
Natural Resources Conservation and Research 2024, 7(2), 9831. 

https://doi.org/10.24294/nrcr9831 

1 

Article 

Assessment of mangrove cover and biomass with remote sensing 

technologies to conserve Gulf of Khambhat, Gujarat, India 

Nilima R. Chaube1,*, Yashraj Jain2, Seema Mahajan2 

1 Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380015, India 
2 Indus University, Ahmedabad 382115, India 

* Corresponding author: Nilima R. Chaube, chaube@sac.isro.gov.in 

Abstract: Natural resource conservation is vital for maintaining ecosystems that support 

biodiversity, regulate climate, and provide essential resources for human well-being. As 

ecosystems face growing pressures from deforestation, pollution, and climate change, remote 

sensing has become a key tool for monitoring and protecting these environments. Through 

satellite imagery, LiDAR, and aerial photography, remote sensing offers detailed insights into 

land cover changes, habitat degradation, and forest health, enabling data-driven conservation 

strategies. Mangroves play a crucial role in natural resource conservation by protecting 

coastlines from erosion, reducing the impacts of storms, and providing habitat for diverse 

marine species. They also act as significant carbon sinks, helping to mitigate climate change 

while supporting fisheries and local livelihoods. Specifically, for mangroves, remote sensing 

plays a critical role in assessing ecosystem health, species composition, and disturbances like 

illegal logging and coastal erosion, supporting effective conservation and restoration efforts to 

ensure their sustainability. The study of mangroves in the Gulf of Khambhat, Gujarat, 

emphasizes the critical role of mangrove ecosystems in biodiversity conservation, coastal 

protection. Leveraging remote sensing techniques such as microwave (ALOS PALSAR-2-L 

band with 25 m resolution) and optical (multi-spectral) (Sentinel-2 MSI with 10m resolution), 

the research integrates the mangrove and non-mangrove delineation, change detection to offer 

insights into natural resource conservation of mangroves and Above Ground Biomass (AGB) 

estimation. In this study the area of mangroves obtained is 94.94 km2 from L-band SAR data 

(25 m resolution and 2020), 98.55 km2 from Optical data (10m resolution and 2020) while the 

Forest Survey of India Report (2021) illustrate 101.53 km2 mangrove area at Gulf of Khambhat, 

India. The accuracy of the area of mangroves obtained from remote sensing is 93.50 % from 

L-band SAR) and 97.06 % from Optical data (Sentinel-2 MSI) with respect to area reported in 

Forest Survey of India Report (2021). These results are crucial for loss and recovery monitoring 

of mangrove forest, to enable targeted conservation efforts. This study offers a comprehensive 

approach to conserving natural resources by enhancing the accuracy of biomass mapping and 

ecosystem monitoring, ensuring effective conservation strategies for the biodiversity-rich 

mangrove regions of the Gulf of Khambhat. 

Keywords: mangroves; remote sensing; Above Ground Biomass (AGB); Support Vector 

Machine (SVM) classification 

1. Introduction 

Natural resource conservation is an essential priority due to growing 

anthropogenic pressures on ecosystems. Healthy ecosystems are critical for supporting 

biodiversity, regulating the Earth’s climate, and providing essential resources for 

human well-being, such as clean air, water, and fertile soil. The ecosystems also play 

a central role in sustaining livelihoods, especially in regions dependent on agriculture, 
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forestry, and fishing. However, accelerated deforestation, industrial pollution, 

urbanization etc. are impacting the climate and leading to degraded ecosystems 

worldwide [1]. As these pressures intensify, innovative methods for monitoring, 

protecting, and managing natural resources are urgently required. Remote sensing 

technologies have emerged as powerful tools for environmental monitoring and 

conservation, offering scalable, cost-effective way for understanding ecosystems [2]. 

By leveraging satellite imagery, LiDAR (Light Detection and Ranging), Synthetic 

Aperture Radar (SAR), and aerial photography, remote sensing enables researchers to 

track land cover changes, identify habitat degradation, and assess forest health [3]. 

With the capability to provide spatially continuous data over large and often 

inaccessible areas, remote sensing supports the development of data-driven 

conservation strategies that are critical for long-term ecosystem management of 

ecosystems, from forests and wetlands to coastal mangrove habitats. 

Mangrove ecosystems are among the most critical coastal habitats, offering a 

unique combination of ecological, economic, and protective functions. These intertidal 

forests serve as biodiversity hotspots, providing habitat and breeding grounds for 

diverse marine and terrestrial species. In addition, mangroves play a vital role in 

stabilizing coastlines, reducing erosion, and mitigating the impact of natural disasters 

such as tsunamis and cyclones [4]. They are also important carbon sinks, storing large 

amounts of carbon in their biomass and sediments, thereby contributing to climate 

change mitigation. Globally, mangrove forests cover over 146,500 km2 of shoreline, 

making them a key focus of coastal conservation [5]. In India, mangroves account for 

4992 km2 of forest cover, which is approximately 0.15% of the country’s total land 

area, with significant concentrations in the Sundarbans, Gujarat, and Andaman and 

Nicobar Islands [6]. 

Advances in Synthetic Aperture Radar (SAR) remote sensing, have 

revolutionized the estimation of Above Ground Biomass (AGB) for mangrove forests, 

due to its ability to capture structural and volumetric properties of vegetation, even in 

cloudy or challenging weather conditions [7]. Longer wavelength SAR signals, such 

as L-band and P-band, are particularly suited for tropical regions with high biomass 

concentrations, as they can penetrate deep into the vegetation canopy, overcoming the 

saturation limitations of shorter wavelengths SAR and optical data. Remote sensing-

based biomass assessment relies on correlation of field-measured biomass data with 

satellite imagery to develop predictive models for biomass estimation. This approach 

is widely used in mangrove mapping and has proven to be both cost-effective and 

scalable. The ‘Combined Mangrove Recognition Index (CMRI)’ uses outputs from the 

NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized Difference 

Water Index) indices to analyze mangrove vegetation using information such as 

greenness and water content [8]. The Mangrove Vegetation Index (MVI) is a new 

simplified mangrove index that uses Sentinel-2’s NIR, SWIR1, and green bands for 

speedy and accurate mapping of mangroves without the need for sophisticated 

categorization algorithms [5]. 

The present study focuses on the mangrove ecosystems of the Gulf of Khambhat 

(GOK), Gujarat, an area that underscores the ecological and protective value of 

mangroves. This region has witnessed significant environmental changes due to 

natural processes and human activities, making it a vital site for research and 
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conservation efforts. The study integrates remote sensing datasets from Sentinel-2 

MSI optical image and ALOS PALSAR-2 L-band SAR data with 10 and 25-meter 

resolution respectively. The combination of optical and microwave datasets enables 

the delineation of mangrove and non-mangrove areas, change detection more 

effectively. The first objective of the study is to delineate mangrove from other land 

features using Sentinel-2 MSI data and the second objective of the study is the 

estimation of Above Ground Biomass (AGB) using ALOS PALSAR-2-L band data 

with field measurements in the study area. Results of both the objectives are used to 

estimate area of mangroves in GOK. 

2. Materials and methods 

2.1. Study area 

The study area is located in Gujarat State on India’s west coast. The Gulf of 

Khambhat, also known as the Gulf of Cambay, is a bay on the Arabian Sea coast of 

India. The Gulf of Khambhat is about 200 km (120 mi) long, about 20 km (12 mi) 

wide in the north and up to 70 km (43 mi) wide in the south. Ghogha (21°40′ N, 72°17′ 

E), Dahej (21°71° N, 72°52° E), and Kantiyajal (21°30′ N, 72°39′ E) are chosen based 

on the abundance of mangroves for the field measurements in the Gulf of Khambhat’s 

intertidal region for this research work. 

The Figure 1 illustrates the True color Google image of Gulf of Khambhat taken 

from Google image. The image provides the information about the study area in the 

white colored rectangular. The three ground truth locations Ghogha (Bhavnagar), 

Dahej (Bharuch) and Kantiyajal (Bharuch), are highlighted in yellow square dots in 

Figure 1. 

 

Figure 1. Study area with GT locations in GOK. 
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2.2. Datasets used 

The L-band ALOS PALSAR-2 provides the yearly mosaic backscatter in 25m 

resolution, with polarizations HH and HV. NASA ORNL DAAC has released the 

Global AGB in 2020 [7] which is processed with Annual (Jan-Dec 2010) data 

harmonization, % tree cover and land use land cover at 300m resolution. Year 2020 

mosaicked backscatter and NASA Global AGB are used in this study for AGB 

estimation along with GT. 

The optical data from Sentinel-2 Multi-Spectral Instrument (MSI) with a 

resampled spatial resolution of 10m is used in this study for mangrove delineation. 

The 13 band data is acquired for different resolutions, 4 bands at 10m, 6 bands at 20m 

and 3 bands at 60m in Visible, Near Infra-Red (NIR) and Short Wave Infra-Red 

(SWIR) spectrum. 

The Table 1 depicts the details with sensor frequency, incident angle, date of data 

acquisition and resolution. 

Table 1. Data products with sensors used, its parameters and date of acquisition. 

S. No. Data Products 

Sensor/ 

Frequency  

Band 

Date of  

Acquisition 

Incidence  

Angle 

Resolution 

(m) 

1 
25m global mosaic product-HH+HV (Fine Beam 

Dual-pol) 

ALOSPALSAR-

2/L-band 

2020 Yearly  

mosaic 

38.382 (near range) & 

42.561 (far range) 
25 

2 
NASA-Global-AGB 

https://doi.org/10.3334/ORNLDAAC/1763 
 

2010-01-01 to 

2010-12-31 
 300 

3 Multispectral Sentinel-2-MSI-13 bands 
Visible, NIR & 

SWIR 
2020-05-07 

Zenith angle: 2.559° to 

3.30° 

Azimuth angle: 152.89° 

to 159.11° 

10 

4 Field Data with No. of GT points = 30  
2024-02-11 to 

2024-02-14 
 

10m × 10m 

grid 

5 India State of Forest Report  2021   

 

Figure 2. NASA Global AGB for Gulf of Khambhat. 
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The Figure 2 illustrates the spatial distribution of NASA Global AGB across the 

mangrove ecosystems in the study area, with a color-coded scheme for AGB values, 

measured in tons per hectare (t/ha). Red areas (76.10–102.36 t/ha) indicate regions 

with the lowest AGB, potentially signifying sparse or degraded mangrove patches. 

While, dark green areas (142.57–155.25 t/ha) represent regions with the highest 

biomass, highlighting dense and well-preserved mangrove stands. Intermediate 

colours orange, yellow, and light green denote varying levels of AGB, reflecting 

differences in vegetation structure, health and coverage within GOK. This map serves 

as an invaluable resource for understanding the ecological characteristics of the Gulf 

of Khambhat’s mangroves, which are critical for coastal protection, carbon 

sequestration, and biodiversity conservation. The scale and resolution of the map allow 

researchers and policymakers to identify high-biomass areas that serve as significant 

carbon sinks, as well as low-biomass regions that may require restoration efforts. The 

data also highlights the spatial variability in mangrove health and density, providing 

insights into natural and anthropogenic factors influencing these ecosystems. The 

Ground Truth (GT) data collected at three primary locations—Ghogha in Bhavnagar 

and Dahej and Kantiyajal in Bharuch for the rich mangrove presence and logistical 

feasibility to approach.  GT was collected for four days, from 11th February to 14th 

February 2020. 

   
(a) Ghogha, Bhavnagar (b) Dahej, Bharuch (c) Kantiyajal, Bharuch 

Figure 3. Gulf of Khambhat GT Locations: (a) Ghogha, Bhavnagar; (b) Dahej, Bharuch; (c) Kantiyajal, Bharuch. 

The fieldwork was meticulously planned to ensure comprehensive spatial and 

ecological representation of the region and was carried out from selected sampling 

sites during low tide. Line Transect Plot Method and Sample Plot is used for 
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measurements of mangrove vegetation condition. Following steps were followed for 

data sampling with Line Transect Plot: 

• In each observation zone line transects were put from the coastal waters toward 

the land which are rectangular to the coastal line along the mangrove forest 

zonation in the intertidal. 

• In each mangrove zone along the transect line, the rectangular sample plots were 

randomly placed. 

• A 10 × 10 m transect was used to count the number of trees having a diameter 

greater than 10 cm. 

• Mangrove species are determined, the total number of individuals is counted by 

species, tree height and stem circle are measured using Diameter at Breast Height 

(DBH) method for each sample plot. 

Figure 3 provides a visual depiction of the chosen sampling sites. The dominant 

vegetation in this mangrove-dense region is Avicennia marina, known for its 

ecological significance and adaptability to saline environments. Another species, 

Rhizophora Mucronata, was also identified, although it was in lesser abundant 

compared to the dominant species. Field measurements focused on key structural 

attributes such as tree height (h) and diameter at breast height (dbh), which are critical 

for assessing mangrove health and biomass. 

2.3. Methodology 

The methodology employed in this study integrates field measurements, 

microwave SAR and multi-band optical satellite data preprocessing and Support 

Vector Machine (SVM) classification technique to estimate the mangrove area and 

Above Ground Biomass (AGB) in the Gulf of Khambhat as illustrated in the flow 

diagram in Figure 4. 

 
Figure 4. Methodology flow chart. 
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Multispectral Sentinel-2 MSI Level 1C Top-of-Atmosphere Reflectance data, is 

used for land-use/land-cover (LULC) classification [9]. Regions of Interest (ROI) are 

generated for various land-use classes to guide the SVM process. The SVM is a robust 

supervised machine learning algorithm that excels in handling complex and noisy 

datasets. SVM is based on statistical learning theory and is particularly effective in 

delineating classes with clear boundaries by constructing a decision surface, or 

hyperplane, that maximizes the separation between data classes. The support vectors, 

which are the data points nearest to the hyperplane, play a critical role in defining this 

boundary and are key elements of the training dataset. These vectors ensure that the 

classification process is resilient, accurate and capable of generalizing well across the 

entire dataset. 

The classification of multi-spectral image was carried out across six distinct land-

cover categories: built-up areas, mudflats, ocean, vegetation (other than mangroves), 

mangroves, and unclassified regions. The multispectral data, with high spatial detail, 

enabled precise differentiation of mangroves from other vegetation and land-cover 

types. Regions of Interest (ROIs) were carefully selected for each category to train the 

SVM model effectively. The algorithm then classified each pixel into the most 

probable category based on spectral signatures and spatial characteristics. Mangroves 

were accurately delineated as a separate class, benefiting from the distinctive spectral 

reflectance properties of mangrove vegetation. 

ALOS PALSAR-2/L-band SAR yearly mosaic data with HH and HV 

polarizations, is Radiometric calibrated by converting the DN (digital number) values 

to backscatter values (σ˚) in decibels (dB), using the equation-1 and 3 × 3 averaging 

to reduce noise [10]. 

σ˚(dB) = 20 × log10 (DN) − 83.0 (1) 

Field-based observations of essential parameters (h, dbh and p) for mangrove 

biomass modeling are used for development of allometry. This data forms the basis 

for establishing the relationship between GT biomass and SAR backscatter values. A 

multi-linear regression model is developed to estimate AGB based on the relationship 

between SAR backscatter values (HH and HV polarizations) and field-measured 

biomass data. The regression model utilizes mangrove height, dbh, and wood density 

as input parameters. The developed AGB model is validated against the Global AGB-

2010 [11]. AGB Model is validated with Global AGB-2010 and its accuracy is 

assessed using statistical metrics, including: 

• Uncertainty: To measure the variability in predictions [4]. 

• Root Mean Squared Error (RMSE): To assess the accuracy of the AGB model 

[4]. 

• Statistical Measures of AGB: Minimum, maximum, and standard deviation of 

estimated biomass values. 

• These metrics provide a quantitative assessment of the model’s reliability and 

highlight areas for improvement. 

The Mangrove Area is estimated using AGB Map (derived from the AGB 

modeling process using SAR data) and LULC Classification Map (generated from the 

SVM classification of optical data). The estimated Mangrove area from the AGB map 

and LULC classification map is compared with area reported in the India State Forest 
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Report 2021 (Forest Survey of India) [6]. This comparison ensures cross—validation 

of results and identifies potential discrepancies between methodologies. 

Thus, integrated methodology approach combines SAR and optical data, field 

measurements, and advanced classification methods to provide a comprehensive 

analysis of mangrove ecosystems in the Gulf of Khambhat, facilitating informed 

conservation and management decisions. 

3. Results and discussion 

The outcome of the integrated methodology is discussed in this section. The 

spatial distribution of mangroves and AGB estimation are given in details with 

accuracy and sensitivity analysis of developed AGB models. 

3.1. Spatial distribution of mangrove in the gulf of Khambhat 

The LULC Classes identified from the SVM classification are Mangroves, 

Barren Land, Vegetation, Seawater, Built-up, and Unclassified are shown in Figure 5. 

The classification successfully distinguished mangroves from other land-cover types, 

leveraging the spectral resolution of Sentinel-2 data and the robustness of the SVM 

model. The mangrove area identified through this classification was 98.55 km2, which 

aligns closely with the mangrove area reported in the India State of Forest Report 

(ISFR) 2021, which is 101.53 km2. This indicates a high accuracy of 97.06% for 

mangrove area estimation using Sentinel-2 MSI data, demonstrating the reliability of 

optical remote sensing for such analyses. 

 

Figure 5. SVM Classification map from Sentinel-2 MSI. 

The overall accuracy of the SVM classification is 83.285%, which reflects the 

classifier’s ability to classify six distinct land-cover categories, including built-up 

areas, mudflats, ocean, other vegetation, mangroves, and unidentified regions. 
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Additionally, the Kappa Coefficient, a statistical measure of classification consistency, 

is 0.7891, indicates substantial agreement between the classified map and the reference 

data. These results highlight the robustness of the SVM classifier in handling multi-

class classification tasks in a complex coastal environment. The Figure 6 illustrates 

the Training Samples taken for carrying out the SVM Classification in study area. 

 

Figure 6. Training samples in GOK for SVM classification. 

When comparing mangrove area estimates, the SVM-derived results showed a 

slight underestimation of 2.93 km2 compared to the ISFR 2021 report [6]. However, 

this small difference underscores the accuracy of the classification process, as optical 

data inherently captures fine spatial details. The close agreement between the SVM 

classification and ISFR values reaffirms the methodology’s credibility. The overall 

classification accuracy and Kappa Coefficient further validate the model’s 

effectiveness in distinguishing mangroves from other land-cover types, contributing 

significantly to resource mapping and ecosystem monitoring efforts in the GOK. 

The SVM kernel parameters are listed in Table 2, directly influence the SVM’s 

ability to delineate complex ecosystems by balancing the trade-offs between 

classification accuracy and computational efficiency. The Confusion Matrix for the 

results obtained from the SVM Classification for the GOK is given in Table 3. 

Table 2. Parameters used for SVM classification for Gulf of Khambhat. 

S. No. Parameters Values 

1 Kernel Type Radial Basis Function 

2 Gamma in Kernel Function 0.333 

3 Penalty Parameter 100.000 

4 Pyramid Levels 0 

5 Classification Probability Threshold 0.00 
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Table 3. Confusion matrix for SVM classification for Gulf of Khambhat. 

Ground Truth (Pixels) 

Class Unclassified Mangroves 
Barren 

Land/Mudflats 

Vegetat

ion 

Sea 

Water 
Built-up Total 

Unclassified 0 0 0 0 0 0 0 

Mangroves 0 14,216 0 703 2 0 14,921 

Barren Land 

/Mudflats 
0 1 18,416 2772 915 4770 26,874 

Vegetation 0 936 56 15,277 28 284 16,581 

Sea Water 0 0 436 627 15,922 160 17,145 

Built-up 0 0 3036 36 0 9727 12,799 

Total 0 15,153 21,944 19,415 16,867 14,941 88,320 

The results for mangrove classification are particularly encouraging for GOK. 

The overall accuracy of 83.29% and Kappa coefficient of 0.7891 for GOK indicate 

that 83.29% of the classified pixels matched the ROIs, highlighting the robustness of 

the classification model. 

The producers’ accuracy for mangroves is obtained as 93.82%, indicates that 

nearly all actual mangrove pixels were correctly classified by the model. Similarly, 

the users’ accuracy for mangroves is 95.28%, suggests that the majority of pixels 

classified as mangroves in the SVM output were indeed mangroves on the ground. 

These high accuracy values for mangroves underscore the effectiveness of the SVM 

classification in accurately identifying and delineating mangrove ecosystems within 

the study area. However, there is room for improvement in reducing misclassification 

errors, which would further enhance the model’s reliability for mangrove mapping. 

The high overall accuracy and significant agreement (Kappa coefficient) affirm 

the effectiveness of the integrated methodology, SVM classification of Sentinel-2 MSI 

data, for land-use and land - cover mapping in the Gulf of Khambhat. The exceptional 

performance for mangrove classification, as demonstrated by the producers’ and users’ 

accuracy, highlights the potential of this approach for supporting mangrove 

conservation and management efforts. The accurate delineation of mangrove areas 

contributes to reliable AGB estimation and aids in evaluating mangrove ecosystem 

services, critical for coastal protection and biodiversity conservation. 

3.2. Mangrove biomass estimation in the Gulf of Khambhat 

Multi-linear regressions are used to estimate the mangrove forest AGB using 

backscatter data from ALOS PALSAR-2-L band (HH and HV polarization) and GT 

allometry for the Gulf of Khambhat. The results obtained from Backscatter based 

datasets for GOK is depicted in the Table 4. 
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Table 4. Statistical analysis of AGB model for Gulf of Khambhat. 

Gulf of Khambhat 

AGB model Results 

NASA Global AGB data—

Spawn SA [11] 

Developed AGB Model from GT 

Parameters 

Developed AGB Model—

Backscatter & GT allometry 

Global AGB-2010 (t/ha) 
AGB (t/ha) = −150.6922 + 5.5782 * h + 

1862.6525 * dbh 

AGB (t/ha) = 180.99 + 6.28 * HH − 

0.79 * HV 

Minimum 51.00 35.50 76.10 

Maximum 214.00 193.00 155.25 

Difference = Max−Min 163.00 157.50 79.15 

Standard Deviation 33.94 31.11 14.21 

Squared Mean Error 6.09 5.58 5.45 

RMSE 87.90 13.33 29.86 

Uncertainty (u) 6.20 5.68 2.59 

R2 1.00 0.728 0.42 

The R2 value of the developed AGB model is low as limited ground truthing was 

carried out during the COVID-19 pandemic. The more Ground Truth measurements 

will lead to further improvement in the developed model. The Global AGB 2010 has 

not used sufficient GT points over India and global AGB model inaccuracy is also 

affecting the accuracy of developed AGB model. In future, with the launch of Biomass 

mission more accurate AGB will be available. The Figure 7 presents a comparison of 

Above-Ground Biomass (AGB) values across 30 Ground Truth (GT) locations, 

expressed in tons per hectare (t/ha). It shows the estimated AGB from GT allometry 

and the estimated AGB from SAR backscatter along with NASA Global AGB. 

 

Figure 7. Comparison of AGB from developed model and global AGB data. 

The Figure 8 illustrates the estimated Above ground biomass (AGB) map of 

mangroves in the GOK. The sparse mangroves are represented in the red color with 

AGB values ranging from 76.10 t/ha to 102.36 t/ha. The dense mangroves are 

represented in the green color with AGB values varying between 142.57 t/ha to 155.25 

t/ha. Figure 8 has more variability as compared to Figure 2 as NASA Global AGB is 

not considered adequate GT points over India. The area of the mangroves obtained 

from the AGB map is 94.94 km2. The area of Mangroves found from the India State 
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Forest of Forest Report, 2021 is 101.53 km2. The accuracy of the area of mangroves 

obtained from microwave remote sensing (L-band SAR) is 93.50 %. 

 

Figure 8. AGB map of Gulf of Khambhat using from developed backscatter AGB 

model. 

Sensitivity analysis of the developed model equation 

The georeferenced site allows for contextual understanding of the analysis and 

validation of the model against real-world conditions. The ground truth carried out for 

this site, forming the basis for the analysis. Sensitivity analysis is a quantitative 

technique used to understand how variations in input parameters of a model affect its 

output. It evaluates the robustness of a model by identifying the degree of influence 

that each input variable or parameter has on the results. In the context of remote 

sensing models, sensitivity analysis can highlight the importance of different physical 

or empirical parameters (e.g., radar backscatter coefficients or calibration constants) 

in estimating key environmental metrics, such as Above Ground Biomass (AGB). By 

systematically varying parameters and observing changes in outputs, it is possible to 

identify the most critical variables to optimize the model for specific conditions. The 

location of mangrove area on Google Earth is taken for the sensitivity analysis is 

shown in Figure 9 as red color triangle. The HH and HV values are extracted from the 

ALOS PALSAR-2 (L band) images. The Figure 9 illustrates the Sensitivity Analysis 

of the Developed model to examines AGB variations with the radar polarizations and 

constant parameters around the georeferenced point location. 
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Figure 9. Sensitivity analysis of the developed backscatter AGB model. (a) AGB variation with change in HH; (b) 

AGB variation with change in HV; (c) AGB variation with change in A; (d) AGB variation with change in B; (e) 

AGB variation with change in C; (f) Location at which sensitivity analysis is carried out is shown in red color; 

(a) HH Polarization (dB) vs. AGB (t/ha) 

The HH polarization represents the radar backscatter for horizontally transmitted 

and received signals, which is strongly influenced by surface structure and vegetation 

canopy properties. The graph shows that AGB decreases steadily as HH polarization 

increases. This behaviour is somewhat counterintuitive given the positive coefficient 

(+6.28) for HH in the model equation, which suggests that higher HH values should 

increase AGB. 

This discrepancy indicates that while HH contributes positively to biomass 

estimation, there is a saturation point where the relationship diminishes, particularly 

in dense vegetation where backscatter is less sensitive to biomass variation. This 

highlights the model’s dependency on HH polarization and its limitations under 

specific conditions, such as dense forests where structural scattering dominates. 

(b) HV Polarization (dB) vs. AGB (t/ha) 

HV polarization captures radar backscatter for horizontally transmitted and 

vertically received signals. It is sensitive to vegetation volume scattering and is an 

important indicator of biomass. The graph reveals that AGB increases with rising HV 

values, which seems to contrast the negative coefficient (–0.79) for HV in the equation. 
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This trend may occur due to interactions between HH and HV polarizations in 

the modelled environment, particularly where vegetation properties or environmental 

factors influence both scattering types. The model shows relatively weak sensitivity 

to HV, as the overall change in AGB across the HV range is smaller compared to HH. 

(c) Constant Value (A) vs. AGB (t/ha) 

The constant “A” in the model represents an offset or calibration term. The graph 

shows that AGB increases linearly with increasing values of A, but the slope of the 

increase is relatively small. This suggests that the impact of A is incremental and serves 

primarily to adjust the baseline AGB estimates. 

The linearity of this relationship indicates that constant A does not introduce 

significant variability or nonlinear effects into the model. Instead, it acts as a 

straightforward tuning parameter to align the model with observed data. Its limited 

sensitivity highlights that the model relies more heavily on HH and HV polarizations 

for predictive accuracy. 

(d) Constant Value (B) vs. AGB (t/ha) 

The constant “B” shows a negative linear relationship with AGB. As B increases, 

AGB decreases steadily, with a relatively larger sensitivity compared to constant A. 

This suggests that B plays a more significant role in counteracting overestimation or 

correcting the model for specific environmental conditions. 

The strong negative sensitivity to B highlights its importance in balancing the 

contributions of HH and HV polarizations. In practical terms, constant B could reflect 

an environmental adjustment factor, such as soil moisture or vegetation density, that 

reduces the overall AGB estimate in the presence of certain conditions. 

(e) Constant Value (C) vs. AGB (t/ha) 

The constant “C” exhibits a positive linear relationship with AGB, with a 

relatively steep slope compared to A. As C increases, AGB rises steadily, indicating a 

stronger influence on biomass estimation. This highlights that constant C is a 

significant positive contributor to the model, potentially serving as a scaling factor for 

calibrating the overall biomass estimates. The linearity and magnitude of the 

relationship suggest that C could represent an environmental or structural parameter 

that enhances AGB predictions under specific scenarios, such as regions with high 

vegetation density or specific canopy characteristics. 

The sensitivity analysis of the developed model equation reveals distinct roles 

and impacts of the input parameters. The radar polarizations (HH and HV) exhibit 

non-linear sensitivity to AGB, with HH showing a stronger overall influence but 

diminishing returns at higher values. HV’s sensitivity, though weaker, reflects the 

influence of volume scattering in vegetation canopies. The constants A, B, and C 

provide important calibration functions, with B exerting a negative influence and C 

contributing positively. This analysis emphasizes the importance of understanding 

parameter interactions and environmental conditions in refining biomass estimation 

models. 

The graph in Figure 10 compares Global AGB, Developed Ground Truth (GT) 

AGB, and Developed Backscatter AGB Model predictions. This analysis evaluates 

how closely the estimated AGB values and allometry align with the reference Global 

AGB. The degree of correlation between Global AGB and Developed GT AGB is 

0.728, indicating a strong positive relationship. The black dots in the graph show that 
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the GT AGB estimates align closely with Global AGB values for a wide range of 

biomass (approximately 80–160 t/ha). However, deviations are noticeable at both 

lower (< 80 t/ha) and higher (> 160 t/ha) biomass levels. 

 

Figure 10. Comparison of global AGB with developed GT AGB and backscatter 

AGB. 

The degree of correlation between the Developed GT AGB and the Developed 

Backscatter AGB Model is 0.42, suggesting a moderate relationship. Backscatter AGB 

aligns relatively well with GT AGB values, indicating that the backscatter model 

performs reliably within 80–140 t/ha range. The Backscatter AGB model is 

underestimating biomass above 140 t/ha. This is likely due to saturation effects in L-

band SAR signals, where the backscatter response becomes less sensitive to increases 

in biomass density. 

GT AGB Model shows lower uncertainty in the mid-range biomass levels, 

making it a robust reference for validating remote sensing models. However, 

uncertainty increases at the extremes of biomass, reflecting challenges in field data 

collection and extrapolation. It higher confidence in mid-range biomass predictions, 

making it a suitable validation dataset. 

Backscatter AGB Model demonstrates consistent performance for low to medium 

biomass levels but exhibits higher uncertainty at high biomass densities due to 

saturation effects and structural complexity in mangrove forests. The backscatter 

model, while consistent in low-to-mid biomass ranges, requires improvements, such 

as integrating multi-frequency SAR data (e.g., P-band) or advanced calibration 

techniques, to reduce uncertainty in high biomass regions. 

4. Conclusion 

The estimation of mangrove area in the Gulf of Khambhat using satellite remote 

sensing data revealed insightful findings. Based on the Above Ground Biomass (AGB) 

map generated from ALOS PALSAR-2 L-band SAR data, the mangrove area was 

estimated to be 94.94 km2. This estimation is validated against the official mangrove 

area reported in the India State of Forest Report (ISFR) 2021 [6], which recorded the 

mangrove extent as 101.53 km2. The AGB map’s accuracy is 93.50% also determined 
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using ground truth. It demonstrates the reliability of the microwave (SAR) data for 

mangrove delineation. Additionally, the Support Vector Machine (SVM) 

classification of Sentinel-2 MSI optical data provided a mangrove area estimate of 

98.55 km2, with an impressive accuracy of 97.06%, highlights the precision of optical 

remote sensing in distinguishing mangroves from other land-cover types. 

GT AGB Model shows lower uncertainty in the mid-range biomass levels, 

making it a robust reference for validating remote sensing models. However, 

uncertainty increases at the extremes of biomass, reflecting challenges in field data 

collection and extrapolation. It higher confidence in mid-range biomass predictions, 

making it a suitable validation dataset. Backscatter AGB Model demonstrates 

consistent performance for low to medium biomass levels but exhibits higher 

uncertainty at high biomass densities due to saturation effects and structural 

complexity in mangrove forests. It requires improvements to reduce underestimation 

for dense vegetation areas. The backscatter model, while consistent in low-to-mid 

biomass ranges, requires improvements, such as integrating multi-frequency SAR data 

(e.g., P-band) or advanced calibration techniques, to reduce uncertainty in high 

biomass regions. 

The integration of optical and microwave remote sensing technologies, coupled 

with ground-truth data, underscores the significance of using complementary datasets 

for mangrove mapping. The study not only demonstrates the potential of microwave 

SAR data for biomass mapping but also showcases the utility of multispectral optical 

data for enhancing classification accuracy. These results are pivotal for monitoring 

both mangrove loss due to anthropogenic activities or natural disturbances and their 

recovery over time. By providing accurate and spatially detailed data on mangrove 

distribution and biomass, this research offers valuable insights into natural resource 

conservation. The findings emphasize the importance of mangroves as biodiversity 

hotspots and carbon sinks, and the methodologies presented enable targeted 

conservation strategies, ensuring the long-term sustainability of these vital ecosystems. 

This comprehensive approach sets a benchmark for ecosystem monitoring and 

resource management in coastal regions. 
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