
bling multidisciplinary approaches and fostering 
innovation in forest analysis and management[4]. 

1.1 Importance of remote sensing in forest-
ry analysis 

Remote sensing plays a crucial role in forest-
ry analysis by providing valuable information 
about forest ecosystems at various spatial and 
temporal scales. Figure 1 shows the diagram for 
functions of remote sensing in forestry analysis. 
Here are some key points highlighting the im-
portance of remote sensing in forestry analysis: 

a) Large-scale coverage: Remote sensing 
allows for the assessment of forest resources over 
large areas that are often difficult or time-consuming 
to access on the ground. This enables comprehen-
sive monitoring and analysis of forests at regional, 
national, and global scales. 

b) Forest inventory and mapping: Remote 
sensing data, such as optical imagery and LiDAR, 
can be used to estimate forest inventory parame-
ters like tree species, tree height, canopy cover, 
biomass, and carbon stocks. These measurements 
are crucial for assessing forest health, productivity, 
and carbon sequestration potential. 

c) Forest change detection: Remote sensing 
data enables the detection and monitoring of for-

est changes over time, such as deforestation, for-
est degradation, regrowth, and natural disturb-
ances like wildfires and insect outbreaks. Timely 
and accurate information about these changes is 
vital for implementing effective forest manage-
ment strategies and conservation measures. 

d) Biodiversity monitoring: Remote sens-
ing can contribute to biodiversity assessments by 
identifying and mapping habitat types, ecological 
corridors, and key biodiversity areas. It can help 
monitor changes in habitat conditions and track 
the distribution of threatened or endangered spe-
cies. 

e) Forest health monitoring: Remote sens-
ing tools, including thermal and hyperspectral 
sensors, can provide insights into forest health 
conditions, including stress detection, disease 
identification, and pest infestations. Early detec-
tion of these issues facilitates prompt interven-
tions to mitigate their impacts on forest ecosys-
tems. 

f) Sustainable forest management: Re-
mote sensing data can support sustainable forest 
management practices by providing information 
on forest growth rates, timber volume estimation, 
and optimal harvest planning. It enables the iden-
tification of suitable areas for afforestation and 
reforestation, as well as monitoring the success of 
these initiatives. 

g) Risk assessment and planning: Remote 
sensing helps in assessing risks related to forest 
hazards, such as wildfires, landslides, and disease 
outbreaks. By identifying vulnerable areas, stake-
holders can develop effective risk management 
strategies and prioritize resources for prevention 
and mitigation efforts[5]. 

h) Policy support and decision-making: 
Remote sensing data provides objective and spa-
tially explicit information to support evidence-
based decision-making in forestry-related policies, 
conservation planning, and resource allocation. It 
helps policymakers and stakeholders understand 
the state of forests, evaluate the effectiveness of 
interventions, and monitor compliance with envi-
ronmental regulations. 
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Figure 1. Functions of remote sensing in forestry analysis. 

1.2 Overview of optical, thermal, RADAR, 
and LiDAR remote sensing data 

Each type of remote sensing data has its 
strengths and limitations. Optical data offers high 
spatial resolution and detailed spectral infor-
mation but can be affected by cloud cover and 
limited to daylight imaging[6]. Thermal data cap-
tures thermal signatures but may have lower spa-
tial resolution. RADAR data provides all-weather 
imaging but typically has lower spatial resolution 
compared to optical data[7]. LiDAR data offers 
accurate 3D information but can be expensive and 
limited in spatial coverage. Figure 2 shows over-
view of optical, thermal, RADAR, remote sensing 
data. 

a) Optical remote sensing data: Optical 
remote sensing utilizes sensors that capture the 
visible and near-infrared portions of the electro-
magnetic spectrum. It includes data captured by 
satellites, aerial platforms, and drones. Optical 
sensors provide detailed information about the 
spectral characteristics of objects and can be used 
for various applications such as land cover classi-
fication, vegetation health assessment, and map-
ping. 

b) Thermal remote sensing data: Thermal 
remote sensing data captures the thermal radiation 
emitted by objects. It measures the surface tem-

perature of objects and can provide valuable in-
formation about energy exchange processes, in-
cluding evapotranspiration and heat stress. Ther-
mal imagery is particularly useful for detecting 
and monitoring forest fires, assessing vegetation 
water stress, and analyzing land surface tempera-
ture patterns. 

c) RADAR remote sensing data: RADAR 
(radio detection and ranging) remote sensing uses 
active sensors that emit microwave signals and 
measure the backscattered signals reflected from 
the Earth’s surface and objects. RADAR data can 
penetrate clouds and vegetation, making it suita-
ble for all-weather and day-night imaging. It pro-
vides information on surface roughness, terrain 
elevation, and vegetation structure. RADAR data 
is commonly used for forest mapping, monitoring 
forest biomass, and detecting forest disturbances 
such as deforestation and forest degradation. 

d) LiDAR remote sensing data: LiDAR 
(light detection and ranging) remote sensing em-
ploys laser sensors that emit pulses of light and 
measure the time it takes for the light to return 
after hitting a target. LiDAR data provides highly 
accurate and detailed three-dimensional (3D) in-
formation about the Earth’s surface and objects, 
including vegetation. It is used for generating 
digital elevation models (DEMs), creating high-
resolution canopy height models, identifying indi-
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vidual trees, estimating biomass, and mapping 
forest structure. 

By combining and integrating data from 
these different remote sensing sources, researchers 
and analysts can gain a comprehensive under-
standing of forest ecosystems, including their 

structure, health, composition, and changes over 
time. The synergistic use of optical, thermal, RA-
DAR, and LiDAR data enables more robust and 
accurate analysis, providing valuable insights for 
forestry applications and environmental manage-
ment. 

 
Figure 2. Overview of optical, thermal, RADAR, remote sensing data. 

1.3 Advantages of AI and cloud computing 
in remote sensing applications 

AI (artificial intelligence) and cloud compu-
ting offer numerous advantages when applied to 
remote sensing applications. Here are some key 
benefits: 

a) Enhanced data processing: AI tech-
niques, such as machine learning and deep learn-
ing, can efficiently process large volumes of re-
mote sensing data. They can automate tasks like 
feature extraction, classification, and object detec-
tion, reducing the time and effort required for 
manual analysis. 

b) Improved accuracy and precision: AI 
algorithms can improve the accuracy and preci-
sion of remote sensing analysis. They can learn 
complex patterns and relationships from training 
data, leading to more reliable and consistent re-
sults in tasks such as land cover classification, 
change detection, and species identification. 

c) Scalability and efficiency: Cloud compu-
ting provides on-demand access to vast computa-
tional resources. It allows remote sensing analysts 

to process and analyze large datasets quickly and 
efficiently. Cloud-based platforms can scale up or 
down based on the workload, ensuring timely and 
cost-effective data processing. 

d) Accessibility and collaboration: Cloud-
based remote sensing platforms enable easy ac-
cess to data and tools from anywhere with an in-
ternet connection. This accessibility promotes col-
laboration among researchers, allowing them to 
share data, algorithms, and models. It facilitates 
interdisciplinary research and knowledge sharing 
across different geographic locations. 

e) Real-time monitoring and alerts: AI al-
gorithms can be deployed on cloud-based systems 
to provide real-time monitoring and alerts for spe-
cific events or changes detected in remote sensing 
data. For example, forest fire detection systems 
can analyze satellite imagery in real-time and is-
sue alerts to authorities, enabling rapid response 
and mitigation measures. 

f) Fusion of multi-source data: AI tech-
niques combined with cloud computing enable the 
integration and fusion of multi-source remote 
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sensing data. This integration enhances the analy-
sis by combining complementary information 
from different sensors, such as optical, thermal, 
RADAR, and LiDAR data. It leads to a more 
comprehensive understanding of forest ecosys-
tems and enables more accurate and holistic as-
sessments. 

g) Adaptability and Learning: AI algo-
rithms can adapt and improve over time by learn-
ing from new data. They can be trained on updat-
ed datasets to refine and update models, enhanc-
ing the accuracy and relevance of remote sensing 
analysis. Cloud computing provides the infrastruc-
ture to support continuous learning and updates of 
AI models. 

h) Cost Savings: Cloud computing elimi-
nates the need for extensive local infrastructure 

and computational resources. Organizations can 
leverage the pay-as-you-go model of cloud ser-
vices, reducing costs associated with hardware, 
software, maintenance, and upgrades. It makes 
remote sensing analysis more accessible and cost-
effective, particularly for smaller organizations or 
research projects with limited budgets[8]. 

By harnessing the power of AI and cloud 
computing, remote sensing applications can 
achieve higher efficiency, accuracy, scalability, 
and accessibility. These technologies are trans-
forming the field by enabling advanced analysis, 
real-time monitoring, and collaborative research, 
ultimately leading to improved understanding and 
management of forest ecosystems. Figure 3 pro-
cess of AI Application in forest mapping and 
monitoring. 

 
Figure 3. Process of AI application in forest mapping and monitoring. 

2. Optical remote sensing tools 
2.1 Utilizing high-resolution multispectral 
and hyperspectral imagery for vegetation 
mapping and species classification 

Utilizing high-resolution multispectral and 
hyperspectral imagery for vegetation mapping and 
species classification has become a valuable ap-
plication in remote sensing[9]. Here are some key 
aspects and benefits of using these types of image-
ry for these purposes. 

2.1.1 Multispectral imagery 
Multispectral imagery captures data in a few 

distinct spectral bands, typically including the vis-
ible and near-infrared regions of the electromag-

netic spectrum. It provides valuable information 
about the reflectance properties of vegetation and 
other land cover types. Some advantages of using 
high-resolution multispectral imagery for vegeta-
tion mapping and species classification are: 

a) Spectral differentiation: Different vege-
tation species and types exhibit unique spectral 
signatures due to variations in their chlorophyll 
content, leaf structure, and physiological proper-
ties. Multispectral imagery allows for the differen-
tiation of vegetation classes based on their spec-
tral response patterns. 

b) Land cover mapping: Multispectral im-
agery can be used to classify and map various 
land cover types, including forests, grasslands, 
croplands, wetlands, and urban areas. By analyz-
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ing the spectral characteristics of different land 
cover classes, accurate maps can be created to 
monitor land use changes and assess vegetation 
dynamics. 

c) Vegetation indices: Multispectral image-
ry enables the calculation of vegetation indices 
such as the normalized difference vegetation in-
dex (NDVI) and Enhanced Vegetation Index 
(EVI). These indices provide quantitative 
measures of vegetation health, biomass, and vigor, 
facilitating vegetation mapping and monitoring of 
ecosystem conditions. 

d) Classification algorithms: high-resolution 
multispectral imagery can be utilized in conjunc-
tion with classification algorithms, such as deci-
sion trees, random forests, or support vector ma-
chines, to accurately classify vegetation species or 
land cover types. The combination of spectral in-
formation and machine learning techniques im-
proves the accuracy of classification results. 

2.1.2 Hyperspectral imagery 
Hyperspectral imagery captures data in nu-

merous narrow contiguous spectral bands, provid-
ing a more detailed spectral resolution compared 
to multispectral imagery[10]. It offers several ad-
vantages for vegetation mapping and species clas-
sification: 

a) Spectral signature analysis: Hyperspec-
tral imagery allows for the detection of subtle dif-
ferences in vegetation spectral signatures, ena-
bling finer discrimination among species and veg-
etation classes. It can capture unique spectral 
characteristics related to biochemical and physio-
logical properties of vegetation, leading to more 
accurate species identification. 

b) Species discrimination: Hyperspectral 
imagery provides a wealth of spectral information 
that can be used to develop species-specific spec-
tral libraries or signatures. These spectral libraries, 
combined with advanced classification algorithms, 
facilitate the identification and discrimination of 
plant species, including invasive or rare species. 

c) Vegetation trait analysis: Hyperspectral 
data can be used to extract additional vegetation 
traits beyond spectral classification. It enables the 

estimation of parameters such as leaf area index 
(LAI), chlorophyll content, water content, and 
biochemical composition. These parameters con-
tribute to a more comprehensive understanding of 
vegetation characteristics and ecosystem process-
es. 

d) Sub-pixel analysis: Hyperspectral image-
ry allows for sub-pixel analysis, enabling the iden-
tification and mapping of mixed pixels where 
multiple vegetation species or land cover types 
coexist within a single pixel. This capability en-
hances the accuracy of vegetation mapping and 
species classification in complex landscapes. 

e) Ecological research and conservation: 
Hyperspectral imagery provides valuable data for 
ecological research, habitat mapping, biodiversity 
assessment, and conservation planning. It aids in 
the identification of sensitive or threatened eco-
systems, monitoring the spread of invasive species, 
and assessing habitat quality. 

Both high-resolution multispectral and hy-
perspectral imagery offer valuable insights for 
vegetation mapping and species classification. 
The choice between the two depends on the spe-
cific research objectives, spatial resolution re-
quirements, and spectral resolution needs of the 
study. Advances in sensor technology and data 
processing techniques continue to enhance the 
accuracy and capabilities of these remote sensing 
tools for vegetation analysis and ecological stud-
ies. 

2.2 Extraction of forest structural parame-
ters using vegetation indices and machine 
learning algorithms 

The extraction of forest structural parameters 
using vegetation indices and machine learning 
algorithms is a powerful approach in remote sens-
ing. By combining spectral information from veg-
etation indices and the analytical capabilities of 
machine learning algorithms, accurate and effi-
cient estimation of forest structural parameters can 
be achieved. Figure 4 shows methodology flow 
chart extraction of forest structural parameters. 
Here are the key aspects and benefits of this ap-
proach: 
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a) Vegetation indices: Vegetation indices 
are derived from remote sensing data, typically 
using specific combinations of spectral bands, and 
provide quantitative measures of vegetation prop-
erties. Some commonly used vegetation indices 
include the normalized difference vegetation in-
dex (NDVI), enhanced vegetation index (EVI), 
and leaf area index (LAI). These indices capture 
important characteristics related to vegetation 
health, vigor, and leaf area. 

b) Forest structural parameters: Forest 
structural parameters refer to the physical charac-
teristics of the forest, such as canopy height, 

crown diameter, tree density, biomass, and vol-
ume. Accurately estimating these parameters is 
crucial for forest management, carbon accounting, 
biodiversity assessment, and ecosystem model-
ing[11]. 

c) Machine learning algorithms: Machine 
learning algorithms, such as decision trees, ran-
dom forests, support vector machines, or neural 
networks, can be trained using labeled or refer-
ence data to establish relationships between vege-
tation indices and forest structural parameters. 
Once trained, these algorithms can make predic-
tions or classifications on new or unseen data. 

 
Figure 4. Methodology flow chart extraction of forest structural parameters. 

2.3 Integration of AI methods for automat-
ed land cover change detection and forest 
disturbance monitoring 

The integration of AI methods for automated 
land cover change detection and forest disturbance 
monitoring has revolutionized the field of remote 
sensing and environmental monitoring. AI tech-
niques, such as machine learning and deep learn-
ing, have the capability to analyze large volumes 
of remote sensing data and automatically detect 
and classify land cover changes and forest dis-
turbances[12]. Here are the key aspects and benefits 
of this integration: 

a) Efficient change detection: AI methods 
enable automated change detection by comparing 
multi-temporal remote sensing data. By training 
machine learning models on labeled change/no-change 
data, these algorithms can learn to identify pat-

terns and spectral changes associated with land 
cover changes and forest disturbances. This elimi-
nates the need for manual visual interpretation of 
imagery, making the process more efficient and 
scalable. 

b) Multi-sensor data fusion: AI methods 
facilitate the integration of multi-sensor data, such 
as optical, thermal, RADAR, and LiDAR, for 
change detection and forest disturbance monitor-
ing. By combining information from different 
sensors, the algorithms can leverage the comple-
mentary strengths of each data source, resulting in 
more accurate and comprehensive analysis. 

c) High accuracy and reliability: AI algo-
rithms can achieve high accuracy and reliability in 
detecting land cover changes and forest disturb-
ances. By leveraging the power of deep learning 
neural networks, these algorithms can learn intri-
cate patterns and spectral characteristics that are 
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not easily discernible to human observers. This 
leads to improved detection rates and reduced 
false positives/negatives. 

d) Rapid detection and monitoring: AI 
methods enable real-time or near-real-time land 
cover change detection and forest disturbance 
monitoring. With automated processing and anal-
ysis, the algorithms can continuously monitor 
large areas and provide timely information on for-
est disturbances, such as deforestation, forest fires, 
insect outbreaks, and disease outbreaks. This al-
lows for proactive and rapid response to mitigate 
the impacts of disturbances. 

e) Scalability and cost-effectiveness: The 
integration of AI methods with cloud computing 
provides scalability and cost-effectiveness in pro-
cessing and analyzing large volumes of remote 
sensing data. Cloud-based platforms allow for 
parallel processing and utilization of high-performance 
computing resources, reducing computational 
time and costs associated with data storage and 
processing. 

f) Long-term monitoring and trend anal-
ysis: By automating land cover change detection 
and forest disturbance monitoring, AI methods 
facilitate long-term monitoring and trend analysis. 
Historical satellite imagery can be processed to 
identify persistent changes and assess the trajecto-
ry of forest disturbances over time. This infor-
mation is valuable for understanding long-term 
environmental changes, ecosystem dynamics, and 
informing land management and conservation 
strategies. 

g) Early warning systems: AI-based change 
detection algorithms can be integrated into early 
warning systems for forest disturbances. By con-
tinuously monitoring and analyzing remote sens-
ing data, these systems can provide timely alerts 
and notifications to stakeholders and decision-
makers, enabling them to take proactive measures 
to mitigate and respond to forest disturbances. 

The integration of AI methods for automated 
land cover change detection and forest disturbance 
monitoring has significantly improved the effi-
ciency, accuracy, and timeliness of environmental 
monitoring. It empowers researchers, land manag-

ers, and policymakers with actionable information 
for effective land management, conservation 
planning, and the preservation of forest ecosys-
tems. 

3. Thermal remote sensing tools 
3.1 Mapping forest health and stress using 
thermal infrared imagery 

Thermal remote sensing tools, particularly 
thermal infrared imagery, offer valuable insights 
into mapping forest health and stress. By captur-
ing and analyzing the thermal radiation emitted by 
objects, including vegetation, thermal remote 
sensing provides information about the tempera-
ture variations within forest ecosystems[13]. Here 
are key aspects related to mapping forest health 
and stress using thermal infrared imagery: 

a) Temperature as an indicator of forest 
health: Temperature is a vital parameter for as-
sessing the health and stress levels of forest vege-
tation. Healthy plants typically exhibit a well-
regulated temperature range, while stressed or 
unhealthy vegetation may show deviations from 
the normal temperature patterns. Thermal infrared 
imagery can detect these temperature variations 
and provide information on the physiological con-
dition of the forest. 

b) Water stress and drought monitoring: 
Water stress is a significant factor affecting forest 
health, particularly in arid and semi-arid regions. 
Thermal remote sensing can help identify areas of 
water stress by detecting higher leaf temperatures 
in plants experiencing water shortages. By moni-
toring the thermal patterns of forests over time, it 
is possible to assess the severity and spatial extent 
of drought conditions and their impact on forest 
ecosystems. 

c) Detection of pest and disease infesta-
tions: Thermal infrared imagery can aid in the 
detection of pest and disease infestations in for-
ested areas. Infected or infested trees often exhibit 
abnormal temperature patterns due to physiologi-
cal changes induced by pests or diseases. By 
comparing the thermal signatures of healthy and 
infected vegetation, it is possible to identify areas 
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of potential pest or disease outbreaks and target 
appropriate management actions. 

d) Fire detection and monitoring: Thermal 
remote sensing is widely used for fire detection 
and monitoring. Active fires emit significant 
amounts of thermal radiation, which can be de-
tected by thermal infrared sensors onboard satel-
lites or aerial platforms. By analyzing the thermal 
anomalies and patterns, such as hotspots and fire 
fronts, thermal remote sensing contributes to early 
fire detection, fire behavior modeling, and post-
fire monitoring. 

e) Vegetation stress and disturbance 
mapping: Thermal infrared imagery can provide 
insights into vegetation stress and disturbances 
caused by factors such as deforestation, land use 
changes, or human activities. Areas undergoing 
disturbances often exhibit changes in surface tem-
perature due to alterations in vegetation cover, 
water availability, or soil properties. By compar-
ing pre- and post-disturbance thermal imagery, it 
is possible to map and monitor areas of vegetation 
stress and disturbance. 

f) Mapping forest microclimates: Thermal 
remote sensing enables the mapping of forest mi-
croclimates by assessing temperature variations 
within a forested area. Different forest types, to-
pography, and vegetation structure can create dis-
tinct thermal environments. Understanding these 
microclimates is crucial for characterizing ecolog-
ical niches, species distribution, and habitat suita-
bility assessments. 

g) Integration with other remote sensing 
data: To enhance the accuracy and reliability of 
forest health and stress mapping, thermal remote 
sensing data can be integrated with other remote 
sensing datasets. Combining thermal infrared im-
agery with multispectral or hyperspectral data al-
lows for a more comprehensive analysis of vege-
tation dynamics, land cover change, and ecosys-
tem functioning. 

Mapping forest health and stress using ther-
mal infrared imagery has proven to be a valuable 
application of thermal remote sensing. By lever-
aging the temperature variations within forest eco-
systems, it provides essential information for un-

derstanding the impacts of water stress, pest and 
disease outbreaks, fire occurrences, disturbances, 
and microclimate variability. These insights con-
tribute to effective forest management, conserva-
tion planning, and the preservation of ecosystem 
resilience. 

3.2 Estimation of evapotranspiration and 
water stress in forests 

The estimation of evapotranspiration (ET) 
and water stress in forests is crucial for under-
standing water dynamics, assessing ecosystem 
health, and informing water resource management 
strategies[14]. Remote sensing techniques, com-
bined with modeling approaches, offer valuable 
tools to estimate ET and evaluate water stress in 
forested environments. Here are key aspects relat-
ed to the estimation of evapotranspiration and wa-
ter stress in forests: 

a) Evapotranspiration estimation: Evapo-
transpiration represents the combined processes of 
water evaporation from the soil surface and tran-
spiration from plant leaves. Estimating ET in for-
ests helps quantify the water loss and understand 
the water requirements of vegetation. Remote 
sensing plays a vital role in ET estimation by 
providing spatially and temporally explicit infor-
mation on vegetation properties, land surface 
temperature, and energy fluxes. 

b) Energy balance models: Energy balance 
models, such as the surface energy balance algo-
rithm for land (SEBAL) or the simplified surface 
energy balance (SSEB) approach, utilize remote 
sensing data to estimate ET. These models rely on 
measurements of surface temperature (derived 
from thermal infrared imagery), meteorological 
data, and vegetation indices to calculate energy 
fluxes and water vapor exchange between the land 
surface and the atmosphere. 

c) Vegetation indices: Vegetation indices, 
particularly those derived from multispectral or 
hyperspectral imagery, provide valuable infor-
mation for estimating ET and assessing water 
stress in forests. Indices such as the normalized 
difference vegetation index (NDVI) or the en-
hanced vegetation index (EVI) reflect vegetation 
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vigor and biomass, which are correlated with tran-
spiration rates and water availability. 

d) Water stress indicators: Water stress in 
forests can be evaluated by monitoring indicators 
related to vegetation water content and physiolog-
ical responses. Remote sensing-based indicators, 
such as the normalized difference water index 
(NDWI) or the water stress index (WSI), leverage 
spectral information from optical or thermal sen-
sors to assess the level of water stress in vegeta-
tion. These indicators detect changes in leaf water 
content or alterations in thermal patterns associat-
ed with water limitations. 

e) Canopy water content mapping: Remote 
sensing data, including microwave and L-band radar 
imagery, can be used to estimate canopy water 
content in forests. Microwaves penetrate vegeta-
tion and are sensitive to changes in water content, 
allowing the mapping of water storage in the can-
opy layer. This information contributes to under-
standing the water balance and water availability 
in forested areas. 

f) Integration of data sources: Integration 
of remote sensing data with meteorological infor-
mation, ground-based measurements, and hydro-
logical models enhances the accuracy of ET esti-
mation and water stress assessment. Combining 
remote sensing observations with ancillary data 
enables the calibration and validation of models, 
accounting for local climatic conditions, vegeta-
tion types, and soil properties. 

g) Monitoring and management applica-
tions: Accurate estimation of ET and evaluation 
of water stress in forests have practical applica-
tions in various domains. These include assessing 
drought impacts on forest ecosystems, optimizing 
water allocation for irrigation or ecological pur-
poses, guiding forest management practices to 
maintain healthy vegetation, and supporting water 
resource planning and decision-making. 

The estimation of evapotranspiration and wa-
ter stress in forests using remote sensing provides 
valuable insights into the water dynamics and 
ecosystem functioning. By leveraging the capabil-
ities of remote sensing techniques and modeling 
approaches, it contributes to improved water re-

source management, sustainable forest practices, 
and the conservation of water-dependent ecosystems. 

3.3 Combining thermal data with other 
remote sensing sources for improved forest 
fire detection and monitoring 

Combining thermal data with other remote 
sensing sources offers significant advantages for 
improved forest fire detection and monitoring. By 
integrating multiple data types, such as optical, 
thermal, and radar imagery[15], a more comprehen-
sive and accurate assessment of forest fires can be 
achieved. Here are the key benefits of combining 
thermal data with other remote sensing sources for 
forest fire detection and monitoring: 

a) Enhanced fire detection: Thermal data, 
particularly from thermal infrared sensors, provide 
valuable information on the radiant heat emitted 
by active fires. By integrating thermal imagery 
with optical data, such as multispectral or hyper-
spectral imagery, it is possible to improve fire de-
tection capabilities. Optical sensors capture the 
visual and spectral signatures of smoke, flames, 
and burned areas, complementing the thermal data 
and increasing the overall detection accuracy. 

b) Improved fire mapping and boundary 
estimation: Combining thermal data with high-
resolution optical imagery allows for more precise 
mapping and boundary estimation of forest fires. 
The thermal data provide information about the 
fire’s thermal intensity and extent, while optical 
data provide detailed spatial information, helping 
to delineate the fire perimeter and distinguish be-
tween burned and unburned areas. This integra-
tion enables more accurate fire size estimation and 
assessment of fire behavior. 

c) Smoke plume analysis: Integrating ther-
mal and radar data can provide valuable insights 
into the analysis of smoke plumes generated by 
forest fires. Radar sensors are capable of penetrat-
ing smoke and capturing the backscatter signals 
from smoke particles. By combining thermal data 
for fire location and intensity with radar data for 
smoke detection and characterization, it is possi-
ble to better understand smoke dynamics, disper-
sion patterns, and potential impacts on air quality. 
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d) Fire severity assessment: Combining 
thermal data with post-fire optical and radar data 
facilitates fire severity assessment. Post-fire opti-
cal imagery, such as high-resolution satellite im-
agery, can capture the extent and severity of 
burned areas, while radar data can help identify 
changes in forest structure and biomass. By com-
paring pre- and post-fire data, it is possible to 
quantify the severity of the fire’s impact on the 
forest ecosystem and assess vegetation recovery 
potential. 

e) Real-time fire monitoring: Integrating 
thermal data with near-real-time monitoring sys-
tems, such as geostationary satellites or unmanned 
aerial vehicles (UAVs), enables real-time fire moni-
toring and early warning systems. Thermal sen-
sors onboard satellites or UAVs can provide con-
tinuous updates on fire activity, while other sen-
sors capture complementary information on 
smoke, flames, and burned areas. This integration 
allows for timely response and decision-making to 
mitigate the impacts of forest fires. 

f) Fire behavior modeling: Combining 
thermal data with other remote sensing sources 
contributes to more accurate fire behavior model-
ing. By assimilating thermal data into fire behav-
ior models, it is possible to improve the prediction 
of fire spread, intensity, and direction. This infor-
mation is valuable for fire management and re-
source allocation, aiding in the deployment of 
firefighting resources and the development of ef-
fective fire containment strategies. 

g) Integration with ancillary data: Inte-
grating thermal data with ancillary data, such as 
weather data, topographic information, and fuel 
characteristics, further enhances the understanding 
and analysis of forest fires. Incorporating these 
additional data sources into fire detection and 
monitoring systems enables more robust modeling, 
considering factors that influence fire behavior 
and spread, such as wind patterns, slope, and veg-
etation type. 

Combining thermal data with other remote 
sensing sources significantly improves forest fire 
detection and monitoring capabilities. By leverag-
ing the strengths of different sensors and data 

types, it allows for more accurate fire detection, 
mapping, severity assessment, and real-time 
monitoring[16]. This integration enhances the ef-
fectiveness of fire management efforts and sup-
ports proactive measures to mitigate the impacts 
of forest fires on ecosystems and human popula-
tions. 

4. RADAR remote sensing tools 
4.1 Assessing forest biomass and structure 
using synthetic aperture radar (SAR) data 

Assessing forest biomass and structure using 
synthetic aperture radar (SAR) data has proven to 
be a valuable approach in remote sensing. SAR 
data, with its unique capabilities for penetrating 
forest canopies and capturing backscatter signals, 
provides valuable information for estimating for-
est biomass, characterizing forest structure, and 
monitoring changes over time[17]. Here are key 
aspects related to the assessment of forest biomass 
and structure using SAR data: 

a) Backscatter response and biomass es-
timation: SAR backscatter signals are sensitive to 
the structural properties and moisture content of 
forest vegetation. Forest biomass estimation using 
SAR data is based on the assumption that higher 
biomass is associated with increased backscatter 
intensity. By calibrating SAR backscatter meas-
urements with ground-based biomass data, it is 
possible to establish empirical relationships and 
develop biomass estimation models. 

b) Forest height and canopy structure: 
SAR data can be used to estimate forest height 
and characterize canopy structure. The interaction 
of SAR signals with forest canopies provides in-
formation about the vertical structure and density 
of vegetation. Forest height estimation is typically 
achieved by correlating SAR backscatter with 
field measurements of tree height, while canopy 
structure parameters, such as vegetation density or 
canopy closure, can be derived from the shape and 
intensity of the backscatter response. 

c) Forest change detection: SAR data al-
lows for the monitoring of forest changes over 
time, including deforestation, forest degradation, 
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or regrowth. By comparing SAR images acquired 
at different time points, changes in backscatter 
patterns can be identified, indicating alterations in 
forest biomass and structure. Change detection 
using SAR data contributes to understanding for-
est dynamics, assessing the impacts of human ac-
tivities, and supporting forest management and 
conservation efforts. 

d) Polarimetric SAR: Polarimetric SAR da-
ta, which provides additional information about 
the polarization properties of radar signals, en-
hances the assessment of forest biomass and struc-
ture. By analyzing the polarimetric backscatter 
responses, it is possible to extract more detailed 
information about the scattering mechanisms 
within forest canopies. Polarimetric SAR data en-
ables the discrimination of different vegetation 
types, estimation of biomass components (such as 
above-ground and below-ground biomass), and 
identification of structural characteristics, such as 
tree density and canopy orientation. 

e) Interferometric SAR (InSAR): InSAR 
techniques, using pairs or stacks of SAR images 
acquired from slightly different positions, allow 
for the estimation of forest height and monitoring 
of forest structure changes. By measuring the 
phase differences between SAR images, it is pos-
sible to generate digital elevation models (DEMs) 
and derive forest height information. InSAR also 
enables the detection of subtle ground defor-
mations, such as those caused by tree growth or 
subsidence, providing insights into forest structur-
al dynamics. 

f) Data fusion and integration: Integrating 
SAR data with other remote sensing sources, such 
as optical imagery or LiDAR data, enhances the 
assessment of forest biomass and structure. Data 
fusion techniques enable the integration of SAR 
information (e.g., backscatter intensity) with opti-
cal data (e.g., vegetation indices) or LiDAR-
derived metrics (e.g., canopy height). This inte-
gration allows for a more comprehensive analysis 
of forest characteristics, overcoming the limita-
tions and complementing the strengths of each 
individual data source. 

g) Calibration and validation: Accurate es-
timation of forest biomass and structure using 
SAR data requires calibration and validation 
against ground-based measurements. Field data 
collection, including forest inventory plots, bio-
mass sampling, or LiDAR acquisitions, is essen-
tial for establishing empirical relationships and 
validating the accuracy of SAR-based estimations. 
Ground truth data play a crucial role in calibrating 
SAR backscatter models and improving the relia-
bility of biomass and structure assessments. 

Assessing forest biomass and structure using 
SAR data offers valuable insights into forest eco-
systems, supporting forest inventory, carbon ac-
counting, and management practices. The unique 
capabilities of SAR in penetrating forest canopies 
and providing all-weather. 

4.2 Detection and mapping of forest dis-
turbances, such as deforestation and forest 
degradation, using SAR interferometry 

SAR interferometry, commonly known as 
InSAR (interferometric synthetic aperture radar), 
is a powerful technique for detecting and mapping 
forest disturbances, including deforestation and 
forest degradation[18]. By analyzing the phase dif-
ferences between pairs of SAR images acquired at 
different times, InSAR can identify subtle ground 
deformations associated with changes in forest 
cover. Here are key aspects related to the detec-
tion and mapping of forest disturbances using 
SAR interferometry: 

a) Forest height change detection: One of 
the main applications of InSAR in forest disturb-
ance mapping is the detection of changes in forest 
height. When deforestation or forest degradation 
occurs, the removal or alteration of vegetation 
results in changes in the surface elevation, which 
can be detected by InSAR. By comparing two or 
more SAR images, InSAR can quantify the verti-
cal displacement and provide insights into the ex-
tent and magnitude of forest disturbances. 

b) Differential interferometric SAR (DIn-
SAR): Differential interferometric SAR (DInSAR) 
is a variant of InSAR that focuses on measuring 
small-scale surface deformations. By comparing 
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the phase differences between two or more SAR 
images acquired at different times, DInSAR can 
detect and quantify subtle ground movements as-
sociated with forest disturbances. It enables the 
identification of localized areas of deforestation, 
selective logging, or other forms of forest degra-
dation. 

c) Forest cover change detection: In addi-
tion to measuring height changes, InSAR can also 
be used to detect changes in forest cover. By ana-
lyzing the coherence, which represents the simi-
larity of radar waves between two images, areas 
of significant vegetation loss or disturbance can 
be identified. A decrease in coherence indicates 
changes in the radar backscatter, indicating forest 
disturbances such as deforestation, clear-cutting, 
or fire. 

d) Mapping forest degradation: SAR inter-
ferometry can be used to map different types of 
forest degradation, such as selective logging, can-
opy gaps, or gradual loss of biomass. By quantify-
ing the vertical displacement and coherence 
changes in SAR images, InSAR provides infor-
mation about the spatial distribution and severity 
of forest degradation. These maps can assist in 
assessing the impact of human activities on forest 
ecosystems and guiding conservation efforts. 

e) Identification of illegal logging: illegal 
logging is a significant threat to forests worldwide. 
InSAR can contribute to the identification and 
monitoring of illegal logging activities by detect-
ing changes in forest cover and height. The ability 
to detect small-scale ground deformations allows 
for the identification of localized areas where un-
authorized logging activities are taking place, 
supporting law enforcement and forest manage-
ment efforts. 

f) Forest recovery monitoring: Following 
disturbances such as deforestation or selective 
logging, monitoring forest recovery is crucial for 
assessing the effectiveness of restoration efforts. 
InSAR can contribute to monitoring the regrowth 
of forests by detecting changes in surface eleva-
tion and canopy height over time. It enables the 
quantification of forest recovery rates and the 
evaluation of restoration success. 

g) Integration with other data sources: To 
enhance the accuracy and reliability of forest dis-
turbance mapping, InSAR data can be integrated 
with other remote sensing sources, such as optical 
imagery or LiDAR data. Combining InSAR with 
optical data allows for the identification of chang-
es in forest cover, while LiDAR data can provide 
additional information on canopy structure and 
biomass. Data fusion and integration enable a 
more comprehensive understanding of forest dis-
turbances and their impact on ecosystem dynam-
ics. 

Detection and mapping of forest disturbances, 
such as deforestation and forest degradation, using 
SAR interferometry, provide valuable insights 
into the dynamics of forest ecosystems. By lever-
aging the capabilities of InSAR, it is possible to 
assess the extent, magnitude, and spatial patterns 
of forest disturbances, supporting forest manage-
ment, conservation efforts, and policy-making for 
sustainable land use. 

4.3 Fusion of optical and RADAR data for 
improved forest characterization and mon-
itoring 

The fusion of optical and radar data offers 
significant advantages for improved forest charac-
terization and monitoring. By integrating the 
complementary information from these two data 
sources, a more comprehensive understanding of 
forest structure, biomass, and dynamics can be 
achieved[19]. Here are the key benefits of fusing 
optical and radar data for forest characterization 
and monitoring: 

a) Improved forest structure estimation: 
Optical data, such as multispectral or hyperspec-
tral imagery, provide high-resolution spatial in-
formation about vegetation characteristics, includ-
ing leaf area index (LAI), canopy height, and veg-
etation indices. On the other hand, radar data, 
such as synthetic aperture radar (SAR), can pene-
trate forest canopies and provide information on 
forest structure, such as canopy density and verti-
cal structure. By fusing optical and radar data, it is 
possible to enhance the estimation of forest struc-
ture parameters, resulting in more accurate as-
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sessments of biomass, canopy height, and forest 
density. 

b) Enhanced biomass estimation: Optical 
data are sensitive to the photosynthetic activity 
and green biomass of forests, while radar data can 
penetrate vegetation canopies and provide infor-
mation on the overall biomass content, including 
above-ground and below-ground biomass. By fus-
ing optical and radar data, it is possible to com-
bine the strengths of both sensors for more accu-
rate biomass estimation. The optical data can con-
tribute to estimating the green biomass, while the 
radar data can provide additional information on 
the total biomass content, including woody bio-
mass, which is particularly valuable for large-
scale biomass assessments. 

c) Improved forest disturbance detection: 
The fusion of optical and radar data enables im-
proved detection and monitoring of forest disturb-
ances, such as deforestation, forest degradation, 
and illegal logging. Optical data can capture 
changes in land cover and provide high-resolution 
spatial information on forest disturbances, while 
radar data can penetrate clouds and capture sur-
face changes even under adverse weather condi-
tions. By fusing these data sources, it is possible 
to detect and characterize forest disturbances more 
effectively, enabling timely response and inter-
vention. 

d) Enhanced forest mapping: Integrating 
optical and radar data facilitates more accurate 
forest mapping, including forest type classifica-
tion and land cover mapping. Optical data provide 
spectral information that is valuable for discrimi-
nating different vegetation types and land cover 
classes, while radar data contribute to distinguish-
ing between forested and non-forested areas and 
provide information on forest structure and bio-
mass. By combining these data sources, it is pos-
sible to generate more detailed and accurate forest 
maps, supporting various applications, such as 
forest inventory, land management, and conserva-
tion planning. 

e) Improved monitoring of forest dynam-
ics: The fusion of optical and radar data allows for 
better monitoring of forest dynamics, including 

changes in forest cover, regrowth, and vegetation 
phenology. Optical data capture the seasonal vari-
ations in vegetation greenness and phenological 
patterns, while radar data can penetrate clouds and 
capture changes in forest structure and biomass. 
By fusing these data sources, it is possible to mon-
itor forest dynamics at different spatial and tem-
poral scales, providing insights into forest health, 
growth, and response to environmental changes. 

f) Integration with ancillary data: Fusing 
optical and radar data can be combined with ancil-
lary data sources, such as topographic information, 
climate data, and soil properties, to improve forest 
characterization and monitoring. By integrating 
these additional data sources, it is possible to ac-
count for factors that influence forest dynamics, 
such as terrain characteristics, water availability, 
and nutrient content. This integration enhances the 
understanding of forest ecosystems and supports 
more comprehensive analyses and modelling. 

The fusion of optical and radar data provides 
a powerful tool for improved forest characteriza-
tion and monitoring. By combining the strengths 
of both sensors, it allows for more accurate esti-
mation of forest structure, biomass, and disturb-
ance detection[20]. This integrated approach sup-
ports effective forest management, conservation 
planning, and the assessment of ecosystem ser-
vices provided by forests. 

5. LiDAR remote sensing tools 
5.1 3D forest structure modelling and can-
opy height estimation using LiDAR data 

LiDAR (light detection and ranging) remote 
sensing is a powerful tool for 3D forest structure 
modelling and canopy height estimation. LiDAR 
data, acquired from airborne or terrestrial plat-
forms, provides detailed information about the 
vertical structure of forests, allowing for accurate 
characterization of forest canopies[20]. Here are 
key aspects related to 3D forest structure model-
ling and canopy height estimation using LiDAR 
data: 

a) Point cloud generation: LiDAR data 
consists of millions or even billions of individual 
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3D point measurements, commonly referred to as 
a point cloud. The LiDAR sensor emits laser puls-
es and records the time it takes for the laser to re-
turn after reflecting off the objects in the envi-
ronment, including tree canopies. By processing 
these point measurements, a high-resolution point 
cloud representing the forest canopy is generated. 

b) Canopy Height Model (CHM) genera-
tion: One of the primary applications of LiDAR 
data in forestry is the generation of canopy height 
models (CHMs). CHMs represent the vertical 
structure of the forest by calculating the difference 
between the ground elevation and the height of the 
highest points within the canopy. By subtracting 
the digital terrain model (DTM) derived from Li-
DAR data from the digital surface model (DSM), 
a CHM is generated, providing information on 
canopy height variations across the study area. 

c) Individual tree segmentation: LiDAR 
data can be used to segment individual trees with-
in a forested area. Using various algorithms, such 
as watershed segmentation or region growing, 
LiDAR point clouds can be processed to identify 
and delineate individual tree crowns. This allows 
for the extraction of tree-level information, such 
as tree height, crown diameter, and crown volume, 
contributing to accurate forest inventory and mon-
itoring. 

d) Forest canopy structure analysis: Li-
DAR data enables detailed analysis of forest can-
opy structure and its spatial distribution. Metrics 
such as canopy cover, leaf area index (LAI), 
crown density, and canopy gap fraction can be 
derived from LiDAR point clouds. These metrics 
provide insights into forest structure, species 
composition, and ecological processes. Canopy 
structure analysis using LiDAR data supports var-
ious applications, including forest ecology re-
search, biodiversity assessments, and habitat 
modeling. 

e) Forest biomass estimation: Canopy 
height derived from LiDAR data is a crucial pa-
rameter for estimating forest biomass. The height 
information, combined with allometric equations 
and ground-based measurements, enables the es-
timation of above-ground biomass and carbon 
stocks at various scales. LiDAR-based biomass 
estimation provides accurate and spatially explicit 
information, supporting forest carbon accounting, 
climate change modeling, and sustainable forest 
management practices. 

f) Forest change detection: LiDAR data, 
when acquired at different time points, facilitates 
the detection and monitoring of forest changes 
over time. By comparing LiDAR-derived metrics, 
such as canopy height or canopy cover, changes in 
forest structure, deforestation, or forest regrowth 
can be identified. LiDAR-based change detection 
allows for the assessment of forest dynamics, 
tracking disturbances, and evaluating the effec-
tiveness of forest management and restoration 
activities. 

g) Integration with other data sources: 
LiDAR data can be integrated with other remote 
sensing sources, such as optical imagery or radar 
data, to enhance forest characterization and moni-
toring. The fusion of LiDAR data with optical 
data allows for the extraction of additional infor-
mation, such as spectral properties and vegetation 
indices, complementing the 3D structural infor-
mation provided by LiDAR. Integration with ra-
dar data, such as SAR, enables the assessment of 
forest structure and biomass in areas where Li-
DAR data may be unavailable or limited due to 
cloud cover or dense vegetation. 3D forest struc-
ture modelling and canopy height estimation using 
LiDAR data revolutionize our understanding of 
forest ecosystems. The detailed information pro-
vided by LiDAR enables accurate assessments 
(Figure 5). 



 

16 

 
Figure 5. Flow chart showing 3D forest structure modelling and canopy height estimation using LiDAR data. 

5.2 Identification and mapping of individu-
al trees and their attributes 

LiDAR (light detection and ranging) remote 
sensing technology is well-suited for the identifi-
cation and mapping of individual trees and their 
attributes[21]. By processing the point cloud data 
acquired from LiDAR sensors, it is possible to 
extract detailed information about individual trees, 
including their location, size, species, and other 
attributes. Here are the key aspects related to the 
identification and mapping of individual trees us-
ing LiDAR: 

a) Point cloud segmentation: LiDAR point 
cloud data can be segmented to separate individu-
al trees from the surrounding vegetation and ter-
rain. Various algorithms and techniques, such as 
region growing, watershed segmentation, or 
graph-based methods, can be applied to group the 
LiDAR points that belong to the same tree crown. 
This segmentation process enables the isolation of 
individual tree objects from the LiDAR data. 

b) Tree location and position: Once the 
trees are segmented from the LiDAR point cloud, 
their precise locations and positions can be deter-
mined. The 3D coordinates of the points repre-
senting the tree canopy are used to calculate the 
centroid or representative point of each tree. This 
provides the spatial information needed to map 

the distribution of individual trees within a forest-
ed area. 

c) Tree height and canopy diameter: Li-
DAR data allows for accurate estimation of tree 
height and canopy diameter. By analyzing the ver-
tical structure of the LiDAR point cloud within 
each segmented tree crown, the maximum height 
and the vertical extent of the canopy can be de-
termined. These measurements provide valuable 
information about the vertical growth of individu-
al trees and their overall size. 

d) Tree species classification: LiDAR data, 
particularly when integrated with other data 
sources such as multispectral imagery or hyper-
spectral data, can support tree species classifica-
tion. The structural characteristics derived from 
LiDAR, such as the shape and texture of tree 
crowns, can be used to differentiate between dif-
ferent tree species. Machine learning algorithms 
and classification techniques can be employed to 
automatically assign tree species based on the Li-
DAR-derived features. 

e) Tree diameter at breast height (DBH) 
estimation: DBH is a critical parameter for char-
acterizing individual trees. LiDAR data can be 
utilized to estimate DBH accurately. By measur-
ing the width or circumference of the tree trunk 
within the LiDAR point cloud, the DBH can be 
estimated. This information is essential for vari-
ous forest management applications, including 
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growth modeling, carbon sequestration estimation, 
and timber volume calculations. 

f) Crown volume and canopy structure: 
LiDAR data provides detailed information about 
the 3D structure of tree canopies. By analyzing 
the density and distribution of LiDAR points 
within each segmented tree crown, the crown vol-
ume and shape can be derived. This information 
helps in understanding the spatial arrangement of 
branches and foliage, providing insights into for-
est structure, biomass distribution, and ecological 
processes. 

g) Tree health assessment: Changes in the 
structure and reflectance properties of tree cano-
pies captured by LiDAR data can indicate tree 
health conditions. LiDAR-derived metrics, such 
as canopy density, foliage cover, or canopy gaps, 
can be used to assess tree health and detect signs 
of stress, disease, or damage. By monitoring these 
metrics over time, forest managers can identify 
areas of concern and prioritize interventions for 
maintaining forest health. 

The identification and mapping of individual 
trees and their attributes using LiDAR data enable 
detailed forest inventory and monitoring. This 
information supports forest management practices, 
ecological research, and conservation efforts. Li-
DAR-based tree mapping provides essential data 
for assessing forest structure, carbon sequestration, 
biodiversity, and ecosystem services. 

5.3 Combining LiDAR with other remote 
sensing data for forest inventory and car-
bon stock estimation 

Combining LiDAR data with other remote 
sensing data sources can significantly improve 
forest inventory and carbon stock estimation. By 
integrating LiDAR with complementary data, 
such as optical imagery or radar data, a more 
comprehensive understanding of forest structure 
and biomass can be achieved[22]. Here are some 
ways in which LiDAR can be combined with oth-
er remote sensing data for forest inventory and 
carbon stock estimation: 

a) Fusion of LiDAR and optical data: In-
tegrating LiDAR with optical imagery, such as 

multispectral or hyperspectral data, allows for the 
extraction of additional spectral information about 
the forest. The fusion of LiDAR and optical data 
enables more accurate species classification, as 
the spectral properties of the trees captured by 
optical sensors can complement the 3D structural 
information provided by LiDAR. This fusion im-
proves the characterization of forest composition 
and helps estimate species-specific biomass and 
carbon stocks. 

b) Integration of LiDAR and SAR data: 
Combining LiDAR with synthetic aperture radar 
(SAR) data offers advantages in areas where opti-
cal imagery may be hindered by cloud cover or 
dense vegetation. SAR sensors can penetrate 
through clouds and vegetation to capture infor-
mation about forest structure and biomass. By 
integrating LiDAR’s detailed 3D information with 
SAR’s ability to detect changes and biomass vari-
ations, it is possible to improve forest inventory 
and carbon stock estimation in challenging envi-
ronmental conditions. 

c) LiDAR and forest inventory plot data: 
Ground-based forest inventory plot data, such as 
measurements of tree diameters and heights, can 
be used in conjunction with LiDAR data to cali-
brate and validate the remote sensing-based esti-
mates. By comparing the field measurements with 
the corresponding LiDAR-derived metrics, re-
gression models can be developed to establish 
relationships between ground-based measure-
ments and remote sensing data. This approach 
allows for more accurate and scalable estimation 
of forest inventory attributes and carbon stocks 
over larger areas. 

d) LiDAR and forest growth models: 
Combining LiDAR data with forest growth mod-
els enhances the estimation of carbon stocks over 
time. LiDAR provides accurate measurements of 
tree height, canopy volume, and structural attrib-
utes, which can be integrated into growth models 
to simulate the growth and development of forests. 
By coupling LiDAR-derived parameters with 
growth models, it is possible to monitor changes 
in forest structure and estimate carbon stock dy-
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namics, supporting long-term forest management 
and carbon accounting efforts. 

e) LiDAR and LiDAR repeat passes: Re-
peating LiDAR acquisitions over the same area at 
different time points enables the assessment of 
forest dynamics and changes in carbon stocks. By 
comparing multiple LiDAR datasets acquired at 
different times, forest growth, biomass accumula-
tion, and carbon stock changes can be quantified. 
The fusion of LiDAR repeat passes with other 
remote sensing data sources, such as optical or 
SAR imagery, further enhances the understanding 
of forest dynamics and carbon sequestration rates. 

f) Integration with environmental and 
topographic data: LiDAR data can be integrated 
with environmental and topographic data, such as 
climate variables, soil properties, and terrain char-
acteristics. By incorporating these additional data 
sources into the analysis, it is possible to account 
for factors influencing forest growth and carbon 
dynamics. This integration enhances the accuracy 
of carbon stock estimation by considering the en-
vironmental context and site-specific conditions 
that affect forest productivity. 

The combination of LiDAR with other re-
mote sensing data sources offers a comprehensive 
approach to forest inventory and carbon stock es-
timation. By leveraging the strengths of different 
sensors and data types, it is possible to improve 
the accuracy, scalability, and spatial coverage of 
forest assessments, contributing to better forest 
management, carbon accounting, and climate 
change mitigation efforts. Integration of RADAR-
derived indices, deep learning models, object 
segmentation techniques, and GEDI (global eco-
system dynamics investigation) lidar data can 
provide a comprehensive and multi-layered analy-
sis of forests. Let’s consider a hypothetical study 
that aims to assess forest structure, species classi-
fication, and biomass estimation in a mixed-
species forest region. 

a) RADAR-derived indices: The study 
could begin with the use of RADAR remote sens-
ing data to obtain a robust understanding of the 
forest structure and detect changes over time. A 
RADAR-derived index, such as the radar forest 

degradation index (RFDI), can be utilized to high-
light areas of the forest that have undergone sig-
nificant changes due to logging or natural disturb-
ances. The RFDI, calculated from the backscatter 
coefficients obtained from the RADAR imagery, 
could indicate areas with lower values, signifying 
potential logging activity or forest degradation. 

b) Deep learning models: To identify and 
classify tree species within the study area, deep 
learning models can be applied to high-resolution 
multispectral imagery. Convolutional neural net-
works (CNNs), a type of deep learning model, can 
be trained to recognize the unique spectral signa-
tures of different tree species. By feeding the 
CNN with training data that pairs multispectral 
imagery with known species classifications, the 
model can learn to identify different tree species 
across the entire study area with a high degree of 
accuracy. 

c) Object segmentation: Object-based im-
age analysis (OBIA), which involves segmenting 
an image into meaningful objects and classifying 
those objects, can also be used in this study. For 
example, individual tree crowns could be seg-
mented using algorithms such as Watershed or 
Mean-shift. The segmented tree crowns, each rep-
resenting an individual tree, can then be classified 
into different species using the trained CNN mod-
el. 

d) GEDI lidar data: To assess the vertical 
structure of the forest and estimate biomass, GEDI 
lidar data can be used. GEDI, a lidar instrument on 
the International Space Station, provides high-quality 
laser-ranging observations of the Earth’s forests 
and topography. The GEDI data allows for the 
precise measurement of forest height, canopy 
structure, and terrain. These measurements can be 
used to estimate forest biomass and carbon stocks, 
key indicators of the forest’s health and its role in 
the global carbon cycle. 

By integrating RADAR-derived indices, 
deep learning models, object segmentation tech-
niques, and GEDI lidar data, this hypothetical 
study would provide a comprehensive assessment 
of forest structure, species composition, and bio-
mass in the study area. The methodologies and 
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technologies used in the study could serve as a 
blueprint for future forest monitoring efforts, in-
forming sustainable forest management strategies, 
conservation planning, and climate change mitiga-
tion initiatives. 

6. Integration of artificial intelli-
gence and cloud computing 

The integration of artificial intelligence (AI) 
and cloud computing has revolutionized remote 
sensing applications, including those in the field 
of forestry[23]. Here are some key aspects of how 
AI and cloud computing contribute to remote 
sensing analysis and provide new insights in the 
forestry discipline: 

a) Data processing and analysis: AI algo-
rithms, such as machine learning and deep learn-
ing, can process and analyze large volumes of re-
mote sensing data with unprecedented speed and 
accuracy. Cloud computing provides the neces-
sary computational power and storage capabilities 
to train AI models and perform complex data pro-
cessing tasks. AI techniques can be applied to re-
motely sensed data, including optical, thermal, 
radar, and LiDAR, to extract meaningful infor-
mation about forest attributes, such as tree species, 
biomass, and health. By utilizing cloud resources, 
these AI-based analyses can be conducted effi-
ciently and at scale. 

b) Automated feature extraction: AI algo-
rithms can automatically extract features and pat-
terns from remote sensing data, enabling efficient 
and objective analysis. In the context of forestry, 
AI can be used to identify and classify vegetation 
types, detect tree boundaries, estimate forest pa-
rameters, and map land cover changes. By lever-
aging cloud computing, these AI-based feature 
extraction processes can be applied to large areas, 
allowing for comprehensive forest assessments 
and monitoring on a regional or global scale. 

c) Species classification and mapping: AI 
methods, coupled with remote sensing data, can 
improve species classification and mapping in 
forests. Machine learning algorithms can be 
trained using labeled training data to recognize 

spectral or structural patterns specific to different 
tree species. These AI models can then be applied 
to remotely sensed data, such as hyperspectral or 
LiDAR, to classify tree species and create detailed 
species distribution maps. The scalability and 
computational power of cloud computing enable 
the training and deployment of these AI models 
across large spatial extents. 

d) Forest change detection: AI algorithms 
combined with cloud computing capabilities facil-
itate automated forest change detection and moni-
toring. By comparing multi-temporal remote sens-
ing data, AI models can identify and quantify for-
est disturbances, such as deforestation, forest deg-
radation, and regrowth[24,25]. These AI-based 
change detection methods enable timely and accu-
rate assessment of forest dynamics, aiding in the 
identification of areas at risk and supporting sus-
tainable forest management practices. 

e) Data fusion and integration: Cloud 
computing platforms provide the infrastructure for 
integrating and fusing diverse remote sensing da-
tasets. AI algorithms can leverage this capability 
to combine optical, thermal, radar, and LiDAR 
data for comprehensive forest characterization[26–

28]. The fusion of different data sources enables 
the extraction of complementary information and 
provides a more holistic understanding of forest 
structure, biomass, and ecosystem functioning. 
Cloud-based AI tools facilitate the seamless inte-
gration of multi-sensor data and enable advanced 
analytics for improved forest monitoring and 
management. 

f) Scalability and accessibility: Cloud 
computing offers scalability, enabling the pro-
cessing and analysis of large-scale remote sensing 
datasets. With cloud-based AI platforms, re-
searchers, scientists, and forest managers can ac-
cess powerful computing resources on-demand, 
avoiding the need for costly infrastructure invest-
ments[29,30]. This accessibility lowers the entry bar-
rier for utilizing advanced remote sensing and AI 
techniques, allowing a broader community to ben-
efit from the insights and analysis that these tech-
nologies provide. 
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The integration of AI and cloud computing in 
remote sensing applications has opened up new 
possibilities for forest analysis and monitoring. By 
harnessing the capabilities of AI algorithms and 
the scalability of cloud computing, forest re-
searchers and managers can leverage large-scale 
remote sensing datasets to gain valuable insights 
into forest structure, species composition, biomass 
estimation, and change detection[31,32]. This inte-
gration has the potential to enhance sustainable 
forest management practices, support conserva-
tion efforts, and contribute to global climate 
change mitigation strategies. 

7. Challenges and future direc-
tions 

While remote sensing technologies have 
made significant advancements in recent years, 
there are still several challenges and opportunities 
for future research and development. Here are 
some key challenges and potential future direc-
tions in the field of remote sensing for forestry: 

a) Data availability and accessibility: Ac-
cess to high-quality, up-to-date remote sensing 
data, including optical, thermal, radar, and LiDAR, 
can be a challenge. Improvements in data acquisi-
tion, processing, and distribution methods are 
needed to ensure timely and open access to data 
for researchers, forest managers, and decision-
makers. Additionally, efforts to make remote 
sensing data more easily accessible and interoper-
able with other data sources will enhance the inte-
gration and analysis of multi-sensor datasets. 

b) Data fusion and integration: While there 
have been advancements in data fusion techniques, 
integrating multiple remote sensing datasets to 
obtain a comprehensive understanding of forests 
remains a challenge. Future research should focus 
on developing robust and scalable methods for 
effectively combining and integrating different 
data sources, such as optical, thermal, radar, and 
LiDAR, to generate more accurate and detailed 
forest information. 

c) Standardization and validation: The 
development of standardized methodologies and 

protocols for processing, analyzing, and validating 
remote sensing data in the context of forest moni-
toring is essential. Establishing consistent and 
transparent approaches will facilitate data compar-
ison, ensure data quality, and improve the reliabil-
ity of forest assessments. Collaborative efforts 
between the remote sensing community, forest 
researchers, and stakeholders are necessary to de-
velop and adopt standardized procedures. 

d) Algorithm development and machine 
learning: Advancements in machine learning al-
gorithms, such as deep learning, hold great poten-
tial for extracting valuable information from re-
mote sensing data. However, the development of 
robust and interpretable AI models specifically 
tailored for forest applications is an ongoing re-
search area. Improvements in algorithm perfor-
mance, transferability across different forest eco-
systems, and the ability to handle large-scale da-
tasets are important future directions. 

e) Integration of ancillary data: The inte-
gration of ancillary data, such as climate, topogra-
phy, and soil information, with remote sensing 
data can enhance the understanding of forest dy-
namics and ecosystem processes. Future research 
should focus on developing methods for effective-
ly integrating these diverse datasets and leverag-
ing their synergistic effects to improve forest 
monitoring, modeling, and decision-making pro-
cesses. 

f) Improved forest parameter estimation: 
Accurate estimation of forest parameters, such as 
biomass, carbon stocks, and structural attributes, 
is crucial for understanding ecosystem health and 
dynamics. Further research is needed to refine 
existing algorithms and develop new approaches 
for more precise and scalable estimation of these 
parameters using remote sensing data. Incorporat-
ing ground-based measurements, field campaigns, 
and novel sensor technologies into the modeling 
process can improve accuracy and reduce uncer-
tainties. 

g) Near real-time monitoring and early 
warning systems: Advancements in cloud com-
puting and AI methods provide opportunities for 
developing near real-time forest monitoring and 
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early warning systems for rapid detection and re-
sponse to forest disturbances, such as wildfires, 
insect infestations, and illegal logging. Integrating 
real-time data streams, including satellite imagery, 
aerial surveys, and ground-based observations, 
with AI-based algorithms can enable timely alerts 
and support proactive forest management strate-
gies. 

h) Integration with decision support sys-
tems: The integration of remote sensing data and 
analysis outputs with decision support systems 
can enhance the usability and applicability of re-
mote sensing information in forestry decision-
making processes. Future research should focus 
on developing user-friendly interfaces, visualiza-
tion tools, and decision support frameworks that 
facilitate the integration of remote sensing data 
into forest management practices and policies. 

Addressing these challenges and exploring 
future research directions will contribute to ad-
vancing the capabilities of remote sensing in for-
estry. By improving data accessibility, refining 
algorithms, integrating multi-sensor data, and en-
hancing the integration of remote sensing with 
other data sources and decision support systems, 
remote sensing technologies can better support 
sustainable forest management, biodiversity con-
servation, and climate change mitigation efforts. 

8. Opportunities for collaboration 
between researchers, industry, 
and policymakers 

Collaboration between researchers, industry, 
and policymakers is essential for advancing re-
mote sensing applications in forestry and maxim-
izing their impact. Here are some opportunities for 
collaboration among these stakeholders: 

a) Data sharing and access: Researchers, 
industry, and policymakers can collaborate to im-
prove data sharing and access. Industry partners 
and satellite data providers can work together to 
ensure timely and open access to remote sensing 
data. Researchers can collaborate with industry to 
access proprietary data sources or contribute to 
data collection efforts. Policymakers can play a 

role in facilitating data sharing agreements and 
establishing data infrastructure that supports col-
laboration. 

b) Algorithm development and validation: 
Collaboration between researchers, industry, and 
policymakers can accelerate the development and 
validation of algorithms for forest analysis. Re-
searchers can work closely with industry partners 
to develop and test algorithms using industry-
specific datasets or ground truth data. Policymak-
ers can support initiatives that promote algorithm 
validation and ensure the reliability and accuracy 
of remote sensing-based information used in deci-
sion-making processes. 

c) Field data collection and calibration: 
Industry partners, researchers, and policymakers 
can collaborate on field data collection campaigns 
to validate and calibrate remote sensing data. In-
dustry partners can provide access to forest sites 
and contribute ground-based measurements. Re-
searchers can design and conduct field campaigns 
to collect data for algorithm development and val-
idation. Policymakers can support and fund col-
laborative field campaigns that bridge the gap be-
tween remote sensing data and on-the-ground for-
est observations. 

d) Application development and deploy-
ment: Collaboration between researchers, indus-
try, and policymakers can drive the development 
and deployment of remote sensing applications for 
forestry. Researchers can develop innovative ap-
plications that address industry and policymaker 
needs, leveraging their expertise in algorithm de-
velopment and analysis. Industry partners can 
contribute their domain knowledge and resources 
to translate research findings into practical solu-
tions. Policymakers can provide support and cre-
ate favorable policy environments to encourage 
the adoption and implementation of remote sens-
ing technologies in forestry. 

e) Capacity building and knowledge 
transfer: Collaboration can promote capacity 
building and knowledge transfer among research-
ers, industry, and policymakers. Industry partners 
can provide training and resources to researchers 
and policymakers on data acquisition, processing, 
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and analysis techniques. Researchers can share 
their expertise and findings through workshops, 
seminars, and training programs. Policymakers 
can support capacity-building initiatives and cre-
ate platforms for knowledge exchange between 
stakeholders. 

f) Policy development and implementa-
tion: Collaboration between researchers, industry, 
and policymakers is crucial in developing and im-
plementing policies that promote the effective use 
of remote sensing in forestry. Researchers can 
provide scientific evidence and insights to inform 
policy decisions. Industry partners can contribute 
their practical knowledge and experiences to 
shape policies that align with industry needs. Poli-
cymakers can engage with researchers and indus-
try stakeholders to understand the potential of re-
mote sensing technologies and develop policies 
that support their adoption and use in forest man-
agement. 

By leveraging the strengths and expertise of 
researchers, industry, and policymakers, collabo-
rative efforts can drive innovation, improve data 
access and quality, validate algorithms, facilitate 
knowledge transfer, and ensure that remote sens-
ing technologies are effectively utilized in forestry 
applications. These collaborations have the poten-
tial to enhance forest management practices, sup-
port evidence-based policymaking, and contribute 
to sustainable forest ecosystems. 

9. Conclusion 
Remote sensing has emerged as a powerful 

tool for analyzing and monitoring forests, provid-
ing valuable insights into their structure, health, 
and dynamics. Optical, thermal, RADAR, and 
LiDAR remote sensing data, combined with state-
of-the-art methods of data processing and analysis, 
have contributed to the advancement of forestry 
disciplines. In this review article, we explored the 
various remote sensing tools and techniques uti-
lized in forestry analysis. We discussed the ad-
vantages of AI and cloud computing in remote 
sensing applications, including improved data 
processing, automated feature extraction, and en-
hanced scalability. We also highlighted the utili-

zation of high-resolution multispectral and hyper-
spectral imagery for vegetation mapping and spe-
cies classification, as well as the extraction of for-
est structural parameters using vegetation indices 
and machine learning algorithms. Moreover, we 
examined the integration of AI methods for auto-
mated land cover change detection and forest dis-
turbance monitoring, the mapping of forest health 
and stress using thermal infrared imagery, and the 
estimation of evapotranspiration and water stress 
in forests. We also discussed the combination of 
thermal data with other remote sensing sources for 
forest fire detection and monitoring. Furthermore, 
we explored the estimation of forest biomass and 
structure using synthetic aperture radar (SAR) 
data, the detection and mapping of forest disturb-
ances using SAR interferometry, and the fusion of 
optical and RADAR data for improved forest 
characterization and monitoring. We delved into 
the applications of LiDAR remote sensing, includ-
ing 3D forest structure modeling and canopy 
height estimation, identification and mapping of 
individual trees and their attributes, as well as the 
fusion of LiDAR with other remote sensing data 
for forest inventory and carbon stock estimation. 
Finally, we highlighted the integration of AI 
methods and cloud computing, emphasizing their 
role in advancing remote sensing applications in 
forestry. We discussed the challenges and future 
directions in the field, including data availability 
and accessibility, data fusion and integration, al-
gorithm development and validation, and the inte-
gration of remote sensing with decision support 
systems. We also emphasized the opportunities 
for collaboration among researchers, industry, and 
policymakers in driving innovation, data sharing, 
algorithm development, and policy implementa-
tion. In conclusion, remote sensing, coupled with 
AI and cloud computing, has revolutionized for-
estry analysis by providing accurate, timely, and 
scalable information about forests. These ad-
vancements have the potential to support sustain-
able forest management, biodiversity conservation, 
and climate change mitigation. Continued re-
search, collaboration, and technological advance-
ments will further enhance the capabilities of re-
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mote sensing in forestry, facilitating informed de-
cision-making and contributing to the long-term 
health and resilience of our forests. 
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